
Chemokine-Like Receptor 1 Deficiency Does Not Affect
the Development of Insulin Resistance and Nonalcoholic
Fatty Liver Disease in Mice
Nanda Gruben1, Marcela Aparicio Vergara1, Niels J. Kloosterhuis1, Henk van der Molen1,

Stefan Stoelwinder1, Sameh Youssef2, Alain de Bruin2, Dianne J. Delsing3, Jan Albert Kuivenhoven1,

Bart van de Sluis1, Marten H. Hofker1., Debby P. Y. Koonen1*.

1 University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Groningen, the Netherlands, 2 Utrecht University,

Faculty of Veterinary Medicine, Dutch Molecular Pathology Center, Utrecht, the Netherlands, 3 Merck Research Laboratories, MSD, Department of Immune Therapeutics,

Oss, the Netherlands

Abstract

The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1), are associated with insulin resistance and
nonalcoholic fatty liver disease (NAFLD), which covers a broad spectrum of liver diseases, ranging from simple steatosis to
nonalcoholic steatohepatitis (NASH). It is possible that chemerin and/or Cmklr1 exert their effects on these disorders
through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the
effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in
hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/-) mice and wild type (WT) mice
into low-density lipoprotein receptor knock-out (Ldlr-/-) mice, a mouse model for NASH. All mice were fed a high fat, high
cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by
an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver
pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score
(NAS). Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no
differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration,
lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-
body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin
resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or
NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be
interpreted with caution.
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Introduction

Obesity is accompanied by the development of the metabolic

syndrome, a cluster of metabolic abnormalities, which includes

low-grade inflammation, dyslipidemia and insulin resistance. Since

nonalcoholic fatty liver disease (NAFLD) is the hepatic manifes-

tation of the metabolic syndrome, its increasing prevalence follows

the increasing rates of obesity seen worldwide. As a result, NAFLD

has become one of the main causes of chronic liver disease in

Western societies [1]. NAFLD describes a broad spectrum of liver

diseases, ranging from simple steatosis (intrahepatic fat accumu-

lation) to nonalcoholic steatohepatitis (NASH), fibrosis, and

cirrhosis [2]. NASH can be distinguished from simple steatosis

by the presence of inflammation. It is unknown how NAFLD

develops or which factors provoke its progression into NASH.

Recently, an adipokine named chemerin has been implicated in

the metabolic syndrome and the progression of NAFLD.

Chemerin was first identified as a chemo-attractant protein,

attracting immune cells expressing the chemerin receptor

chemokine-like receptor 1 (Cmklr1, also known as ChemR23) [3].

This suggests that chemerin has a pro-inflammatory role.

However, studies investigating the role of Cmklr1 in inflammation

are controversial. Cmklr1 knock-out (Cmklr1-/-) mice have been

reported to be protected against central nervous system inflam-

mation [4], but they were more susceptible to lipopolysaccharide-

induced lung inflammation [5] and viral pneumonia [6]. As
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inflammation is thought to play a key role in the progression of

insulin resistance and NAFLD, chemerin and Cmklr1 may be

involved in these disorders. Indeed, in several human populations,

elevated plasma chemerin levels correlate positively with charac-

teristics of the metabolic syndrome, including inflammation,

insulin resistance, plasma lipids and body mass index [7–9]. In

addition, elevations in serum chemerin levels were found in

patients with NAFLD and NASH compared to healthy controls

[10] and have been shown to positively correlate with markers of

liver pathology, including fibrosis, portal inflammation and

NAFLD activity score (NAS) [11]. In contrast, expression of

chemerin in visceral adipose tissue in morbidly obese individuals

correlated negatively with hepatic inflammation (unpublished

data). Moreover, data on hepatic expression of chemerin and Cmklr1

in human and mouse NAFLD are inconsistent, since both reduced

and increased levels of these genes have been found [12–14].

Although these studies indicate that chemerin and its receptor may

be involved in the pathogenesis of insulin resistance and NAFLD,

a causative role remains to be established.

Thus far, only a few studies have investigated the effect of

Cmklr1 deficiency in metabolic disease and, similar to the studies

investigating inflammation, the results have been controversial. In

one study it was shown that Cmklr1 deficiency induced glucose

intolerance in mice [15], whereas another study showed no effect

of Cmklr1 deficiency on glucose intolerance [16]. In addition,

Cmklr1-/- mice were found to have reduced hepatic steatosis on a

low fat diet, but not on a high fat diet, whereas hepatic

inflammation was reduced in Cmklr1-/- mice on both diets [15].

However, differences in inflammation were not confirmed by

histological analyses and differences in body weight gain could not

be excluded as a confounding factor in this study [15]. Moreover,

despite the controversial role of Cmklr1 deficiency in inflammation,

the role of Cmklr1 in NASH has not been investigated. In the

current study, we investigated the effect of whole-body Cmklr1

deficiency on insulin resistance and NAFLD. In view of the

primary role of macrophages in NASH, we also transplanted bone

marrow from Cmklr1-/- mice and wild type (WT) mice into low-

density lipoprotein receptor knock-out (Ldlr-/-) mice. These mice

develop hepatic inflammation when fed a high fat, high cholesterol

(HFC) diet and can be regarded as a mouse model for NASH.

Materials and Methods

Ethics Statement
The University of Groningen ethics committee approved all the

animal experiments described in this paper (permit numbers

5964A and 5964E) and the animals’ discomfort was kept to a

minimum.

Mice and Bone Marrow Transplantation
Male mice deficient for Cmklr1 on a C57BL/6J background and

wild type (WT) littermates were kindly provided by MSD (Oss, the

Netherlands) and kept on a 12-hour light/12-hour dark cycle, with

ad libitum access to food and water. Starting at 3–4 months of age,

they were fed a high fat, high cholesterol (HFC) diet, containing

21% fat from milk butter and 0.2% cholesterol (Scientific Animal

Food and Engineering, Villemoisson-sur-Orge, France), for 12

weeks to induce NAFLD. To investigate the loss of Cmklr1 in bone

marrow-derived cells, female low-density lipoprotein receptor

knock-out (Ldlr-/-) mice on a C57BL/6J background (bred in-

house) were irradiated with 9.5 Gy [17] using X-Rad 320

(Precision X-ray, CT, USA) at 2–5 months of age. The next day,

these mice were transplanted with bone marrow from WT or

Cmklr1-/- mice by intravenous injection. To allow hematopoietic

cells to replenish, the mice were allowed to recover on a regular

chow diet after the transplantation procedure. After 10 weeks

recovery, chimerism was confirmed with DNA isolated from whole

blood (data not shown) and the Ldlr-/- mice were then fed a HFC

diet for 12 weeks to induce NASH.

Oral Glucose Tolerance Test and Insulin Tolerance Test
After 6 hours of fasting, the mice were subjected to an oral

glucose tolerance test (OGTT) or an insulin tolerance test (ITT).

For the OGTT, mice received a bolus of glucose (2 g/kg) and

glucose was measured with a glucose meter in blood samples taken

beforehand and at 15, 30, 60 and 120 minutes after gavage. For

the ITT, mice were injected intraperitoneally with 0.7 U/kg

insulin (WT and Cmklr1-/- mice) or 0.5 U/kg insulin (bone

marrow-transplanted Ldlr-/- mice) (Actrapid, Novo Nordisk

Canada Inc., Ontario, Canada) and blood glucose levels were

measured at the same time points.

Blood and Tissue Collection
Mice were euthanized by a heart puncture under general

anesthesia for the collection of blood and tissues. Blood was spun

at 3000 g for 10 minutes at 4uC and plasma was stored at 220uC.

Tissues were snap-frozen in liquid nitrogen or fixed in 4%

paraformaldehyde.

Hepatic Lipid Extraction and Analysis
Lipids were extracted from crushed liver samples according to

Bligh and Dyer’s method [18]. Hepatic cholesterol and triglyceride

levels were determined using commercially available kits (Roche,

Mannheim, Germany).

Plasma Measurements
Plasma cholesterol, triglycerides and free fatty acid levels were

measured with commercially available kits (cholesterol and

triglycerides: Roche; free fatty acids: DiaSys, Holzheim, Ger-

many). Chemerin and insulin were determined in plasma from

mice that had fasted for 6 hours, using commercially available

ELISA kits (chemerin: R&D systems, Abingdon, UK; insulin:

Alpco Diagnostics, Salem, NH).

Real-time PCR
RNA from homogenized liver, visceral and subcutaneous

adipose tissue (VAT and SAT) samples was isolated according to

the manufacturer’s instructions using Qiazol reagent (Qiagen,

Venlo, the Netherlands). For real-time (RT)-PCR, cDNA was

synthesized with a commercially available kit (Quantitect Reverse

Transcription, Qiagen). RT-PCR was performed using Sybr

Green Supermix (Bio-Rad, Veenendaal, the Netherlands) accord-

ing to the manufacturer’s instructions. The primer sequences are

listed in Table S1.

Histological Analysis
For histological analysis, paraffin-embedded liver, VAT and

SAT sections (4 mm) were stained with Hematoxylin-Eosin (HE).

HE-stained liver sections were scored for steatosis, lobular

inflammation and hepatocyte ballooning by a board certified

veterinary pathologist based on the Kleiner Scoring System [19].

The sum of these findings was used to determine the NAFLD

activity score (NAS). HE-stained VAT and SAT sections were

scanned using the NanoZoomer 2.0-HT slide scanner (Hama-

matsu, Herrsching am Ammersee, Germany). To estimate

adipocyte size, the number of adipocytes per mm2 were

determined on scanned sections by manually counting all the
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adipocytes in an area of 4–5 mm2 using Aperio ImageScope (Leica

Biosystems Imaging Inc., CA, USA). Frozen-cut liver sections

(5 mm) were fixed in 4% paraformaldehyde and stained with

antibodies against the macrophage markers CD68 and CD11b.

Statistical Analysis
For statistical analysis, non-parametric t-tests were performed

using GraphPad Prism 5.0 (San Diego, USA). Data were

expressed as mean 6 SEM and the threshold for significance

was set at p,0.05.

Results

Cmklr1 Deficiency Does not Affect Body Weight or Food
Intake

As Cmklr1 is known to be necessary for adipocyte differentiation

[20] and Cmklr1-/- mice were shown to have reduced body weight

and fat mass compared to WT mice [15], we evaluated body

weight gain and food intake in mice fed a HFC diet for 12 weeks.

No differences in body weight or food intake were observed

between WT and Cmklr1-/- mice (Figs. 1A and 1B, respectively).

Figure 1. Cmklr1 deficiency does not affect body weight, food intake or plasma lipid levels. Body weight (A) and food intake (B) were
measured throughout the 12-week high fat, high cholesterol diet period. Food intake was expressed as average food intake per day. (C)
Representative pictures were taken of Hematoxylin-Eosin (HE) stained visceral and subcutaneous adipose tissue (VAT and SAT) sections. Blood
obtained by a heart puncture at the time of euthanasia was used to determine plasma triglycerides (D), plasma cholesterol (E) and plasma free fatty
acids (F). (G) Chemerin levels were determined in blood obtained from the tail vein of mice that had fasted for 6 hours at the end of the diet period.
Abbreviations: WT, wild type; Cmklr1-/-, chemokine-like receptor 1 knock-out. N = 7–8 for all experiments. Data are expressed as mean 6 SEM. * p,
0.05 vs WT.
doi:10.1371/journal.pone.0096345.g001
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Moreover, we observed no differences in the number of adipocytes

per mm2 in visceral and subcutaneous adipose tissue (VAT and

SAT) (VAT: WT, 143 cells/mm2610; Cmklr1-/-, 155 cells/

mm264, SAT: WT, 301 cells/mm2610; Cmklr1-/-, 345 cells/

mm2631), indicating that adipose tissue morphology was similar

in WT and Cmklr1-/- mice (Fig. 1C). In addition, plasma

triglycerides (Fig. 1D), cholesterol (Fig. 1E) and free fatty acid

levels (Fig. 1F) were the same in both genotypes. However, plasma

chemerin levels were significantly increased in Cmklr1-/- mice fed a

HFC diet compared to WT mice (Fig. 1G), suggesting a

compensatory upregulation of the receptor ligand. To identify

the origin of these increased plasma chemerin levels, we measured

chemerin expression in liver, visceral and subcutaneous adipose

tissue (VAT and SAT). Chemerin expression was significantly higher

in VAT and SAT, but not in the liver (Fig. S1A). As chemerin has

two other receptors, G protein coupled receptor 1 (Gpr1) and (C-C

motif) receptor-like 2 (Ccrl2) [21,22] we also measured whether the

expression of these receptors was altered. No differences were

found in the expression of these receptors in either liver tissue,

VAT or SAT (Figs. S1B and S1C).

Cmklr1 Deficiency Does not Affect the Development of
Systemic Insulin Resistance

As the chemerin-Cmklr1 system has previously been implicated

in the development of insulin resistance [15,23,24], we next

assessed the glucose tolerance and insulin sensitivity in WT and

Cmklr1-/- mice fed a HFC diet for 12 weeks. However, plasma

glucose (Fig. 2A) and insulin levels (Fig. 2B) did not differ between

the genotypes, and the mice responded similarly to an oral bolus of

glucose (Fig. 2C) and an intraperitoneal insulin injection (Fig. 2D).

This indicates that Cmklr1 deficiency does not affect the glucose

tolerance and insulin sensitivity of mice fed a HFC diet.

Cmklr1 Deficiency Does not Affect the Development of
NAFLD

To investigate whether Cmklr1 plays a role in the development

of diet-induced NAFLD, we analyzed lipid levels and gene

expression in the livers of Cmklr1-/- mice fed a HFC diet for 12

weeks. Although liver weight, expressed as a percentage of body

weight, was lower in Cmklr1-/- mice (WT, 5.70%60.21; Cmklr1-/-,

5.16%60.041, p,0.05), hepatic triglyceride content did not differ

between WT and Cmklr1-/- mice (Fig. 3A). In line with this, no

difference in hepatic cholesterol was observed between the

genotypes (Fig. 3B). The expression of genes encoding for proteins

involved in macrophage activation and infiltration (Cd68 and

Cd11b), inflammation (Mcp-1 and Tnfa) and fibrosis (aSma, Col1a1,

Timp1 and Mmp9) was similar in Cmklr1-/- mice and WT mice

(Fig. 3C). However, Il-1b gene expression was slightly, but

significantly, reduced in Cmklr1-/- mice (Fig. 3C). Furthermore,

immunostaining for CD68 and CD11b demonstrated that Cmklr1

deficiency did not affect the activation or infiltration of macro-

phages in the livers of mice fed a HFC diet (Fig. 3D). Pathological

examination of HE-stained liver sections (Fig. 3D) confirmed these

findings (Figs. S2A-C) and revealed no difference in NAS (Fig. 3E).

Hematopoietic Deletion of Cmklr1 Does not Affect the
Development of Insulin Resistance or NASH

To further investigate if Cmklr1 deficiency affects the progression

of insulin resistance and NAFLD, we transplanted bone marrow

from Cmklr1-/- mice or WT mice into Ldlr-/- mice. Ldlr-/- mice fed

a HFC diet can be regarded as a model for NASH that is

specifically driven by Kupffer cell activation and the recruitment

of macrophages [25,26]. Ldlr-/- mice transplanted with Cmklr1-/-

bone marrow cells (Ldlr-BMTCmklr1-/-) had a greater gain in body

weight than Ldlr-/- mice transplanted with WT bone marrow cells

Figure 2. Cmklr1 deficiency does not affect insulin resistance. To determine insulin resistance, glucose (A) and insulin levels (B) were
measured in mice that had fasted for 6 hours at the end of the 12-week high fat, high cholesterol diet period. In addition, an oral glucose tolerance
test (C) and an insulin tolerance test (D) were performed. Abbreviations: WT, wild type; Cmklr1-/-, chemokine-like receptor 1 knock-out. N = 7–8 for all
experiments. Data are expressed as mean 6 SEM. * p,0.05 vs WT.
doi:10.1371/journal.pone.0096345.g002
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(Ldlr-BMTWT) (Fig. 4A), and this could not be explained by

differences in food intake (Fig. S3A). In concordance, the number

of adipocytes per mm2 was lower in Ldlr-BMTCmklr1-/- mice

compared to Ldlr-BMTWT mice in both VAT (Ldlr-BMTWT,

245 cells/mm2626; Ldlr-BMTCmklr1-/-, 178 cells/mm2615;

p = 0.07) and SAT (Ldlr-BMTWT, 474 cells/mm2651; Ldlr-

BMTCmklr1-/-, 302 cells/mm2630; p,0.05), indicating that Ldlr-

BMTCmklr1-/- mice have larger adipocytes (Fig. S3B). In contrast,

Figure 3. NAFLD progression is not affected by ablation of Cmklr1. To investigate the progression of NAFLD, hepatic triglyceride (A) and
cholesterol (B) accumulation were measured in mice fed a high fat, high cholesterol diet for 12 weeks. (C) To determine the amount of inflammation
and fibrosis in the liver, the inflammatory and pro-fibrotic gene expression were measured in WT mice (white bars) and Cmklr1-/- mice (black bars). (D)
In addition, a staining for the macrophage markers CD68 and CD11b was performed on frozen-cut liver sections. (E) NAFLD Activity Score (NAS) was
determined by pathological examination of Hematoxylin-Eosin (HE) stained liver sections. Abbreviations: WT, wild type; Cmklr1-/-, chemokine-like
receptor 1 knock-out; Cd68, cluster of differentiation 68; Cd11b, alpha M integrin (Mac1); Mcp-1, monocyte chemo-attractant protein 1; Tnfa, tumor
necrosis factor a; Il1-b, interleukin 1b; aSma, a-smooth muscle actin; Col1a1, collagen type 1 alpha 1; Timp1, tissue inhibitor of metalloproteinase 1;
Mmp9, matrix metallopeptidase 9. N = 7–8 for all experiments. Data are expressed as mean 6 SEM. * p,0.05 vs WT.
doi:10.1371/journal.pone.0096345.g003
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we found no significant differences in plasma triglyceride,

cholesterol, glucose and insulin levels between the two groups of

mice (Figs. S3C-F). Moreover, hematopoietic deletion of Cmklr1

did not affect glucose tolerance (Fig. 4B) or insulin tolerance

(Fig. 4C). Whereas liver weight, expressed as a percentage of body

weight, was slightly lower in Ldlr-BMTCmklr1-/- mice compared to

Ldlr-BMTWT mice (Ldlr-BMTWT, 5.49%60.086; Ldlr-

BMTCmklr1-/-, 5.08%60.10, p,0.05), the Ldlr-BMTCmklr1-/- mice

showed a small increase in their hepatic triglyceride content and

hepatic steatosis (Fig. 4D and Fig. S3G). No differences were

observed in hepatic cholesterol accumulation (Fig. 4E). As in the

whole-body knock-out model, no differences in inflammatory gene

expression (Cd68, Mcp-1, Tnfa and Il-1b) were observed (Fig. 4F).

Examination of pro-fibrotic genes revealed a trend towards an

increase of fibrosis in Ldlr-BMTCmklr1-/- mice. However, the

differences were only significant for Col1a1 (Fig. 4F). Overall,

these data indicate that whole-body or hematopoietic ablation of

Cmklr1 does not impact on the development of systemic insulin

resistance and NAFLD in mice.

Discussion

The role of Cmklr1 in the development of insulin resistance and

NAFLD is controversial. Our data show that whole-body as well as

hematopoietic deletion of Cmklr1 in Ldlr-/- mice did not affect the

development of insulin resistance or NAFLD when the mice were

fed a HFC-diet for 12 weeks. These results raise the question

whether the alterations in serum chemerin levels and hepatic

Figure 4. Hematopoietic deletion of Cmklr1 does not affect NASH development in Ldlr-/- mice. (A) Body weight of Ldlr-BMTWT and Ldlr-
BMTCmklr1-/- mice was measured during the high fat, high cholesterol diet period of 12 weeks. Insulin resistance was assessed by an oral glucose
tolerance test (B) and an insulin tolerance test (C). NASH progression was investigated by measuring hepatic triglyceride (D) and cholesterol (E)
accumulation and by determining hepatic inflammatory and pro-fibrotic gene expression (F) in Ldlr-BMTWT mice (white bars) and Ldlr-BMTCmklr1-/-

mice (black bars). Abbreviations: Ldlr-BMTWT, low-density lipoprotein receptor knock-out mice transplanted with wild type bone marrow cells; Ldlr-
BMTCmklr1-/-, low-density lipoprotein receptor knock-out mice transplanted with chemokine-like receptor 1 knock-out bone marrow cells; Cd68, cluster
of differentiation 68; Mcp-1, monocyte chemo-attractant protein 1; Tnfa, tumor necrosis factor a; Il1-b, interleukin 1b; aSma, a-smooth muscle actin;
Col1a1, collagen type 1 alpha 1; Timp1, tissue inhibitor of metalloproteinase 1; Mmp9, matrix metallopeptidase 9. N = 5–7 for all experiments. Data are
expressed as mean 6 SEM. * p,0.05 vs WT.
doi:10.1371/journal.pone.0096345.g004
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chemerin and Cmklr1 expression found in rodent models of

NAFLD [7,12,14] are causally involved in the development and/

or progression of this disease.

In contrast to our findings, others previously reported that

Cmklr1-/- mice have reduced hepatic inflammation compared to

WT mice [15], which may be related to the reduced body weight

and fat mass found in these Cmklr1-/- mice. In line with this, the

same investigators showed that Cmklr1-/- mice have reduced

steatosis on a low fat diet. However, these differences were not

present on a high fat diet [15]. Our results confirm their latter

findings. Consistent with our results, another paper observed no

differences in body weight, fat mass and glucose tolerance between

WT and Cmklr1-/- mice at a young age. In that study, Cmklr1-/-

mice started to gain more fat mass than WT mice only from age 8

months onwards [16]. The increased body weight gain (Fig. 4A)

and adipocyte size (Fig. S3B) found in Ldlr-/- mice with a

hematopoietic deletion of Cmklr1 might therefore be an age-

induced effect. These mice were euthanized at 7–10 months of

age, whereas the whole-body knock-outs were euthanized at 6–7

months of age. These results suggest that hematopoietic cells might

be responsible for the age-induced weight gain of Cmklr1-/- mice.

In contrast to Cmklr1-/- mice, the Ldlr-BMTCmklr1-/- mice had

increased hepatic triglyceride levels (Fig. 4D), increased hepatic

steatosis (Fig. S3G) and a tendency towards an increased

expression of pro-fibrotic genes (Fig 4F). However, these

differences were small and may well be explained by the increased

body weight gain seen in these mice.

As neither whole-body Cmklr1 deficiency and hematopoietic

deletion of Cmklr1 in Ldlr-/- mice affected the development of

NAFLD, the alterations in chemerin and Cmklr1 levels found in

humans and mouse models of NAFLD may be a secondary effect

of the metabolic syndrome and NAFLD [10–12,14]. In these

disorders, many of the factors that can regulate chemerin and

Cmklr1 expression become dysregulated. First, chemerin is an

adipokine and its secretion rises with increasing adiposity. Second,

plasma TNFa levels and Tnfa expression in adipose tissue and the

liver are higher in NASH [27,28]. This cytokine has been shown

to increase chemerin expression from adipose tissue [29,30] and to

modulate chemerin activity [31]. Finally, FXR, a nuclear receptor

that regulates glucose and lipid homeostasis, induces chemerin

expression [12]. The alterations in chemerin levels found in rodent

models of NAFLD may thus be caused by increased adiposity,

increased Tnfa levels [30] or altered FXR activity in NAFLD.

Expression of Cmklr1 in hepatocytes is upregulated by adiponectin

[14]. This adipokine protects against steatosis and inflammation

and is reduced in human patients with NAFLD [32]. Thus, the

reduced expression of Cmklr1 in patients with NAFLD may be

explained by reduced adiponectin levels and it may not be causally

involved in the development of NAFLD.

A few limitations to our study must be taken into account. In

our model we studied the effects of the absence of Cmklr1, but the

other receptors that can bind chemerin, Gpr1 and Ccrl2, were still

present [21,22]. It is possible that the increased plasma chemerin

levels found in our Cmklr1-/- mice (Fig. 1G), which most likely

originate from the adipose tissue and not from the liver (Fig. S1A),

act on these receptors to compensate for the loss-of-function of

Cmklr1. So far, however, no signaling function has been described

for these receptors [33]. Moreover, we did not find any differences

in the expression of Gpr1 and Ccrl2 in liver, VAT or SAT between

WT and Cmklr1-/- mice, indicating that there is no compensatory

upregulation of these receptors due to Cmklr1 deficiency (Figs. S1B

and S1C). In addition to the other chemerin receptors, Cmklr1 has

another ligand, named resolvin E1 (RvE1). RvE1 is derived from

omega-3 polyunsaturated fatty acids and has been described to

inhibit NF-kB activity via Cmklr1 [34]. RvE1 has also been shown

to reduce fat accumulation and macrophage infiltration in the liver

and to protect against hepatocyte death [35]. This makes it even

more remarkable that Cmklr1 deficiency does not appear to affect

NAFLD development. To fully elucidate the role of Cmklr1 in

NAFLD, experiments in mice deficient for chemerin, RvE1, or

both, need to be performed.

In summary, our results show that whole-body and hemato-

poietic deletion of Cmklr1 in Ldlr-/- mice do not affect the

development of systemic insulin resistance and NAFLD in mice.

This makes it less likely that the alterations in chemerin and Cmklr1

levels found in mouse models of NAFLD [12,14] are causally

related to the development and/or progression of this disease. We

feel the associations between chemerin or Cmklr1 levels and

NAFLD should therefore be interpreted with caution.

Supporting Information

Figure S1 The expression of chemerin is increased in
adipose tissue, but not in the liver. The expression of

chemerin (A) and its receptors, Gpr1 (B) and Ccrl2 (C), was measured

in liver, visceral and subcutaneous adipose tissue of WT mice

(white bars) and Cmklr1-/- mice (black bars) fed a high fat, high

cholesterol diet for 12 weeks. Abbreviations: WT, wild type;

Cmklr1-/-, chemokine-like receptor 1 knock-out; VAT, visceral

adipose tissue; SAT, subcutaneous adipose tissue; Gpr1, G protein-

coupled receptor 1; Ccrl2, (C-C) motif receptor-like 2. N = 6-8 for

all experiments. Data are expressed as mean 6 SEM.

(TIF)

Figure S2 Steatosis, lobular inflammation and balloon-
ing scores were not affected by Cmklr1 deficiency.
Hematoxylin-Eosin (HE) stained liver sections of mice fed a high

fat, high cholesterol diet for 12 weeks were scored for steatosis (A),

lobular inflammation (B) and ballooning (C) by a certified

veterinary pathologist. Abbreviations: WT, wild type; Cmklr1-/-,

chemokine-like receptor 1 knock-out. N = 8 for all experiments.

Data are expressed as mean 6 SEM.

(TIF)

Figure S3 Characteristics of bone marrow transplanted
Ldlr-/- mice. (A) Food intake was measured throughout the 12-

week high fat, high cholesterol (HFC) diet period and calculated in

grams per day. (B) Representative pictures were taken of

Hematoxylin-Eosin (HE) stained visceral and subcutaneous

adipose tissue (VAT and SAT) sections. Plasma triglycerides (C),

cholesterol (D), glucose (E) and insulin (F) levels were determined

after 12 weeks of HFC feeding. (G) Paraffin-embedded liver

sections were stained with HE for histological analysis. Abbrevi-

ations: Ldlr-BMTWT, low-density lipoprotein receptor knock-out

mice transplanted with wild type bone marrow cells; Ldlr-

BMTCmklr1-/-, low-density lipoprotein receptor knock-out mice

transplanted with chemokine-like receptor 1 knock-out bone

marrow cells. N = 5–7 for all experiments. Data are expressed as

mean 6 SEM.

(TIF)

Table S1 Primer sequences.

(DOCX)
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