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Abstract: Lipid rafts are sphingolipid and cholesterol rich micro-domains of the plasma membrane that coordinate and 

regulate varieties of signaling processes. Lipid rafts are also present in cardiac myocytes and are enriched in signaling 

molecules and ion channel regulatory proteins. Lipid rafts are receiving increasing attention as cellular organelles 

contributing to the pathogenesis of several structural and functional processes including cardiac hypertrophy and heart 

failure. At present, very little is known about the role of lipid rafts in cardiac function and dysfunction. This review will 

discuss the possible role of lipid rafts in cardiac health and disease.  

INTRODUCTION 

 The traditional model of plasma membrane as a 
homogeneous fluid lipid bilayer, as demonstrated by Singer 
and Nicholson (1972), has been extensively modified in 
recent years, and it has become increasingly clear that 
plasma membrane consists of numerous lipids that constitute 
much more complex structure than previously thought. 
However, work over last decade has provided evidence that 
the plasma membrane is not a random ocean of lipids; rather, 
there is structure within this sea of lipids that in turn imposes 
organization on the distribution of proteins in the bilayer. 
The lipid “structures” within the membrane ocean are called 
lipid rafts [1]. The fatty-acid chains of lipids within the raft 
tend to be extended and so more tightly packed, creating 
domains with higher order. It is therefore thought that rafts 
exist in a separate ordered phase that floats in a sea of poorly 
ordered lipids. 

 Lipid rafts are sphingolipid and cholesterol-rich-domains 
of the plasma membrane which contain a variety of signaling 
and transport proteins. Different subtypes of lipid rafts can 
be distinguished according to their protein and lipid 
composition. Caveolae, a subset of lipid rafts, are flask-like 
invaginations of plasma membrane that contains proteins of 
caveolin family (Caveolin-1, caveolin-2 and caveolin-3) [1]. 
The presence within lipid rafts of a variety of membrane 
proteins involved in cell signaling has led to the consensus 
that these lipid domains play an important role in the process 
of signal transduction [2]. In some cases, preassembled 
signaling complexes are localized in this lipid raft domains 
[2]. 

LIPID RAFT AND SIGNALING COMPONENTS 

 A large number of GPCR (G-protein coupled receptor) 
have been reported to co-localize with lipid raft/ caveolae. In 
case of Angiotensin I receptor, GPCR-caveolin interaction is 
important for receptor sorting and delivery to plasma 
membrane [3]. According to the caveolin signaling hypo-
thesis, caveolae bring downstream effectors in proximity to 
receptors (e.g., GPCRs) for initiating receptor, tissue and  
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cell-specific signal transduction [4, 5]. These effectors are 
thought to reside within caveolae by direct interaction with 
caveolin. Palmitoylation may enhance caveolar localization 
of proteins [6, 7]. 

 Among the different binding proteins of caveolin, its 
interaction with eNOS has been most extensively studied [8]. 
Binding of eNOS with caveolin inhibits enzyme activity [9] 
and loss of caveolin expression upregulates eNOS activity 
[10]. Like eNOS, caveolin is also thought to negatively 
regulate Adenylate Cyclase (AC) activity. Caveolin-1 and 
caveolin-3, but not caveolin-2 inhibits AC activity and this 
inhibition is AC isoform specific [11]. Like eNOS, protein 
kinases (PKA/PKC) can also interact with caveolin-1 and 
inhibit its activity [12]. The PKC family of enzymes 
translocate to the cellular compartment in response to the 
external stimuli [13]. The phosphatidylinositol-3-kinase/ 
protein kinase B (PI3K/PKB, Akt) pathway is another 
protein kinase system that interacts with caveolin and this 
interaction may regulate cell survival. For example, caveolin 
retains Akt in activated form (phosphorylated form) in 
prostate cancer [14], presumably via interaction with 
caveolin scaffolding domain of caveolin and by inhibition of 
protein phosphatase 1 and 2A [15]. In muscle, we can also 
found a linear relationship between the expression of 
caveolin-3 and activation of PI3K/Akt pathway in the 
regulation of cell survival [16]. In addition, the 
phosphorylated form of caveolin is involved in EGF receptor 
transactivation, which is dependent on Src and Akt 
phosphorylation and for which caveolin helps integrate this 
signaling cascade [17]. 

 Receptor tyrosine kinases also have been localized to 
caveolae [e.g., EGF, NGF, IGF and PGDF] and their 
downstream effectors MAP kinases, which regulate 
numerous cellular processes, are also regulated by caveolin 
[18, 19]. P42/44 MAPK localizes to caveolae and is 
negatively regulated by interaction with caveolin 1 [20]. 
Overexpression of caveolin-1 also inhibits the MEK/ERK 
signaling pathways [21]. Consistent with this action, 
caveolin-1 and-3 knock out mice showed increased 
activation of p42/44 MAPK [22]. Ischemia reperfusion 
showed differential activation of p42/44 ERK and 
p38MAPK in cavaeolar and noncaveolar fraction, indicating 
differential regulation of these kinases by caveolin [23]. 
Certain nonreceptor tyrosine kinases such as members of src 
family (c-Src, Fyn, lyn) are enriched in caveolae and 
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interactions with caveolin-1 also suppress the kinases 
activities [24, 25]. Tyrosine phosphorylation of caveolin 
itself makes phospho caveolin, which acts as a key site of 
tyrosine kinase signaling [26]. 

CAVEOLIN KNOCKOUT AND PHENOTYPE 

 The most appropriate approach for the study of caveolin 
is the use of knock out (KO) mice. Caveolin-KO mice (Cav-
1,-2, -3) and caveolin 1/3 double KO mice have already been 
developed. Although they are viable, they are fertile but 
display numerous phenotypes. Caveolin-1 knockout mice 
develop progressive cardiac hypertrophy as demonstrated by 
transthoracic echocardiography (TTE) and magnetic 
resonance imaging (MRI) [22]. In contrast, caveolin-3 
knockout mice develop cardiomyopathy characterized by 
hypertrophy, vasodilatation and reduced contractility as well 
[27]. Caveolin-1 and caveolin-3 double knockout mice 
completely lacking caveolae are deficient in all three 
caveolin proteins because caveolin-2 is degraded in absence 
of caveolin-1. The double knockout mice developed severe 
cardiomyopathic phenotype with cardiac hypertrophy and 
decreased contractility [28]. Additionally, Cav-1 KO mice 
exhibited myocardial hypertrophy, pulmonary hypertension 
and alveolar cell hyper proliferation caused by constitutive 
activation of p42/44 mitogen activated protein kinase and 
Akt [29] Interestingly, in Cav-1-reconstituted mice, cardiac 
hypertrophy and pulmonary hypertension were completely 
rescued [29]. Again, genetic ablation of Cav-1 leads to a 
striking biventricular hypertrophy and to a sustained eNOS 
hyper-activation yielding increased systemic NO levels [30]. 
Furthermore, a diminished ATP content and reduced level of 
cyclic AMP in hearts of knockout mice was also reported 
[30]. Taken together, these results indicate that genetic 
disruption of caveolin-1 is sufficient to induce severe 
biventricular hypertrophy with signs of systolic and diastolic 
heart failure [30]. 

 Apart from its ability to degrade extracellular matrix 
proteins, matrix metalloproteinase-2 (MMP-2) was recently 
revealed to have targets and actions within the cardiac 
myocyte. MMP-2 (gelatinase A) has been localized to the 
thin and thick myofilaments of the cardiac sarcomere, as 
well as to the nucleus [31, 32]. The intracellular proteins 
troponin I and myosin light chain-1 are proteolyzed by 
MMP-2 in ischemia/reperfusion injury [31, 32]. The tissue 
inhibitors of metalloproteinase (TIMPs) control MMP 
activities [33], but other mechanisms of regulation are less 
well elucidated. In endothelial cells, MMP-2 has been 
localized to the caveolae [34] yet its function there is 
unknown. Disruption of caveolae activates MMP-2 in 
fibrosarcoma cells [35] while Cav-1 overexpression in tumor 
cells causes decreased MMP-2 activity [36] suggesting that 
Cav-1 may participate in the regulation of MMP-2. Whether 
the role of MMP-2 activity in the heart is affected by 
caveolin still remains unknown. Here we present evidence 
that MMP-2 localizes with Cav-1 in the mouse heart, and 
that CSD inhibits MMP-2 activity and that hearts of mice 
deficient in Cav-1 have increased MMP-2 activity. 

 Interestingly, Cav-3 KO mice show a number of 
myopathic changes, consistent with a mild to moderate 
muscular dystrophy phenotype. However, it remains 
unknown whether a loss of cav-3 affects the phenotypic 

behavior of cardiac myocytes in vivo. Cav-3 knockout hearts 
display significant hypertrophy, dilation and reduced 
fractional shortening as revealed by gated cardiac MRI and 
transthoracic echocardiography. Histological analysis reveals 
marked cardiac myocyte hypertrophy, with accompanying 
cellular infiltrates and progressive interstitial/ peri-vascular 
fibrosis. It has also demonstrated that p42/44MAPK (ERK1/ 
2) is hyperactivated in heart derived from caveolin-3 
knockout mice, which can lead to cardiac hypertrophy [37]. 

 In the endoplasmic reticulum, Cav-3 initiates the 
biogenesis of caveolae organelles by forming homo-
oligomers and hetero-oligomers with Cav-1 [38]. At the 
plasmalemma, Cav-3 interact with dystrophin and its 
associated glycoproteins [39, 40]. Cav-3 and dystrophin 
competitively bind to the same site of -dystroglycan, 
suggesting that Cav-3 may regulate the membrane 
recruitment of dystrophin and the assembly of the dystrophin 
glycoprotein complex (DGC) [41]. At the cell surface, Cav-3 
colocalizes also with signaling molecules such as Gi2 , G

, c-Src, other Src kinases as well as nitric oxide synthases 
(neuronal and inducible NOS), indicating that muscle 
caveolae might be involved in the modulation of these 
signaling processes [42, 43]. In addition, Cav-3 plays a role 
in the regulation of energy metabolism of muscle cells as it 
is required for the cell membrane targeting of 
phosphofructokinase, an enzyme that catalyzes a rate-
limiting reaction in glycolysis [44]. 

 In vitro studies have shown that Cav-3 plays a critical 
role in myoblast cell differentiation and survival and in 
myotube formation [45]. The relevance of Cav-3 in muscle 
physiology was further confirmed by the findings that 
mutations in the CAV3 gene result in distinct neuromuscular 
and cardiac disorders, such as limb girdle muscular 
dystrophy (LGMD) 1-C, idiopathic persistent elevation of 
serum creatine kinase (hyperCKemia), inherited rippling 
muscle disease (RMD), distal myopathy and familial 
hypertrophic cardiomyopathy (HCM) [46-48]. 

 The CAV3 gene (OMIM no. 601253) spans 12 kb of 
genomic DNA on chromosome 3p25 and contains two 
exons. At present, 20 different point mutations, 2 base-pair 
deletions and 1 novel splice site mutation have been reported 
[49]. More recently, four novel CAV3 mutations have been 
identified in patients affected by congenital long-QT 
syndrome (LQTS) in the absence of signs of primary 
cardiomyopathy, suggesting a possible role for Cav-3 in the 
regulation of cardiac ion channels [49, 50].

 

CAVEOLAE AND CARDIAC ION CHANNELS 

 Modulation of ion channel activity plays a critical role in 
regulating cardiovascular function. Recently, it has become 
apparent that the regulation of channel function is not the 
only means of controlling excitability, the trafficking and 
localization of ion channels with signaling molecules also 
play a significant role. Most cells in the cardiovascular 
system express multiple channel types (e.g., voltage-gated 
Na

+
, K

+
 and Ca

2+
 channels) and even multiple isoforms of a 

particular channel, with each channel uniquely contributing 
to excitability [51, 52]. Voltage gated Na

+
 channels are 

responsible for the initial depolarization of the cardiac 
sarcolemma, to permit the opening of voltage-gated L-type 
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Ca
2+

 channels, resulting in Ca 
2+

 influx and contraction. 
Membrane repolarization is controlled by K

+
 channels. 

Therefore, altering the number of channels and/or their 
function can have significant impact on both resting 
membrane potential and the cardiac action potential wave 
form. Defects in either of these processes can have life-
threatening implications [51, 52]. 

 In several cell types, including smooth muscle and 
endothelial cells, mediators of calcium signaling, such as 
Ca

2+
-ATPase, inositol-triphosphate receptor (IP3R), Ca

2+
 

pumps and L-type Ca 
2+

 channels, large conductance Ca
2+

 
activated K

+
 channel, calmodulin and transient receptor 

potential (TRP) channels, localize in cholestetrol-rich 
membrane domains. Such localization suggest that 
membrane raft and/or caveolae have a role in calcium 
handling and Ca

2+
 entry that control excitation-contraction of 

heart muscle [53-55]. TRP channels, in particular TRPC1, -3 
and -4 are enriched in caveolae and caveolin-1 regulates the 
plasma membrane localization and function of TRP channels 
[56]. Current evidence indicates that caveolae regulate 
calcium entry and depletion of cholesterol by methyl- -
cyclodextrin reduces colocalization of caveolin-1 and 
TRPC1 and redistribution of TRPC1, thus preventing Ca

2+
 

influx [57]. Moreover, Na
+
 pump, Na/K-ATPase, contains 

two caveolin binding motifs and resides in caveolae in a 
number of cells, including smooth muscle cells and 
cardiomyocytes, thereby helping to maintain Na

+
 gradient 

[58]. Voltage gated K
+
 channels are also localized in 

caveolae and play an important role to maintaining cellular 
excitability. In fibroblast, the Kv 1.5 subunit colocalizes with 
caveolin-1, Kv 2.5 localizes with membrane raft and 
depletion of cholesterol with M CD redistributes and alters 
the function of K

+
 channel [59]. These findings imply that 

alteration of caveolae and/or caveolin by any disease or drug 
treatments can shift the localization of the channels, thereby 
altering cellular excitability and functional activity. 

CAVEOLAE AND CARDIOVASCULAR DISEASE 

 There is a vast literature about the roles of caveolae and 
caveolin in the regulation of many cellular processes in 
cultured cells and many investigators considered them as an 
essential platform of signaling molecules. However, in the 
past few years, development of animal models and usage of 
genetically altered mice have been instrumental in 
deciphering their physiological functions in vivo. Transgenic 
over expression of caveolin-1 or caveolin-3 in mice or 
targeted disruption of each of the caveolin gene locus in 
mice (Cav-1, Cav-2 and Cav-3 genes) has provided 
significant insight into the roles of caveolin and caveolae 
[60]. The potential role of caveolin in cardiovascular 
physiology has become apparent by the discovery of cavelin-
1 and caveolin-3 KO mice and double knockout mice, which 
have cardiomyopathic phenotype. Caveolin-1 KO mice show 
complete ablation of the presence of the caveolae, cellular 
organelle, in the endothelium and fat. Similarly, caveolin-3 
KO mice lack caveolae in cells that normally express this 
protein such as skeletal muscle, heart and diaphragm. Heart 
tissue is made up of different types of cells. Differentiated 
cardiomyocytes surrounded by a network of cardiac 
fibroblasts and endothelial cells and less abundant vascular 
smooth muscle cells. There is also a controversy regarding 

expression of caveolin isoforms in the heart muscle. It is 
well known that cardiac myocytes express caveolin-3 and 
other cell types in the heart express caveolin-1 and caveolin-
2. But recent studies provided the evidence of the existence 
of caveolin-1 in cardiomyocytes [61]. 

Caveolin and Atherosclerosis 

 Experimental evidence indicates that caveolae and 
caveolins have the possibility to influencing atherogenesis in 
many ways. Caveolin-1 is a cholesterol-binding protein that

 

can transport cholesterol from the endoplasmic reticulum 
(ER) to

 
the plasma membrane. The major receptors for high-

density
 
lipoprotein, SR-B1, and a scavenger receptor for 

modified forms
 
of LDL, CD36, can also reside in and signal 

in caveolae-type microdomains [62].
 
In addition, oxidized 

LDL can extract caveolae cholesterol,
 
unlocalize eNOS, and 

impair NO release [63]. Conversely, blockade
 
of HMG CoA 

reductase with statin-based drugs reduces caveolin
 
levels and 

promotes eNOS activation [64]. This concept has
 

been 
validated in apolipoprotein E-deficient (ApoE

–/–
)

 
mice where 

statin treatment decreases caveolin-1 expression and
 

promotes NOS function in vivo [65]. However, to date, there 
are

 
no data showing changes in caveolin-1 levels in 

atherosclerotic
 
lesions from humans [60]. 

 To verify, if caveolin-1 influenced lesion progression
 
in 

mice, Lisanti and his coworkers crossbred caveolin-1
–/– 

mice 
with ApoE

–/–
 mice that develop atheromas. Interestingly,

 
the 

loss of caveolin-1 in the ApoE
–/–

 mice resulted in a 
proatherogenic lipid profile, similar to that

 
seen in CD36

–/–
 

mice bred to an ApoE background [66, 67].
 
Surprisingly, 

despite a pro-atherogenic lipid profile, the loss
 
of caveolin-1 

reduced lesion burden by 80%, suggesting caveolin-1
 

regulated LDL-mediated vascular dysfunction, inflamma-
tion, and

 
lesion progression. The authors suggested this may 

be caused
 
by a decrease in stability of the scavenger receptor 

for oxidized
 
or modified LDL, CD36 in macrophages, and an 

increase in endothelium-derived
 

NO production, which 
would reduce vascular inflammation. These

 
remarkable 

findings unequivocally support the importance of
 
caveolin-

1/caveolae in the pathogenesis of atherosclerosis [60]. 

Caveolin and Cardiac Hypertrophy 

 Cardiac hypertrophy is the consequence of an increase in 
cardiac

 
myocyte size and/or mass. Since cardiac myocytes 

have no capacity
 
for cellular proliferation, their only means 

of growth is by
 
cellular enlargement. Given that cardiac 

failure is the most
 

common result of insufficiency of 
myocardium, it is not surprising

 
that cardiomyocyte 

hypertrophy is the dominant cellular response
 
to virtually all 

forms of hemodynamic overload [68]. However, long-term 
adaptive/compensatory hypertrophy is associated

 
with 

progressive ventricular dilation. As a consequence of cardiac
 

enlargement and wall thinning, stress on the wall also 
increases, despite constant intracavitary pressure.

 
This 

mathematical increase in wall stress generates its own
 

hemodynamic stress on the heart, further stimulating 
overloaded

 
hypertrophy signaling pathway and thereby 

altering the balance
 
from cell growth response to cell death. 

Once these processes
 

have progressed to this stage 
(decompensation, loss of cardiac

 
myocytes), irreversible 
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functional deterioration develops, which
 
leads to heart failure 

and, ultimately, death [69, 70].  

 Overexpression of caveolin-3 in neonatal cardiac 
myocytes decreases the ability of the adrenergic agonist 
phenylephrine or endothelin-1 to increase cell size [71]. A 
similar kind of effect is seen in cardiac myoblasts (H9C2) in 
which cav-3 reduces angiotensin II–promoted hypertrophy 
[72]. Other studies indicate that cardiac hypertrophy results 
in decreased expression of cav-3 [73, 74] and that right heart 
[73] left heart [75] hypertrophy is enhanced in caveolin-1 
KO and caveolin-1/3 double KO mice. Down regulation of 
growth signals are the most likely cause of expressed 
caveolin induced inhibition of cardiomyocyte gowth. Cav-1 
and -3 KO mice show hyperactivation of p42/44 MAPK [76] 
and upregulation of eNOS activity and nitrosative stress [74, 
75, 61]. By contrast, increased caveolin expression down 

regulates activity of those entities [71, 77]. Chronic 
myocardial hypoxia increases eNOS expression while 
decreasing the expression of cav-3, consistent with the idea 
that the expression and activity of eNOS is dependent on 
caveolin [78]. Alterations in caveolin expression almost 
certainly change the ability of the hypertrophied heart to 
respond to a variety of physiologic and pharmacologic 
agonists/ stimulus [61]. 

Caveolin and Myocardial Ischemia 

 Ischemic heart disease is major problem in Western 
society and a major cause of death and disability. 
Precondition (PC) is the phenomenon whereby brief 
episodes of ischemia and reperfusion render the heart 
resistant to ischemic injury from a subsequent ischemic 
insult. Thus, ischemic PC is a protective and adaptive 

 

Fig. (1). Proposed model of the role of lipid raft in the ischemic preconditioning of the heart. In I/R heart, anti-death signaling components 

(p38MAPK  and ERK 1/2) remain bound (+) with caveolin, whereas there was reduced association (-) of death signaling components 

(p38MAPK , JNK and caspase-3) with caveolin. These unbound death signaling components induces reperfusion injury in the heart by 

expressing (+) JNK, BAX and p53 in the myocardium. In PC heart, death signaling components remain bound (+) with caveolin, whereas 

there was reduced association (-) of anti-death signaling components with caveolin. These unbound anti-death/survival signaling components 

induced cardioprotection by expressing (+) AKT, Bcl-2 and Bcl-xl in the myocardium. When precondition was performed in presence of 

cyclodextrin, lipid raft disintegrator, there was no particular strong interaction of survival signaling components or death signaling 

components with caveolin. Due to the loss of fine control on the availability death and survival signals, heart can not generate survival signal 

(cardioprotection) in the PC heart in presence of lipid raft disintegrator, which was further confirmed by the expression (+) of JNK, BAX and 

p53 in myocardium of cyclodextrin treated heart. [I/R= ischemia reperfusion, PC= precondition]. [Reproduced from Fig. (8) of Cell Physiol 

Biochem 2008; 21: 325-334 with permission from Karger]. 
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mechanism produced by short periods of ischemic stress 
rendering the heart more protected against another similar or 
greater stress. Early preconditioning depends on adenosine, 
opioids and to a lesser degree, on bradykinin and 
prostaglandins, released during ischemia. This molecule 
activate G-protein coupled receptor, initiates activation of 
KATP channel and generate oxygen free radicals, and 
stimulate a series of protein kinases, which include protein 
kinase C, tyrosine kinase and members of MAP kinase 
family. Late preconditioning is triggered by a similar 
sequence of events, but in addition essentially depends on 
newly synthesized proteins, which comprise iNOS, COX-2, 
manganese superoxide dismutase and possibly heat shock 
proteins. The final mechanism of PC is still not very clear. 
However, evidence is rapidly accumulating about the 
involvement of caveolin or caveolae in cardioprotection 
against myocardial ischemia and ischemia/reperfusion injury 
[79]. 

 Ischemia/reperfusion injury activates p42/44 and 
p38MAPK, redistributes caveolin-3 and downregulates exp-
ression of caveolin-1 [80]. Disruption of caveolae using 
M CD eliminates the ability of ischemia and pharmaco-
logical preconditioning to protect the cardiac myocyte from 
injury [81]. This is also supported by the decreased ability of 
Cav-1 KO mice to undergo pharmacological preconditioning 
[82]. Recent investigations also showed that pro-survival 
signaling components (e.g., ERK1/ 2, HO-1, eNOS and 
p38MAPK ) translocate and/or interact with caveolin in 
ischemia/reperfusion heart and render the heart less 
abundance to pro-survival signal and induces myocardial 
injury. Similarly, in preconditioned heart death signaling 
components (e.g., p38MAPK , JNK and Src) translocates 
and/or interact with caveolin in preconditioned heart and 
rendering the heart less exposed to death signaling 
components and more abundant to pro-survival signaling 
components [83, 84]. Although detail mechanism of action 
of caveolin is not very clear, but evidence indicates that 
proteasomes play a very important role in the interaction 
between caveolin and signaling components. However, 
overall observation indicates that caveolin plays a pivotal 
role in cardioprotection against ischemic injury (Fig. 1). 

CONCLUSION 

 Caveolae and caveolins are undoubtedly regulating 
various aspects of cardiovascular system. Clearly loss of 
caveolin-1 has profound effect on the eNOS pathway, 
indicating the importance of this interaction, whereas the 
loss of caveolin-3 impacts NOS as well as MAPK activation. 
Although detail mechanisms of actions are not very clear, 
experimental evidences demonstrate the predominant role of 
caveolin in cardiac hypertrophy, atherosclerosis, ischemic 
injury and different myocardial functions. Recent investig-
ations are disentangling the complex processes

 
of caveolin 

regulated signaling systems in the myocardium and 
developing

 
novel approaches, aimed at counteracting cardio-

myocyte apoptosis
 

in heart failure and/or cardiovascular 
diseases.  
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