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Background. Pancreatic cancer is a highly malignant solid tumor with a high lethality rate, but there is a lack of clinical biomarkers
that can assess patient prognosis to optimize treatment. Methods. Gene-expression datasets of pancreatic cancer tissues and
normal pancreatic tissues were obtained from the GEO database, and differentially expressed genes analysis andWGCNA analysis
were performed after merging and normalizing the datasets. Univariate Cox regression analysis and Lasso Cox regression analysis
were used to screen the prognosis-related genes in themodules with the strongest association with pancreatic cancer and construct
risk signatures. -e performance of the risk signature was subsequently validated by Kaplan–Meier curves, receiver operating
characteristic (ROC), and univariate and multivariate Cox analyses. Result. A three-gene risk signature containing CDKN2A,
BRCA1, and UBL3 was established. Based on KM curves, ROC curves, and univariate and multivariate Cox regression analyses in
the TRAIN cohort and TEST cohort, it was suggested that the three-gene risk signature had better performance in predicting
overall survival. Conclusion. -is study identifies a three-gene risk signature, constructs a nomogram that can be used to predict
pancreatic cancer prognosis, and identifies pathways that may be associated with pancreatic cancer prognosis.

1. Introduction

Pancreatic cancer is a highly malignant solid tumor [1], and
its incidence and mortality rates continue to increase [2].
-e most common symptoms in patients with pancreatic
cancer are abdominal pain, anorexia, fatigue, and weight loss
[3]; pancreatic cancer lacks specific biomarkers [4], and the
main serum markers commonly used today are carci-
noembryonic antigen and carbohydrate antigen 19-9;
however, their sensitivity is not ideal [3]. Surgery is the most
important approach in the treatment of pancreatic cancer.
Due to atypical symptoms and the lack of effective screening
tools, many patients have progressed to an unresectable state
at the time of diagnosis. With the development of research,

radiotherapy, chemotherapy, targeted therapy, and immu-
notherapy have been applied in the clinical treatment of
pancreatic cancer with some success. However, for indi-
vidual patients, a model that can effectively predict prog-
nosis is still needed to guide clinical selection of treatment.
-e development of high-throughput sequencing technol-
ogy has made it possible to discover prognosis-related
biomarkers.

Weighted gene co-expression network analysis
(WGCNA) has been used to detect correlations between
gene modules consisting of highly correlated gene clusters
and specific clinical features [5] and has been widely used to
identify gene modules associated with clinical features of
various cancers. In the present study, we identified gene
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modules highly correlated with pancreatic cancer tissue by
WGCNA. In addition to this, we further identified genes
associated with prognosis by univariate Cox regression
analysis and Lasso Cox regression analysis.

2. Materials and Methods

2.1. Gene Expression Dataset Collection and Processing.
Download datasets related to pancreatic cancer gene ex-
pression from GEO [6] (https://www.ncbi.nlm.nih.gov/geo/
). -e selection criteria in this article are (1) pancreatic
cancer samples and normal samples were obtained from
human samples; (2) the training and validation datasets
needed to contain survival data; (3) using microarray gene-
expression technology or RNA-Seq technology. Datasets
GSE15471 [7], GSE16515 [8], GSE28735 [9], and GSE57495
[10] were selected for differential analysis and weighted gene
co-expression analysis datasets, in which the GSE28735
dataset containing survival data was used to construct the
prognostic gene signature; GSE78229 [11] was selected as the
external validation dataset. Using the “sva” package [12] of R
package, the GSE15471, GSE16515, GSE28735, and
GSE57495 datasets are merged and normalized.

2.2.DifferentiallyExpressedGeneAnalysis andWeightedGene
Co-Expression Analysis (WGCNA). Identification of differ-
entially expressed genes (DEGs) by “limma” [13] package in
R, setting |log Fold change (logFC)|≥ 1 and adjusted p< 0.05
as standard. And we used “ggplot2” package [14] and
“pheatmap” package [15] to plot heatmap and volcano map
of DEGs. GO and KEGG enrichment analysis of the dif-
ferential genes is carried out by R package “clusterProfiler”
[16] and “GOplot” [17].

GSE15471, GSE16515, GSE28735, and GSE57495 data
were merged, and weighted gene co-expression analysis was
used to identify co-expressed gene modules using the
“WGCNA” package [5] of R. GO and KEGG analysis was
then applied to the genes within the module with the highest
correlation to tumorigenesis.

2.3. Construction of Risk Signature. -e univariate Cox re-
gression and Lasso regression analyses of genes within the
module were performed by the “survival” package [18] and
“glmnet” package [19] to screen for prognosis-related genes
within the module and construct a risk signature.
Kaplan–Meier analysis was used to examine the survival
outcomes of the high-risk and low-risk groups, and the
predictive power of the risk signature was assessed using the
area under the curve (AUC) of the controlled operating
characteristic (ROC) curve. Prognosis-related genes were
subsequently calculated in relation to risk score.

2.4. Construction and Valuation of Nomogram.
Evaluation of prognostic factors are important for stage,
grade, and risk score in the GSE78229 dataset by uni-
variate and multifactor cox regression analysis using the
“forestplot” package [20] in R. Nomogram which was

drawn through “rms” package [21] and “regplot” package
[22] to examine the accuracy of the nomogram by mea-
suring the performance of the nomogram by the C-index.
Calibration curves at 1, 3, and 5 years survival. Diagonal
lines are used as a reference for best prediction. -e R
package “timeROC” was used by graph receiver operating
characteristic curves (ROC) to determine the prognostic
performance of the gene signature and nomogram.

3. Results

3.1. Differentially Expressed Genes’ (DEGs) Identification.
-e GSE15471, GSE16515, GSE28735, and GSE57495
datasets were merged and normalized by the R package
“sva” [12]. Subsequent differentially expressed gene
analysis using the “limma” package [13] identified 77
DEGs containing 52 upregulated and 25 downregulated
genes. We next performed GO and KEGG enrichment
analysis of differential genes and plotted the circles. -e
GO analysis (Figure 1(c)) of their biological process (BP)
was mainly enriched in extracellular structure organi-
zation and extracellular matrix organization; the cellular
component (CC) was mainly enriched in proteinaceous
extracellular matrix and extracellular matrix; the mo-
lecular function (MF) was mainly involved in extracel-
lular matrix structural constituent and platelet-derived
growth factor binding. However, no pathways were
enriched in KEGG analysis.

3.2. Weighted Gene Co-Expression Network Construction and
Key Module Identification. Weighted gene co-expression
networks of GSE15471, GSE16515, GSE28735, and
GSE57495 were constructed by the “WGCNA” package in R
(version 4.0). -e samples were clustered, and the sample
clustering tree was drawn after removing the outliers
(Figure 2(a)). We chose β� 7 (R2� 0.9) to construct the
scale-free network (Figure 2(b)). Eight co-expression
modules were finally identified (which contained a grey
module composed of genes that could not be categorized)
(Figures 2(c) and 2(d)). Next, module-clinical feature cor-
relation heat maps were drawn to assess the correlation
between modules and clinical features (tumor vs. normal).
-e brown module had the strongest correlation with tumor
tissue (r� 0.53 and p � 7e − 22). -erefore, the brown
module was selected as the key module for further analysis.

3.3. Construction of a Multigene Signature. Univariate Cox
regression analysis was performed on 166 genes within the
brown module to screen 30 genes associated with survival at
p< 0.05, followed by Lasso Cox regression analysis in
GSE28735 to calculate risk scores for pancreatic cancer
patients. Risk score� (CDKN2A× 0.672) + (BRCA1×

−0.142)+(UBL3× −0.185).
Patients were divided into a high-risk group (n� 21) and

a low-risk group (n� 21) according to the median risk score.
-ere was a significant difference in overall survival (OS)
between the high- and low-risk groups (p � 1.385e − 02)
(Figure 3(c)). -e areas under the curve at 1, 2, and 3 years
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was 0.75, 0.893, and 0.733, respectively (Figure 3(d)). -e
prognostic and prognostic accuracy of the three-gene sig-
nature was subsequently validated using GSE78229 as a test
cohort. -ere was also a significant difference in OS between
the high-risk and low-risk groups in the test cohort
(p � 5.418e − 03) (Figure 3(e)), with areas under the curve at
1, 2, and 3 years of 0.773, 0.731, and 0.741, respectively
(Figure 3(f)).

-e performance of the risk signature was further
evaluated by univariate (Figure 4(a)) and multivariate
(Figure 4(b)) Cox regression analysis in the train and test

cohort, respectively. -e results showed that the risk score
was significantly associated with OS. Multivariate cox re-
gression analysis revealed that three-gene signatures were
independent predictors of outcome in pancreatic cancer
patients.

In addition, we created a prognostic nomogram to help
physicians predict overall patient survival in the clinic
(Figure 4(c)). -e calibration curve (Figure 4(d)) of the
nomogram and the area under the curve of ROC
(Figure 4(e)) showed a good concordance between predic-
tion and observation.
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Figure 1: Differentially expressed genes’ (DEGs) identification. Heat map (a) and volcano map (b) of gene-expression profiles of pancreatic
cancer tissues and normal tissues after merge of four datasets, GSE15471, GSE16515, GSE28735, and GSE57495. Differentially expressed
genes were screened using |logFC|≥ 1 and adjusted using p< 0.05, with red representing upregulated genes and blue representing
downregulated genes. (c) GO enrichment analysis of differentially expressed genes.
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Figure 2: Weighted gene co-expression network construction and key module identification. (a) Cluster dendrogram of pancreatic cancer
samples and normal samples. (b) According to the scale-free index and the mean connectivity to screen soft threshold. (c) -e cluster
dendrogram of co-expression network modules. (d) Relationships between module and trait.
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Figure 3: Continued.
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4. Discussion

Pancreatic cancer is highly malignant, lacks reliable early
screening methods, and has a poor prognosis, with an ex-
pected 5-year survival rate of approximately 9% [1].
-erefore, there is an urgent need to find biomarkers that
affect the prognosis of pancreatic cancer in clinical treat-
ment, which will facilitate the assessment of patient prog-
nosis and will help to improve the prognosis by tailoring the
treatment to the individual patient.

Tumor development is the result of multigene interac-
tions, and therefore, an increasing number of risk signatures
are used to predict prognosis [23–26]. In this study, we
proposed a three-gene (CDKN2A, BRCA1, and UBL3) risk
signature by WGCNA and Lasso Cox regression analysis for
predicting overall survival in pancreatic cancer patients, with
statistically significant differences in overall survival between
high-and low-risk groups in the train cohort and test cohort.
We then evaluated the prognostic performance of risk
signature with the AUC of ROC, and the results showed that
the risk signature could predict overall survival of pancreatic
cancer patients accurately. Subsequent univariate and
multivariate Cox analyses showed that the risk score could
predict prognosis as an independent prognostic factor. In
addition, we combined clinical characteristics to construct
nomogram that can be used in the clinic to guide person-
alized treatment.

Among the risk genes we identified, CDKN2A (cyto-
skeleton-associated protein 2-like) was significantly highly
expressed in the high-risk group and positively correlated
with risk score; BRCA1 (glutathione S-transferase Mu 5) and
UBL3 (Ubiquitin-like 3) were significantly down regulated
in the high-risk group and negatively correlated with the risk
score. CDKN2A has been reported to promote lung ade-
nocarcinoma invasion and is correlated with poor prognosis
[27]. Monteverde et al. found that CDKN2A could promote
nonsmall cell lung cancer (NSCLC) progression by regu-
lating transcriptional elongation, and targeting CDKN2A
could enhance therapeutic response in patients with NSCLC

[28]. Li et al. also found that CDKN2A knockdown inhibited
proliferation, migration, invasion, and epithelial mesen-
chymal transition in glioblastoma cells [29]. Bioinformatics
studies have found that CDKN2A is also associated with
breast cancer [30], prostate cancer [31], and colorectal
cancer [32]. BRCA1 has been reported to play an oncogenic
role in bladder cancer, with significantly lower expression
levels in cancer tissues than in normal tissues, and over-
expression of BRCA1 reduced cell proliferation, migration,
and colony-forming ability [33]. In contrast, in bladder
cancer, upregulation of BRCA1 was able to resist oxidative
stress, thereby promoting bladder cancer cell growth [34].
Pitt et al. also found mutations in BRCA1 in thyroid cancer.
In addition to this, bioinformatics studies have found that
BRCA1 is also associated with ovarian [35], colorectal [36],
and gastric [37] cancers. Consistent with our speculation,
Zhao et al. found that, in NSCLC, UBL3 acts as a tumor
suppressor gene to inhibit cancer cell proliferation [38].

GSEA analysis revealed differences in 2 key signaling
pathways between high- and low-risk groups. Base excision
repair (BER) removes endogenous DNA damages that occur
at all times in human cells, and its defects are associated with
tumorigenesis [39], but cancer cells are also able to tolerate
oxidative stress through increased BER activity, and tar-
geting BER can improve the efficacy of radio/chemotherapy
[40]. Our results show that the BER pathway is enriched in
the high-risk group, suggesting that the BER pathway is
active in high-risk patients, possibly leading to shorter
survival by affecting their sensitivity to clinical treatment. An
increasing number of studies have found that abnormal
metabolism affects patient prognosis [41, 42], and the en-
richment of propanoate metabolism pathway in the low-risk
group suggests that the risk signature may affect patient
prognosis through tumor metabolism.

In summary, our study identified a 3-gene risk signature
for predicting prognosis, and the value of this risk signature
was validated in an external test cohort. By combining this
risk signature with clinical tumor pathology staging, a visual
nomogram was created to facilitate the prediction of survival
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outcomes. We further analyzed risk signature-related sig-
naling pathways and risk genes’ expression and survival
analysis in a variety of cancers, providing a research di-
rection for exploring prognosis-related genes in in vivo and
in vitro experiments. We further analyzed risk signature-
related signaling pathways and risk gene expression and
survival analysis in a variety of cancers, providing a research
direction for exploring prognosis-related genes in cytolog-
ical and animal experiments.
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