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ABSTRACT
Investigations into pharmaceutical intervention of pancreatic and hepatic dysfunction asso-
ciated with metabolic disturbances have received relatively little attention. The aim of this
study was to investigate the protective effects of exendin-4 in mice receiving D-galactose, a
reducing sugar that triggers ROS production and inflammatory mediators affecting the
pancreas and liver. Exendin-4 is an United States Food and Drug Administration (FDA)
approved glucagon-like peptide that increases insulin dependent glycogen synthesis and
glucose uptake. Male NMRI mice (20–25 g), 3 months of age, were randomly divided into 6
groups of 12 mice each: control, exendin-4 (1 nmol/kg), exendin-4 (10 nmol/kg), D-galactose,
D-galactose + exendin-4 (1 nmol/kg) and D-galactose + exendin-4 (10 nmol/kg). D-galactose
(500 mg/kg) was given daily by oral gavage for 6 weeks. During the last 10 days, exendin-4 (1
and 10 nmol/kg) was injected intraperitoneally daily. Glucose, insulin, insulin resistance, lipid
profiles, and hepatic enzyme levels significantly increased in the D-galactose group (p < 0.05),
along with a significant decrease in superoxide dismutase activity and pancreatic islet insulin
secretion (p < 0.05). Exendin-4 decreased D-galactose-induced increases in serum glucose and
insulin, insulin resistance, lipid profiles, and hepatic enzymes, and improved pancreatic islet
insulin secretion and antioxidant defense status. The results show that exendin-4 can prevent
complications in mice with compromised pancreatic and hepatic function. Long term admin-
istration of D-galactose in mice may be a useful model to study insulin resistance, metabolic
syndrome, and aging.
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Introduction

Metabolic syndrome is associated with aging, obesity,
oxidative stress, insulin resistance, increased blood
glucose, impaired glucose tolerance, increased insu-
lin, decreased HDL, increased triglycerides, and
increased LDL [1]. Villegas et al. showed a close
relationship between elevated liver aminotransferases
(ALT and AST) and metabolic syndrome; an increase
in these enzyme levels is a primary risk factor for
chronic diseases associated with aging [2]. Two of the
major organs involved in the pathogenesis of meta-
bolic dysfunction are pancreas and liver. A number of
drugs are being studied for treatment and prevention
of metabolic syndrome, but investigations into phar-
maceutical intervention of pancreatic and hepatic
function associated with metabolic disturbances
have received less attention. Exendin-4 is an United
States Food and Drug Administration (FDA)
approved glucagon-like peptide-1 that increases insu-
lin-dependent glycogen synthesis and the liver’s glu-
cose uptake [3]. In one study, exendin-4
demonstrated a reduction in ROS generation and an
enhancement effect on antioxidant enzyme activity,

such as SOD, GPX, and CAT in rats [4]. Exendin-4
has been used for glucose stimulated insulin secre-
tion, gastric emptying, and appetite suppression in
type 2 diabetic patients. When administered, exen-
din-4 reduced liver lipids, plasma alanine transami-
nases, cholesterol, and triglycerides in both humans
and mice. Exendin-4 can also facilitate insulin secre-
tion in ß-cells through glucose sensor activation, such
as glucokinase [5]. Recently, exendin-4 showed a lipid
accumulation reduction and improved hepatic lipid
metabolism in mice fed a high fat diet. Further,
exendin-4 attenuates hepatic lipogenesis via ß-catenin
activation [6]. Exendin-4 has insulinotropic, antidia-
betic, and glucoregulatory effects through the pan-
creatic GLP-1 receptor. This drug also has a
stimulatory action on glucose metabolism in the
liver [7].

The present study was designed to explore the
antioxidant and protective effects of exendin-4 in
mice with compromised pancreatic and hepatic func-
tion. The model selected was daily administration of
D-galactose, a reducing sugar which can be converted
into aldose and hydro peroxide, resulting in anion
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superoxide and ROS production, such as hydrogen
peroxide and superoxide radicals [8]. Systemic
administration of D-galactose triggers ROS formation
in mitochondria and enhances advanced glycation
end (AGE) products through activation of their
receptor RAGE. Over-expressed RAGE activates NF-
kB and other inflammatory mediators that may be
associated with metabolic disorders, aging and age-
related diseases, especially affecting the pancreas and
liver [9].

Materials and methods

Animals and treatment design

Three month old male Naval Medical Research
Institute (NMRI) mice each weighing between
20–25 g, were purchased from Ahvaz Jundishapur
University of Medical Sciences (AJUMS) animal facil-
ity. Animals used in this study were treated in accor-
dance with AJUMS’ principles and guidelines for
animal care with ethical number D-9209 and were
kept at between 20°C and 24°C under a 12 h light/
dark cycle with free access to tap water and food
(commercial mouse chow: Pars Animal Feed Co.,
Tehran, Iran). Mice were randomly divided into six
groups (n = 12 in each group): control, exendin-4
(1 nmol/kg), exendin-4 (10 nmol/kg), D-galactose,
D-galactose + exendin-4 (1 nmol/kg),
D-galactose + exendin-4 (10 nmol/kg). D-galactose
(500 mg/kg) (Merck, Germany) was dissolved in
drinking water, and given by oral gavage daily for
6 weeks [10]. Control groups were orally gavaged
drinking water with the same volume without
D-galactose. Exendin-4 (1 and 10 nmol/kg) (Sigma,
USA) was dissolved in phosphate buffered saline
(PBS) (Merck, Germany) and injected intraperitone-
ally daily during the last 10 days of D-galactose
administration [11,12]. Control groups received PBS
only. Twenty-four hours after the last drug adminis-
tration, 1.5 ml of blood were collected from over-
night-fasted control and treated animals under
anesthesia by ketamine/xylazine (70 and 10 mg/kg,
respectively, in combination) [13] using cardiac
puncture. Serum was harvested from blood samples
for clinical pathology.

Pancreatic islet collection

Pancreatic islets were isolated as described [14] and
transferred to Petri dishes containing Krebs-bicarbo-
nate buffer with basal (2.8 mM), moderated (5.6 mM)
and stimulated (16.7 mM) glucose concentrations
[15]. All samples were then shaken by vortex and
incubated at 4°C for 24 h followed by incubation in
a 37°C water bath for 30 min. The samples were
transferred to 2 mL microtubes and centrifuged at

100 × g for 5 min by refrigerated centrifuge; 0.9 mL of
supernatant were collected and maintained at −70°C
until the insulin secretion assays were performed.
Each Petri dish contained seven islets, and the pro-
cedure was repeated eight times for each animal in all
groups [14].

Clinical pathology assessment

Serum glucose was measured using biochemical assay
kits (Pars Azmoon, Iran). Insulin levels of serum and
islet secretion samples were evaluated using ELISA
assays kits (Monobind, USA) (The sensitivity of hor-
mone detection per assay tube was 0.182 µIU/ml).
HOMA-IR (homeostasis model assessment-estimated
insulin resistance) was calculated according to the
following formula: fasting insulin (µIU/dL) × fasting
glucose (mg/dL)/405 [16]. Lipid profile and hepatic
enzymes in serum samples were measured using bio-
chemical assay kits (Pars Azmoon, Iran) and an
Autoanalyzer device (BT3000, Italy).

Antioxidant assessment

Serum antioxidant enzyme SOD (ZB-SOD-96A),
GPX (ZB-GPX-96A), and CAT (ZB-CAT-96A) activ-
ities were measured using ELISA assays kits (ZellBio
GmbH, Germany), according to the provider’s
instructions.

Statistical analysis

Data were statistically analyzed using SPSS software
with one-way analysis of variance (ANOVA) and
least significant difference (LSD) tests. The results
were expressed as mean ± SEM (standard error of
means) and differences were considered statistically
significant at p < 0.05.

Results and discussion

Exendin-4 attenuated D-galactose-induced hypergly-
cemia, hyperinsulinemia and insulin resistance
(Figure 1(a,b)). Glucose increased in the D-galactose
treated mice in comparison to D-galactose + exendin-
4 (10 nmol/kg) (p < 0.01) and other groups (p < 0.05).
An increase was evident in the serum insulin level in
the D-galactose group when compared with exendin-
4 (10 nmol/kg) and D-galactose + exendin-4
(10 nmol/kg) groups (p < 0.05). HOMA-IR showed
an increase in the D-galactose group compared with
exendin-4 (10 nmol/kg), D-galactose + exendin-4
(10 nmol/kg) (p < 0.01), and other groups
(p < 0.05). Insulin secretion from isolated islets was
decreased in the D-galactose versus control group
(p < 0.05) (Figure 1(c)). Administration of exendin-
4 (1 nmol/kg) increased this secretion in normal
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animals when compared with the control (p < 0.05)
and D-galactose (p < 0.01) groups. Further, exendin-4
at 10 nmol/kg improved islet insulin secretion in
treated mice when compared with the D-galactose
(p < 0.01) and control (p < 0.05) groups. This secre-
tion was increased in exendin-4 (10 nmol/kg) and
D-galactose + exendin-4 (1 nmol/kg) groups versus
the D-galactose group (p < 0.05). Moreover, insulin
secretions occurred in a similar manner in all med-
ium concentrations of glucose (2.8, 5.6 and
16.7 mM). One of the effects of exendin-4 is an
increase in glucokinase enzyme activity in the liver
through a parallel and independent insulin-mediated
mechanism [3]. It has been shown that glucokinase
can initiate phosphorylation of glucose after it has
diffused into liver cells. Glucose is temporarily
trapped inside the liver cells because phosphorylated
glucose cannot diffuse back through the cell mem-
brane [17]. These observations suggest that lowering
of serum glucose by exendin-4 in the present study
may have been achieved by a similar mechanism.

The results of lipid profiles show that D-galactose
did increase serum levels of triglyceride (TG), low
density lipoprotein (LDL), and very-low-density lipo-
protein (VLDL), and that treatment with exendin-4
decreased this profile (Figure 2(a)). No difference was

observed in serum cholesterol levels among groups.
Interestingly, administration of this drug resulted in
an increase in the serum level of HDL in normal and
D-galactose treated mice. TG and VLDL showed
increases when compared with other groups
(p < 0.001). LDL in D-galactose treated mice
increased in comparison with other groups
(p < 0.05). Serum HDL levels in normal animals
that received exendin-4 (1 and 10 nmol/kg) showed
an increase versus the control group (p < 0.05). This
lipid factor in the D-galactose + exendin-4 (10 nmol/
kg) treated group increased when compared with the
D-galactose group (p < 0.05). Exendin-4 as a GLP-1
receptor agonist can decrease LDL, apolipoprotein B,
TG, and increase HDL. Research by Parlevliet et al.
[18] indicated that this drug could reduce hepatic
steatosis and ameliorate dyslipidemia by decreasing
serum levels of VLDL and TG. The corresponding
results are in agreement with the present study show-
ing that exendin-4 can reduce harmful lipid factors
and increase the serum level of HDL.

Increases were seen in serum levels of alanine
transaminase (ALT) in the D-galactose treated
group when compared with the control group and
the D-galactose + exendin-4 (10 nmol/kg) (p < 0.05),
exendin-4 (1 nmol/kg) and D-galactose + exendin-4

Figure 1. Treatment with exendin-4 in NMRI mice decreased serum glucose (a), insulin and HOMA-IR (b), and increased insulin
secretion by pancreatic islets cultured in medium containing different concentrations of glucose (c). Data are expressed as the
mean ± SEM of 12 mice in each group for glucose, insulin and, HOMA-IR, and 8 samples for islet insulin secretion. Data were
analyzed using one-way analysis of variance and least significant difference tests. * p < 0.05 and ** p < 0.01 designate
significant differences with D-galactose treatment group, # p < 0.05 designates significant differences with the control group.
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(1 nmol/kg) treated groups (p < 0.01) (Figure 2(b)).
Further, aspartate aminotransferase (AST) increased
in D-galactose treated mice when compared with
other groups (p < 0.05) (Figure 2(c)). Exendin-4 (1
and 10 nmol/kg) decreased the alkaline phosphatase
(ALP) contents in serum samples of D-galactose trea-
ted mice (p < 0.05) (Figure 2(d)). The liver is an
essential organ that performs a wide range of bio-
chemical, metabolic, and drug metabolites [19]. AST,
ALT, and ALP enzymes are liver biomarkers

associated with liver dysfunction or damage [20].
Exendin-4 has been shown to improve hepatic func-
tion by decreasing aminotransferase levels and
increasing hepatic antioxidants in rats fed a high fat
diet. The protective and curative effects of this drug
on hepatic steatosis may occur through regulation of
redox and reduction of inflammation. The underlying
mechanisms of these effects are associated with
RAGE expression in the liver stellate and Kupffer
cells that lead to elevated uptake of AGEs [21].
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Figure 2. Treatment of NMRI mice with exendin-4 altered hepatic lipid and enzymatic profiles in the serum. (a) Serum TG, LDL,
and VLDL levels were decreased while serum HDL was increased. (b) ALT, (c) AST, and (d) ALP were all decreased in the serum of
mice treated with exendin-4. Data are expressed as the mean ± SEM of the 12 mice in each group. Data were analyzed using
one-way analysis of variance and least significant difference tests. * p < 0.05, ** p < 0.01 and, *** p < 0.001 designate significant
differences with D-galactose treatment group, # p < 0.05 and ### p < 0.001 designate significant differences with control group.

Table 1. Exendin-4 increased serum antioxidant enzyme activity in both D-galactose treated and
control-treated mice.
Group Treatment SOD (U/ml) CAT (U/ml) GPX (U/ml)

D-galactose Placebo 0.55 ± 0.09## 6.07 ± 0.74 394.28 ± 22.14
Exendin-4 1 nM 1.84 ± 0.3** 5.8 ± 0.91 344.21 ± 21.62
Exendin-4 10 nM 2.62 ± 0.22#,** 8.91 ± 1.15* 408 ± 26.74

Control Placebo 1.59 ± 0.25 7.45 ± 0.96 394.73 ± 28.22
Exendin-4 1 nM 2.43 ± 0.29#,** 7.41 ± 0.35 384.63 ± 17.67
Exendin-4 10 nM 1.97 ± 0.26** 10.74 ± 0.94# 407.36 ± 26.64

Data are expressed as the mean ± SEM using 12 mice per group. Data were analyzed using one-way analysis of variance
and least significant difference tests. *p < 0.05 and **p < 0.01 designate significant differences with D-galactose placebo
treatment group, #p < 0.05 and ##p < 0.01 designate significant differences with control placebo group. SOD: superoxide
dismutase; CAT: catalase; GPX: glutathione peroxidase.
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SOD enzyme activity decreased in mice that received
D-galactose in comparison with other groups (p < 0.01)
(Table 1). Exendin-4 (1 nmol/kg) increased this enzyme
activity in normal mice and D-galactose-treated mice
when compared with control groups (p < 0.05 and
p < 0.01). This effect was observed in the
D-galactose + exendin-4 (10 nmol/kg) group when
compared with the control group (p < 0.05). Exendin-
4 (10 nmol/kg) increased CAT enzyme activity, but not
GPX activity, in normal mice (p < 0.05) as well as in the
D-galactose + exendin-4 (10 nmol/kg) group versus the
D-galactose group (p < 0.05) (Table 1). Increased SOD
and CAT enzyme activities by exendin-4 in normal and
D-galactose treated animals is in agreement with a
study by Gezginci-Oktayoglu et al. [22] showing that
the administration of exendin-4 for 30 days improved
antioxidant defenses. CAT is a primary antioxidant
enzyme that converts H2O2 to water, so if CAT activity
decreases in cells, it may lead to the accumulation of
H2O2 and cause DNA damage or cell death [23].
Higher levels of SOD activity can actually produce
higher levels of H2O2, which is normally detoxified by
CAT. Thus, exendin-4 improves D-galactose induced
dysfunction through the enhancement of both SOD and
CAT enzyme activity most likely as the result of a
decline in free radicals (anion superoxide).

There is considerable evidence that free radicals
play an important role in the development of insu-
lin resistance, impaired glucose tolerance, pancrea-
tic islet cell dysfunction, and type 2 diabetes [24].
Insulin secretion by isolated pancreatic islets
revealed that the administration of D-galactose can
induce ß-cell dysfunction and decrease secretion
possibly by ROS generation. The fact that exen-
din-4 treatment was able to attenuate D-galactose-
induced reduction of insulin secretion suggests that
exendin-4 can alter oxidant signaling. The observa-
tions by Kaneto et al [25] showed that catalase and
SOD can protect ß-cells against ROS-induced
damage. Also, antioxidant treatment can suppress
apoptosis of ß-cells and preserve ß-cell function in
diabetic mice. Exendin-4 can promote glucose-sti-
mulated insulin gene transcription, biosynthesis,
secretion, and pancreatic ß-cell mass in rodents
and in type2 diabetic patients. These events com-
pensate for peripheral insulin resistance [26].
Therefore, results of the present study suggest that
exendin-4 can ameliorate D-galactose-induced ß-
cell dysfunction through an increase in antioxidant
enzyme activities.
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