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a b s t r a c t

Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2
��/H2O2

production. Both ATP and O2
��/H2O2 are generated by electron transfer reactions. ATP is the product of

oxidative phosphorylation whereas O2
�� is generated by singlet electron reduction of di-oxygen (O2).

O2
�� is then rapidly dismutated by superoxide dismutase (SOD) producing H2O2. O2

��/H2O2 were once
viewed as unfortunately by-products of aerobic respiration. This characterization is fitting considering
over production of O2

��/H2O2 by mitochondria is associated with range of pathological conditions and
aging. However, O2

��/H2O2 are only dangerous in large quantities. If produced in a controlled fashion
and maintained at a low concentration, cells can benefit greatly from the redox properties of O2

��/H2O2.
Indeed, low rates of O2

��/H2O2 production are required for intrinsic mitochondrial signaling (e.g.
modulation of mitochondrial processes) and communication with the rest of the cell. O2

��/H2O2 levels
are kept in check by anti-oxidant defense systems that sequester O2

��/H2O2 with extreme efficiency.
Given the importance of O2

��/H2O2 in cellular function, it is imperative to consider how mitochondria
produce O2

��/H2O2 and how O2
��/H2O2 genesis is regulated in conjunction with fluctuations in nutri-

tional and redox states. Here, I discuss the fundamentals of electron transfer reactions in mitochondria
and emerging knowledge on the 11 potential sources of mitochondrial O2

��/H2O2 in tandem with their
significance in contributing to overall O2

��/H2O2 emission in health and disease. The potential for
classifying these different sites in isopotential groups, which is essentially defined by the redox prop-
erties of electron donator involved in O2

��/H2O2 production, as originally suggested by Brand and col-
leagues is also surveyed in detail. In addition, redox signaling mechanisms that control O2

��/H2O2

genesis from these sites are discussed. Finally, the current methodologies utilized for measuring
O2

��/H2O2 in isolated mitochondria, cell culture and in vivo are reviewed.
& 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Basic principles in oxidative metabolism and aerobic
respiration

Di-oxygen (O2) initially appeared in significant amounts on
Earth around 2.2 billion years ago due to the action of photo-
synthesizing cyanobacteria [1]. At first, most of the O2 reacted with
solubilized iron (Fe) forming insoluble oxide minerals [1]. After
this initial event O2 started to build up in substantial amounts in
the surrounding environment and atmosphere. The sharp increase
in O2 concentration in the atmosphere and formation of various
mineral oxides is referred to as the Great Oxygenation Event (GOE)
[2]. It is also referred to as the Great Oxygen Catastrophe since the
rise in O2 led to the first mass extinction on Earth. Indeed, O2 is
highly toxic towards anaerobic organisms. The damaging effects of
O2 is associated with its free radical properties which deplete es-
sential thiols and dismantle Fe–S clusters required for metabolism
and the biosynthesis of macromolecular structures in anaerobic
organisms [3]. The definition of “free radical” refers to “any species
capable of independent existence that contains one or more un-
paired electrons”, where an unpaired electron occupies an atomic
orbital by itself [1]. Considering that ground state O2 has two
unpaired electrons in its outer most anti-bonding orbital it can
thus be classified as a free radical species [4]. The two lone elec-
trons in the outer most orbital of O2 also have the same spin
quantum number which imposes a spin restriction on electron
acceptance [5]. Thus, O2 can only accept one electron at a time
when it is being reduced to H2O which can generate several free
radical intermediates namely, superoxide (O2

��), hydrogen per-
oxide (H2O2), and hydroxyl radical (OH�) [6]. This also makes O2

dangerous since its univalent reduction leads to the genesis of
highly reactive intermediates (Fig. 1).

Adaptation to an oxidizing environment provided a major se-
lective advantage for organisms that could couple enzyme activ-
ities to O2 utilization [3,7]. In aerobic cells, O2 is utilized by many
enzyme systems but is primarily the driving force behind aerobic
ATP production. The use of O2 in nutrient metabolism maximized
energy conservation among aerobic eukaryotes prompting an in-
crease in biological complexity culminating the evolution of
humanity [8,9]. In aerobic eukaryotes, production of ATP by oxi-
dative phosphorylation occurs in mitochondria, double membrane
organelles with prokaryotic origins that house the necessary en-
zymatic machinery required for O2-dependent production of ATP
from carbon oxidation [10,11]. In this complicated process nu-
trients in the form of carbohydrates, fatty acids, or amino acids are
Fig. 1. Reduction of O2 to H2O and its free radical intermediates (A) Lewis structures
hydrogen peroxide (H2O2), and hydroxyl radical (OH�). (B) The step wise reduction of O2 t
intermediate is also shown (reproduced and modified from [23]). Irradiation-mediated c
therapy.
converted into common intermediates such as acetyl-CoA, ox-
aloacetate, and 2-oxoglutarate which enter the Krebs cycle and
undergo further oxidation (Fig. 2) [6,12]. Acetyl-CoA and ox-
aloacetate, which are generated by the metabolism of either
monosaccharides or fatty acids, are condensed by citrate synthase
yielding citric acid which is then systematically oxidized by the
concerted action of 7 other Krebs cycle enzymes (Fig. 2). Amino
acids can also feed in to the Krebs cycle at various levels. Although
there are 20 different amino acids that can be degraded to form
either ketogenic or gluconeogenic Krebs cycle intermediates, the
most common intermediate formed is 2-oxoglutarate. Indeed,
2-oxoglutarate either serves as an ammonia acceptor forming
glutamate during amino acid catabolism or is formed following
degradation of glutamate or use of glutamate for amino acid bio-
synthesis. Fatty acids which are the product of triglyceride hy-
drolysis also feed into the Krebs cycle at the level of acetyl-CoA.
The complex process of extracting electrons from fat molecules for
ATP production is called β-oxidation. Entry of fatty acyl-CoA into
the matrix is prohibited unless the fatty acid is coupled via an
ester linkage to carnitine which facilitates mitochondrial uptake of
acyl molecules, a reaction catalyzed by carnitine palmitoyl trans-
ferase 1 (Cpt1). Upon entry into the matrix, carnitine is im-
mediately exchanged with CoASH by Cpt2 and acyl-CoA enters
into β-oxidation. Note that 1 FADH2 and 1 NADH along with an
acetyl-CoA are yielded from the oxidation of two carbons on the
fatty acyl chain (Fig. 2). Acetyl-CoA then enters the Krebs cycle
where it is oxidized further. Thus, in contrast to glucose, fatty acid
oxidation yields far more ATP, e.g. palmitate which is 16 carbons
long produces 129 ATP vs the 36 garnered from glucose metabo-
lism. It is not surprising then that the human heart, which turns
over 30 kg of ATP daily due to contraction relaxation coupling,
produces most of its ATP by fatty acid oxidation [13].

Removal of electrons during oxidation is coupled to the re-
duction of NAD forming NADH which is then oxidized by Complex
I. Succinate is also oxidized by Krebs cycle enzyme Complex II
(succinate dehydrogenase; Sdh) producing fumarate and reducing
FAD to FADH2 [14]. Electrons from Complex I and II are then passed
through a series or prosthetic groups positioned according to in-
creasing affinity for electrons to ubiquinone (Q) producing ubi-
quinol (QH2) which is then oxidized by Complex III (Fig. 3) [15].
Electrons can also be fed into the Q pool by several other enzymes
associated with the mitochondrial inner membrane (MIM) in-
cluding sn-glycerol-3-phosphate dehydrogenase (G3PDH), proline
dehydrogenase, dihydroorotate dehydrogenase, sulfide:quinone
for molecular oxygen (O2) and its singlet electron derivatives superoxide (O2
��),

o H2O during aerobic respiration. The standard redox potential for reduction of each
leavage of H2O which produces OH� accounts for the damaging effects of radiation



Fig. 2. The oxidative Krebs cycle. The Krebs cycle is the most central metabolic pathway for all life on Earth since it yields the necessary carbon intermediates required for
either ATP formation or genesis of biomolecules like amino acids, lipids, and nucleotides. Different sources of carbon including glucose (and other monosaccharides), fatty
acids, and amino acids are converted into common intermediates acetyl-CoA, oxaloacetate, and 2-oxoglutarate, Krebs cycle intermediates that are then systematically
stripped of electrons (oxidized) to yield electron carriers NADH and succinate which are then oxidized by the respiratory chain for ATP production. Note that enzymes Idh
and Gdh can utilize either NADþ or NADPþ as cofactors which is isozyme dependent. Irreversible steps of the Krebs cycle involve enzymes that couple decarboxylation to
electron movement. For clarity key metabolic cascades involved in the conversion of glucose and fatty acids into key intermediates, pyruvate and acetyl-CoA, have been
omitted. Pdh; pyruvate dehydrogenase, PC; pyruvate carboxylase, CS; citrate synthase, Acn; aconitase, Idh; isocitrate dehydrogenase, Odh; 2-oxoglutarate dehydrogenase,
Scs; succinyl-CoA synthetase, Sdh; succinate dehydrogenase, Fum; fumarase, Mdh; malate dehydrogenase, Gcl; glutaminase, Gdh; glutamate dehydrogenase, At; amino-
transferase, Aat; aspartate aminotransferase, Cpt; carnitine palmitoyltransferase, 2-OG; 2-oxoglutarate, MIM; mitochondrial inner membrane, IMS; intermembrane space.
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oxidoreductase (SQR), electron transfer flavoprotein oxidor-
eductase (ETFQO) [16–21]. The electrons are then passed to
Complex IV and utilized to reduce O2 forming H2O. Importantly
electron transfer from NADH (E°′¼�340 mV) or FADH2 (E°′¼þ
31 mV) through the Q pool (E°′¼þ45 mV) to O2 (E°′¼þ840 mV)
is an energetically favorable process and is thus coupled to the
pumping of protons across the mitochondrial inner membrane
(MIM) into the intermembrane space (IMS) (Fig. 3). This creates a
transmembrane electrochemical gradient of protons (Δμm) which
is composed of both an electrical (ΔΨm) and chemical (ΔpH) po-
tential. Notably ΔΨm accounts for �90% of the energy associated
with the transmembrane electrochemical gradient of protons. The
Gibbs free energy stored across the MIM in the form of Δμm is then
used to drive ATP synthesis by Complex V (Fig. 3) [22]. Complex V
is a multisubunit transmembrane protein complex that couples
the energy liberated from electron transport to the terminal
electron acceptor O2 to the conversion of ADP and Pi into ATP, a
process referred to as oxidative phosphorylation. Basically Com-
plex V is composed of two portions, the F0 portion which is buried
in the MIM and the F1 part which makes contact with the matrix
[23]. F0 is composed of subunits A, B, and C and subunits alpha (α),
beta (β), gamma (γ), delta (δ), and epsilon (ε) comprise F1. The
process of oxidative phosphorylation involves the diffusion of
protons from the IMS into the matrix, which is facilitated by the F0
portion of Complex V. As protons are translocated through F0 the
stalk rotates inducing alternating conformational changes in α and
β subunits of F1 resulting in the binding of ADP and Pi and the
release of ATP [23,24]. ATP is then translocated into the cytosolic
environment in exchange for ADP, which is catalyzed by ATP:ADP
antiporter complex, to do work in the cell (Fig. 3). It is important to
realize that ATP is a major driving force for all life on Earth which
is the reason it is often referred to as the universal energy cur-
rency. Indeed, even in mammalian cells, mitochondria are strate-
gically positioned to ensure that energy demands for even the
most energy intensive processes like heart contraction and re-
laxation can be met.

It is well documented that mitochondria can serve as important
sites for ROS production [4,25–27]. However, ROS is a broad term
that includes all oxyradicals such as singlet and doublet oxyradi-
cals and nonradicals like H2O2 [28]. Different ROS vary tre-
mendously in reactivity, half-life, abundance, and production. In
addition, some ROS actually serve as important signaling mole-
cules rather than by-products that indiscriminately damage cell
constituents. Thus, using the term “mitochondrial ROS” is in-
appropriate considering it fails to define which oxyradical species
is being produced. O2

�� is the proximal ROS generated by mi-
tochondria and is the result of the premature univalent reduction
of O2 by various enzymes in the Krebs cycle and respiratory chain.
O2

�� is then rapidly dismutated by superoxide dismutase, either
in the matrix (MnSOD) or intermembrane space (Cu/ZnSOD),
producing H2O2 which can then be further degraded to O2 and
H2O by various enzymes [12] (Fig. 4). It is important to critically
evaluate how mitochondria maintain O2

��/H2O2 homeostasis
considering that both molecules are required for cellular signaling
and, when generated at sufficient amounts, can induce oxidative
stress, cellular damage, and death. Indeed, overproduction of
O2

��/H2O2 by mitochondria is associated with a myriad of dis-
eases including neurological deficits, heart disorders, and



Fig. 3. The electron transport chain and oxidative phosphorylation. Following the genesis of NADH or succinate by the Krebs cycle, both electron carriers are oxidized by
complex I (NADH:ubiquinone oxidoreductase) and complex II (succinate:ubiquinone oxidoreductase or succinate dehydrogenase). Oxidation of NADH by complex I yields
NAD which returns to the Krebs cycle and two electrons which reduce FMN and are then systematically passed through 7–8 Fe�S clusters to the quinone binding site
reducing Q to QH2. Due to the large difference in E°′ between NADH and Q, electron transfer induces changes in the membrane module of complex I resulting in the pumping
of four protons into the IMS. Similarly succinate oxidation by complex II yields fumaric acid and the liberated electrons are passed through FAD and three Fe–S clusters
reducing Q to QH2. Note that complex II is a Krebs cycle enzyme providing a direct link between Krebs cycle flux and electron transfer in the respiratory chain. Complex II is
also embedded in the MIM but is not a transmembrane protein. Unlike complexes I, III, and IV, complex II does not couple electron transfer to proton translocation into the
IMS. This is attributed to the low Gibbs free energy change for electron transfer in complex II to Q (refer to text for E°′ values for FAD and Q). Complex II also harbors a heme
(b560) which is thought to be involved in electron recycling. QH2 is then oxidized by complex III in the Qo (quinone outer membrane) binding site resulting in the transfer of
one electron through the Rieske Fe�S protein and cytochrome C1 to cytochrome C. Note that C1 and C can only accept one electron at a time. This generates a semiquinone
radical in the Qo site. The second electron is then passed through heme groups bL and bH and utilized to re-reduce Q in the Qi (quinone inner membrane) binding site. This is
referred to as the Q-cycle and is required to recycle electrons during aerobic respiration. Electron movement from QH2 to C is coupled to the transfer of two protons into the
IMS. C then binds subunit II on complex IV where electrons are passed systematically through two copper moieties and two heme groups (a and a3) resulting in the reduction
of oxygen to water at subunit I. For two electrons transferred only one oxygen atom is reduced which also requires an input of two protons. This process is coupled to the
pumping of two additional protons into the IMS. Considering, that the the full reduction of di-oxygen (O2) requires four electrons that means four protons are actually
pumped into the IMS (for every two electrons from NADH or succinate two protons are pumped out). Electron transfer and proton pumping creates are transmembrane
potential of protons called the protonmotive force (pmf) which is utilized by complex V to drive ATP synthesis. Note that proton re-uptake by complex V is coupled to the
rotation of the stalk and F1 portion of complex V resulting in the biosynthesis of ATP. P; positive side; IMS and N; negative side; matrix.
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metabolic diseases like obesity and type 2 diabetes and has even
been suggested to be the cause of aging [14,29–31]. The me-
chanisms by which O2

��/H2O2 are degraded in mitochondria and
the cell have been reviewed extensively (Fig. 4) [12,32,33]. In ad-
dition, the contributions of Complex I and III to production of
O2

��/H2O2 has been heavily investigated and discussed in several
reviews [4,32,34–36]. Intriguingly a number of other potential
O2

��/H2O2 production sites have also been identified in mi-
tochondria. In fact, a total of 11 sources of O2

��/H2O2 have been
identified in mitochondria (Fig. 5) [37,38]. Recent studies have also
shown sites other than Complex I and III namely, 2-oxoglutarate
dehydrogenase (Odh), pyruvate dehydrogenase (Pdh), and Sdh
serve as highly significant sources of mitochondrial O2

��/H2O2

[39–42]. The other sites do not make a substantial contribution to
O2

��/H2O2 production [16,17,43,44]. In the present review, current
knowledge of mitochondrial O2

��/H2O2 production will be sur-
veyed along with the proposed classification of the different sug-
gested sources for mitochondrial O2

��/H2O2 production into two
different isopotential groups, NADH/NAD isopotential group and
QH2/Q isopotential group, as originally suggested by Brand and
colleagues [39]. The influence of different nutritional states and
redox signaling on rates O2

��/H2O2 production in physiology and
disease are discussed. Finally, emerging technologies that can be
utilized to accurately quantify O2

��/H2O2 production in isolated
mitochondria, live cells, and in vivo in the context of health and
disease will also be reviewed. It should also be noted that ROS
production by mitochondria is referred to as O2

��/H2O2 con-
sidering the rapid dismutation of O2

�� to H2O2 and the lack of
sensitive techniques for quantitative measurement of O2

��.
Classification of mitochondrial sources of O2
��/H2O2

Chemiosmotic coupling and mitochondrial production of ATP
fundamentally relies on the transfer of electrons between different
redox carriers embedded in proteins. Electron transfer reactions in
mitochondria are often viewed as a simple movement of electrons
through a defined pathway from a donor to acceptor molecule
[45]. However, electron movement in mitochondria is far more
complicated considering that different redox centers in mi-
tochondrial enzymes, especially the respiratory complexes, are
separated by polypeptide chains with most carriers buried deep in
proteins within the lipid bilayer of the MIM [45]. Thus, electron
transfer cannot be as simple as the donation and acceptance of an
electron(s) between two different ions in aqueous solution [45].
Rather, electron movement between prosthetic groups proceeds
via electron tunneling [45]. Essentially, electron tunneling predicts
the probability of whether or not an electron will move from a
donor to an acceptor molecule. Tunneling between donor and
acceptor molecules is heavily influenced by distance between the
centers, difference in redox potential, and response of electron
carriers to changes in charge on donor or acceptor molecules [45].
In the respiratory chain efficiency of electron transfer between
carriers varies considerably according to distance between donor
and acceptor molecules. Electron transfer occurs at a maximum
distance of 14 Å which provides a relative electron transfer rate of
�104 s�1 [45]. As the distance between centers decreases there is
an exponential increase in the rate of electron transfer [4]. Like-
wise, if redox centers are separated by more than 14 Å electron
transfer most likely does not occur since rate of transfer is too slow
[4]. Discussing the principles of electron transfer reactions in



Fig. 4. Anti-oxidant defense systems in mitochondria: Mitochondria can be a major source of reactive oxygen species (ROS) and production which depends on the metabolic
state and redox poise of mitochondria. Metabolic state refers to the efficiency of electron transfer from nutrients to O2 whereas redox poise is associated with the anti-
oxidant capacity, maintenance of a reductive environment by reduced glutathione (GSH; normally in the mitochondrial matrix, the glutathione pool is highly reduced with
the ratio of 2GSH to GSSG (2GSH/GSSG) �100 giving E°′¼�320 mV) and the redox state of anti-oxidant enzymes Prx and Trx. The proximal ROS O2

�� is dismutated rapidly
by MnSOD or Cu/ZnSOD in the matrix or intermembrane space, respectively, to H2O2 which is then used for signaling via oxidation of protein cysteine thiols (see Fig. 8 for
thiol based reactions with oxidants and reductants). Note that H2O2 can also diffuse passively from one side of the mitochondrial membrane to the next with the aid of
aquaporins (AQP). H2O2 levels are continuously monitored by endogenous anti-oxidant systems. The far most efficient systems utilized to quench H2O2 are 1. Glutathione
peroxidase (GPx)/glutathione reductase (GR) and 2. Peroxiredoxin (Prx)/thioredoxin (Trx)/Thioredoxin Reductase (TR) system. Mitochondria contain two GPx and two Prx
isozymes; GPx1 and GPx4; Prx3 and Prx5. Although all four enzymes quench H2O2, GPx1 and Prx3 have a higher affinity for H2O2 while GPx4 and Prx5 metabolize lipid
hydroperoxides more efficiently [12]. Systems 1 and 2 are supported by system 3 which produces NADPH, the reductive power required to rejuvenate anti-oxidant systems
after a round of H2O2 sequestration. Note that NADPH is either generated from the metabolism of isocitrate, malate, or glucose-6-phosphate by isocitrate dehydrogenase
(Idh), malic enzyme (ME), or glucose-6-phosphate dehydrogenase (G6pd) or via conversion of NADH into NADPH by energy liberating transhydrogenase (Elth).
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mitochondria is important considering that formation of O2
�� is

most likely influenced by the same factors; distance, redox dif-
ference, and response to changes in charge on donor and acceptor
molecules [46].

Complex I and III are chief sites for mitochondrial O2
�� pro-

duction in mitochondria. O2
�� production from either complex

fulfills various signaling functions including hypoxic signaling,
adipocyte regulation, immune cell function, satiety signaling in the
hypothalamus, and responsiveness to insulin [47–49]. It is now
known that mitochondria harbor up to 11 different sources of
O2

��/H2O2 which can be divided into two different subgroups
based on redox potential at which they produce O2

��/H2O2;
(1) NADH/NAD isopotential group and (2) QH2/Q isopotential
group [39]. The NADH/NAD isopotential group consists of Complex
I, Odh, Pdh, and Bckdh while the QH2/Q isopotential group is made
up of 7 other enzymes; Complex III, Sdh, ETFQO, proline dehy-
drogenase, dihydroorotate dehydrogenase, SQR, and sn-G3PDH. In
group 1, O2

��/H2O2 is reliant on the concentration of NADH
whereas group 2 requires reduction of Q to QH2. Notably, in the
QH2/Q group the major sources of O2

��/H2O2 are Complex I, II, and
III and thus most of the O2

��/H2O2 is attributed to reverse electron
transport (RET) (Fig. 5) [16,17,39,44]. Classification of O2

��/H2O2

producing enzymes in mitochondria into different isopotential
subgroups was recently suggested by Brand and colleagues
[37,39]. Indeed, it has been shown in a series of studies that other
O2

��/H2O2 sources like Odh, Pdh, and Sdh, can also make sub-
stantial contributions to the overall production of O2

��/H2O2

production by mitochondria which could contribute to mi-
tochondrial O2

��/H2O2 signaling [18,39]. Rates of production from
the different enzymes in each isopotential group is highly de-
pendent on nutrient status, mitochondrial redox poise, and avail-
ability of ADP. In addition, most of these enzymes harbor thiol
residues that are close to or adjacent to O2
��/H2O2 producing

centers suggesting that redox signaling serves as mechanism that
controls O2

��/H2O2 production [6]. For example, Odh produces
both O2

��/H2O2 however; these molecules can also feedback and
deactivate Odh thus controlling mitochondrial O2

��/H2O2 pro-
duction [50,51]. Intriguingly a recent study also provided evidence
that O2

��/H2O2 from the two different isopotential groups can
have different effects on signaling since the different groups spe-
cifically target very specific proteins for regulation by redox sig-
naling [52]. Other factors including mitochondrial fission and fu-
sion and assembly of Krebs cycle enzymes and respiratory com-
plexes into metabolon and respirasomes also likely influence
O2

��/H2O2 production from these sites [53,54].
NADH/NAD isopotential group – Odh and Pdh are major sources
of O2

��/H2O2

As mentioned above the NADH/NAD isopotential group consists
of four different enzymes; Complex I, Odh, Pdh, and Bckdh which
produce O2

��/H2O2 in response to fluctuations in NADH levels. All
four enzymes harbor a flavin prosthetic group, FMN in Complex I
or FAD in the other three enzymes, which are able to produce
O2

�� and/or H2O2 [14,51]. While Complex I generates only O2
��,

the other enzymes generate both O2
��/H2O2 with H2O2 making up

�75% of the production (e.g. Odh) [51,55]. It has been known for a
long time that flavins can produce either O2

�� or H2O2 in O2 sa-
turated aqueous solution [56]. Rates of production by free flavins
are dependent on genesis of flavin hydroperoxides, flavin radicals,
or flavin ion intermediates which can generate either O2

�� and
H2O2 at rates that vary between 250 and 5�108 M�1 s�1. Im-
portantly rates of O2

��/H2O2 production can be substantially
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Fig. 5. Overview of the 11 different sources for O2
��/H2O2 production. Mitochondrial ATP and O2

��/H2O2 are intimately linked by electron transfer from nutrients to di-
oxygen (O2). Nutrients (glucose, fatty acids, amino acids) are enzymatically converted to common intermediates (acetyl-CoA, oxaloacetate, pyruvate) which enter the Krebs
cycle to undergo further oxidation. Metabolite oxidation is coupled to the evolution of carbon dioxide (CO2) and the production of NADH and succinate which are then
oxidized by complexes I and II respectively. Electron flow through the respiratory complexes through ubiquinone (Q) and cytochrome C (C) and the reduction of O2 to H2O is
coupled to the formation of a transmembrane potential of proteins across the mitochondrial inner membrane (MIM) which is then utilized to drive ATP synthesis by complex
V. ATP is then transported out of mitochondria in exchange for ADP by ATP:ADP exchanger (ANT). The proton gradient can also be mildly uncoupled by uncoupling proteins
(UCP) 2 and 3 which are utilized to control O2

��/H2O2 production. Electron transfer flavoprotein oxidoreductase (ETFQO), dihydroorotate dehydrogenase (Dhodh), proline
dehydrogenase (Prodh), succinate:quinone reductase (SQR), sn-glycerol-3-phosphate dehydrogenase (G3PDH) can also feed electrons into the Q pool following oxidation of
their cognate substrates. Red stars indicate that 11 potential sources of O2

��/H2O2. Dotted lines represent flow of electrons. Bold dotted lines indicate flow of protons (Hþ).
(1) Citrate synthase, (2) aconitase, (3) NAD(P)þ-isocitrate dehydrogenase, (4) 2-oxoglutarate dehydrogenase, (5) succinyl-CoA synthase, (6) fumarase, (7) malate dehy-
drogenase, (8) pyruvate dehydrogenase, (9) pyruvate carboxylase, (10) branched chain keto acid dehydrogenase.
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enhanced in a polypeptide environment [56]. For example the
neutral flavin radical of glucose oxidase produces O2

�� at a rate of
1�109 M�1 s�1 in comparison to free neutral flavin radical which
generates O2

�� at a rate of �104 M�1 s�1 [56]. Production of O2
��

or O2
��/H2O2 by either enzyme in this isopotential group is highly

dependent on the concentration of NADH [39]. An increase in
NADH/NAD leads to sharp increase in O2

��/H2O2 production by all
enzymes in this isopotential group but in particular Complex I,
Odh, and Pdh. In a recent publication Quinlan et al. provided
evidence that FAD in Odh and Pdh and to a lesser extent Bckdh
produce more O2

��/H2O2 than FMN in Complex I [39]. In fact
based on their calculations the authors estimated that Odh
Fig. 6. Modulation of Pdh by allosteric regulation and phosphorylation. The enzymatic pr
CoASH serve as activators of Pdh activity. Thus, Pdh efficiency is reliant on the oxidation
of ATP in the cell. Note that these allosteric modulators also control pyruvate dehydro
phorylate and dephosphorylate, respectively, the E1 subunit to modulate Pdh activity. P
effect. In addition, hormonal signaling cascades like insulin signaling also play a part in m
state. Odh is also modulated by allosteric regulators, calcium, and phosphorylation in a
produces 8 times more O2
��/H2O2 than Complex I [39]. Overall, it

would appear that the hierarchy for O2
��/H2O2 production in the

NADH/NAD isopotential group is Odh4Pdh4Bckdh4Complex I
organized from highest rate to lowest. However, measurements
were conducted only on skeletal muscle mitochondria. It is well
known that sites for mitochondrial O2

��/H2O2 can vary sub-
stantially from tissue to tissue. It would thus be crucial to apply a
similar methodology to other tissues and profile the different sites
for mitochondrial O2

��/H2O2 production.
Odh and Pdh serve as major regulatory hubs for modulation of

metabolite entry, exit, and flux into and through the Krebs cycle.
Various allosteric activators and inhibitors including CoASH,
oducts acetyl-CoA and NADH serve as allosteric inhibitors whereas NADþ , ADP, and
of NADH by complex I, condensation of acetyl-CoA with oxaloacetate, and turnover
genase kinase (Pdk) and pyruvate dehydrogenase phosphatase (Pdp) which phos-
hosphorylation inhibits Pdh activity whereas dephosphorylation has the opposite
odulating Pdh activity in response to whole body changes in nutrition and energy
similar manner.
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NADH, NAD, and ATP converge upon these two enzymes to mod-
ulate their activity (Fig. 6). Allosteric regulation is required for
rapid modulation of 2-oxoglutarate and pyruvate oxidation in re-
sponse to changing energy demands and alterations in metabolic
flux [57,58]. Odh and Pdh are also modulated by mitochondrial
calcium uptake during cardiac and skeletal muscle contraction and
relaxation (Fig. 6) [59]. In addition, both enzymes are also sub-
jected to a range of covalent modifications, including phosphor-
ylation, which is required to modulate Krebs cycle flux and the
entry and exit of nutrients and metabolites from the cycle. Both
Odh and Pdh are also important redox sensors and are modulated
by changes in mitochondrial H2O2. Indeed, Odh and Pdh harbor a
dihydrolipoamide moiety located in the E2 subunit which plays a
critical role in the genesis of succinyl-CoA and acetyl-CoA and
NADH [60,61]. The vicinal thiols (SH) on dihydrolipoamide are
highly amenable towards oxidation by H2O2 forming highly re-
active sulfenic acid (SOH) residues [62,63]. In fact, the vicinal thiols
on dihydrolipoamide react quickly with low micromolar (�5 mM)
amounts of H2O2 [64]. Odh and Pdh contain three subunits E1, E2,
and E3 which transfer electrons from the substrate through dihy-
drolipamide in the E2 subunit reducing FAD to FADH2 in E3 which
then produces NADH [61,65]. Considering that Odh and Pdh are
(1) important sites for O2

��/H2O2 production, (2) are highly sen-
sitive to deactivation by H2O2, and (3) are important regulatory
hubs for the Krebs cycle, it would appear that both enzymes serve
as central sites for modulation of mitochondrial redox signaling
(Fig. 7). Indeed, an increase in mitochondrial O2

��/H2O2 produced
by Odh and Pdh is the result of an increase in mitochondrial NADH
which would mean that Complex I-mediated NADH oxidation has
decreased. The burst in O2

��/H2O2 feeds back to inhibit Odh and
Fig. 7. Hypothetical mechanism for the regulation of Odh and Pdh by reversible S-glutat
oxidation of 2-oxoglutarate or pyruvate to formation of either acetyl-CoA or succinyl-Co
oxidation of NADH to rejuvenate NAD pools. PHASE 1, ACCUMULATION: NADH oxidation
NADH levels. This prompts increased O2

��/H2O2 production by the E3 subunit of eithe
OXIDATION: vicinal thiols (-SH) on E2 subunit are oxidized by the increase in H2O2 leve
Although O2

��/H2O2 emission is decreased by this modification the –SOH renders the e
acids are modified by S-glutathionylation by conjugation to glutathione (GSH), a reactio
Odh and Pdh from further oxidation. Enzyme remains inactive during this phase of re
tathionyl moiety is removed potentially by glutaredoxin-2 (Grx2) yielding a fully active
NADH formation. Grx2-mediated deglutathionylation generates GSSG which is reduced
Pdh at the level of dihydrolipoamide preventing further electron
transfer to FAD thus limiting the further production of O2

��/H2O2.
Numerous studies have established that Odh and Pdh sense

mitochondrial H2O2 levels which effectively curtails O2
��/H2O2

production by mitochondria [66–69]. However, for Odh and Pdh to
serve as redox sensors the modification must be reversible. In-
deed, at sufficient quantities H2O2 can oxidize SOH to sulfinic
(SO2H) and sulfonic (SO3H) acids, irreversible redox modifications
that render Odh and Pdh inactive (Fig 8). Oxidative stress often
leads to the deactivation of Odh and Pdh which has been asso-
ciated with cardiomyopathy, ischemia-reperfusion injury in car-
diac and brain tissue, obesity, heavy metal toxicity, and cardio-
vascular disease [70]. It has also been predicted that SOH groups
have a pKa �6 and thus ionize readily to form a highly nucleo-
philic sulfenate anion (SO�) [71,72]. Sulfenates can react rapidly to
form covalent adducts with a number of molecules but in parti-
cular when O2

��/H2O2 production is high SO� can by further
oxidized to SO3H or react with 4-hydroxy-2-nonenal (4-HNE), an
end product of lipid damage, to form 4-HNE protein adducts
[73,74]. Importantly, formation of 4-HNE adducts on the dihy-
drolipoamide of Odh and Pdh is associated with cardiac and
neurological disease and treatment of mitochondria with 4-HNE
deactivates both enzymes leading to an energy deficit [73–75].
Thus, in order for Odh and Pdh to serve as a redox sensor for
O2

��/H2O2 SOH must be protected to prevent further oxidation.
One mechanism that has been documented to protect dihy-
drolipoamide residues in Odh and possibly Pdh from further oxi-
dation is S-glutathionylation (Fig. 7). S-glutathionylation is a redox
sensitive covalent modification that involves formation of a dis-
ulfide bond between an available glutathione moiety and a protein
hionylation is required to modulate mitochondrial O2
��/H2O2. Odh and Pdh couple

A and the production of NADH. O2
��/H2O2 production is minimal due to the rapid

slows most likely due to a decrease in complex I activity resulting in an increase in
r enzyme. Substrate oxidation also slows diminishing NADH formation. PHASE 2,
ls yielding highly reactive sulfenic acids (-SOH) deactivating the enzyme complex.
nzyme complex amenable to irreversible oxidation. PHASE 3, PROTECTION: sulfenic
n potentially catalyzed by glutathione S-transferase (GST). This effectively protects
gulation which also prevents O2

��/H2O2 production. PHASE 4, RECOVERY: the glu-
enzyme complex. Odh and Pdh are now fully active coupling substrate oxidation to
back to GSH by glutathione reductase and NADPH.



Fig. 8. Regulation of protein function by S-glutathionylation. Redox signaling refers to the control of protein function via site specific oxidation of protein cysteine thiols in
response to redox fluctuations in the surrounding cellular environment. Although there are a number of redox modifications that are known to modulate cellular protein
functions [6], S-glutathionylation and the formation of protein glutathione mixed disulfides is highly specific, sensitive to redox fluctuations and mediated enzymatically and
thus the most relevant redox modification. The reactivity of a thiol towards glutathione depends on its ability to ionize and form a reactive thiolate anion. Ionization is
heavily influenced by the chemistry of the surrounding protein environment. In the presence of sufficient quantities of H2O2, the thiolate anion nucleophilically attacks H2O2

yielding an oxidized sulfur residue (SO�; sulfenic acid). If H2O2 is in high enough amounts, the sulfenic acid can be further oxidized to sulfinic (SO2H) and sulfonic acid
(SO3H). Note that sulfinic acid can be reduced back to a thiolate by the action of sulfiredoxin (Srx) which requires ATP. Sulfonic acids, however, are an irreversible type of
oxidation associated with oxidative stress. Proteins can either be S-glutathionylated at the level of the thiolate or sulfenic acid. In terms of the former, S-glutathionylation is
driven by glutaredoxin-2 in mitochondria (Grx2) or glutaredoxin-1 (Grx1) in the cytosol and intermembrane space. S-glutathionylation can be quickly reversed by Grx.
Importantly, protein S-glutathionylation is highly sensitive to fluctuations in reduced and oxidized glutathione levels and the circumstances by which a protein is S-glu-
tathionylated varies according to the type of protein and the environment surrounding the protein cysteine thiol (reviewed in [6,12,23]). In terms of the latter, S-glu-
tathionylation of sulfenic acids is required to protect cysteine thiols from further oxidation when H2O2 is at higher concentrations.
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cysteine thiol (Fig. 8) [6]. This results in the formation of a protein
glutathione mixed disulfide (PSSG). Notably the modification is
reversible and proceeds enzymatically with glutathione S-trans-
ferases (GST) catalyzing the forward reaction and glutaredoxins
(Grx), a class of thiol oxidoreductases that part of the thioredoxin
superfamily, catalyzing both S-glutathionylation and deglutathio-
nylation (Fig. 8) [76,77]. In regard to protecting Odh, SOH forma-
tion results in immediate S-glutathionylation, possibly catalyzed
by mitochondrial GST isoforms or mitochondrial glutaredoxin
(Grx2), which effectively protects dihydrolipoamide in Odh from
further oxidation [64,78]. The glutathionyl moiety is then removed
by Grx2 which restores the activity of Odh [64,78]. It is important
to note that it has not been shown whether or not mitochondrial
Grx isoform, Grx2, is able to deglutathionylate Odh however;
considering that purified Grx1 can catalyze this reaction in vitro
and that Grx1 can supplement for Grx2 for deglutathionylation
reactions it stands to reason that Grx2 likely deglutathionylates
Odh. Thus, reversible S-glutathionylation plays a critical role in
Odh redox sensing (Figs. 7 and 8).

According to Quinlan et al., Pdh produces two times less
O2

��/H2O2 than Odh but is still a significant source nonetheless
[39]. Intriguingly it still remains to be determined if Pdh can be
protected from further oxidation by S-glutathionylation. It has
been suggested however in a recent report that glutathione di-
rectly binds to Pdh forming disulfide bonds with dihydrolipoamide
[40]. It is important to point out here that S-glutathionylation
proceeds enzymatically given the poor reactivity of reduced glu-
tathione towards other thiols [79]. In addition, Grx2 has been
shown to catalyze S-glutathionylation reactions at rates that are
250-fold faster nonenzymatic reactions [76,80]. Also, with the
recent identification of S-glutathionylation motifs it is more
probable that reversible S-glutathionylation of Pdh is en-
zymatically catalyzed, most likely by GST or Grx2 [81]. Considering
that Pdh is deactivated by H2O2 it stands to reason that it is also
subjected to reversible S-glutathionylation which most likely
maintains its redox sensing properties. Bckdh, is predicted to
produce four times less O2

��/H2O2 than Odh [39]. Although Bckdh
has not been shown to be modulated by redox signaling cascades
like S-glutathionylation, the enzyme upstream to Bckdh that
commits branched chain amino acids to degradation, branched
chain aminotransferase, can be modulated by S-glutathionylation
[82]. Notably, though Bckdh activity also relies on dihydrolipoate
and thus may be modulated in a fashion similar to Odh and per-
haps Pdh. Thus, the FAD-dependent dihydrolipoamide enzymes
Odh, Pdh, and Bckdh serve as important sources of O2

��/H2O2 and
also serve as redox sensors modulating mitochondrial O2

��/H2O2

emission in response to ROS fluctuations, a process dependent on
S-glutathionylation.
QH2/Q isopotential group

Q sits at a major electron transfer junction for aerobic re-
spiration accepting electrons from Complex I and II following
NADH and succinate oxidation [83]. As shown in Fig. 5, other
metabolic enzymes such as ETFQO, SQR, sn-G3PDH, Dhodh, and
Prodh also couple oxidation of acyl-CoA, H2S, glycerol-3-phos-
phate, dihydroorotate, and proline to reduction of Q to QH2. It is
assumed that not all these enzymes simultaneously supply elec-
trons to Q electron carriers in mitochondria. In addition, some of
these enzymes display tissue and species specific expression. It has
been documented for some time that some of these enzymes
produce O2

��/H2O2 [20,44,84,85]. However, several recent studies
have established that most of the O2

��/H2O2 generated by these
enzymes is indirect and produced mostly from Complex I, II, III,
and in some cases Odh [16,17,44]. For example, sn-G3PDH is found
in brain, skeletal muscle, and heart tissue but is most heavily ex-
pressed brown adipose tissue [43]. Studies have now shown that
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sn-G3PDH can generate high amounts of O2
��/H2O2 [20,86].

However, a recent report has provided evidence sn-G3PDH is in-
directly responsible for O2

��/H2O2 with a vast majority being
generated in brain, heart, and skeletal muscle by reverse electron
flow (RET) to FAD in Complex II [43]. The only exception is brown
fat mitochondria where sn-G3PDH accounts for a large fraction of
the O2

��/H2O2 generation [20]. Prodh is expressed in some cancer
cells and found in flight muscle mitochondria of insects like Dro-
sophila melanogaster [87,88]. Studies have shown that proline
oxidation can produce O2

��/H2O2 but like sn-G3PDH most of the
production is attributed to other sites; for breast cancer cell lines
Complex I and II and insect flight muscle, Complex I and Odh.
Again, in the case of Prodh, most of the O2

��/H2O2 is produced as a
consequence of RET but also the accumulation of NADH due to
proline oxidation which eventually generates 2-oxoglutarate [16].
Most of the O2

��/H2O2 resulting from palmitoyl-carnitine oxida-
tion by ETFQO is produced by Complex I, II, and III with the relative
contributions of each site varying according to the presence or
absence of malate and/or L-carnitine [44]. Thus, although a num-
ber of substrates can feed electrons into the Q pool of mitochon-
dria, the ultimate sites of O2

��/H2O2 production are still Complex I
and III and intriguingly Complex II and Odh. The enzymes Prodh,
Drodh, SQR, ETFQO, and sn-G3PDH do produce small amounts of
O2

��/H2O2 though and if inhibited can produce a lot more in-
dicating that under special circumstances these enzymes can be
significant sources. However physiologically, it should be revised
that mitochondria can produce O2

��/H2O2 from 11 potential
substrates; pyruvate, 2-oxoglutarate, NADH, succinate, H2S, bran-
ched chain keto acids, acyl-CoA, dihydroorotate, QH2, proline, and
glycerol-3-phosphate, whereas the actual source for most of the
mitochondrial O2

��/H2O2 seems to be reserved to a handful of
enzymes across both isopotential groups; Complexes I, II, III, Odh,
and Pdh.

Complex III serves as a major source of mitochondrial
O2

��/H2O2. Emission of O2
��/H2O2 from the Qo site of Complex III

into the intermembrane space has been viewed as a major sig-
naling platform for ROS mediated communication between mi-
tochondria and the rest of the cell [89,90]. It has been shown that
Complex III can be targeted for covalent modification, such as
Fig. 9. Hypothetical mechanism for the modulation of O2
��/H2O2 by complex III via S-

donating one electron at a time to cytochrome C. The resulting QH�� is recycled via the
reduced by complex I, II, or other electron donors (see Fig. 1). PHASE 1, POLARIZATION:
polarity which limits QH2 and QH�● oxidation. QH�● accumulates in the Qo site aug
mitochondrial O2

��/H2O2 production and ΔΨm results in the deglutathionylation and a
tissues and activation can have different physiological consequences. Deglutathionylatio
unidentified enzyme [97,98]. Activation induces mild uncoupling of the mitochondrial in
production. PHASE 3, CONJUGATION: the decrease O2

��/H2O2 production and ΔΨm resu
catalyzed by Grx2. PHASE 4, RESTORATION: with the ΔΨm brought back down QH2 oxida
Q-cycle. Note that in this diagram ANT was omitted for clarity however; as indicated in
S-glutathionylation.
phosphorylation however; it remains unclear whether or not
posttranslational modifications can modulate electron flow and
O2

��/H2O2 production by Complex III. O2
��/H2O2 production from

Complex III arises from the accumulation of semi-ubiquinone
(QH�●) in the Qo site of Complex III [14,32]. Indeed, QH2 can only
donate one electron at a time to cytochrome C1 and cytochrome C.
This yields QH�● which then enters the Q cycle where it is re-
cycled by b cytochromes to regenerate Q and QH2 for another
round of oxidation (reviewed in 91). The Q cycle is highly efficient
but the rate of QH�● recycling is dependent on polarity of Δμm. As
Δμm increases this creates a significant protonic back pressure that
slows the Q cycle prompting the accumulation of QH�● which
elevates O2

��/H2O2 production (Fig. 9) [92]. It is well documented
that there is a non-Ohmic relationship between Δμm and mi-
tochondrial O2

��/H2O2 production where small increases in
membrane potential can substantially increase ROS production
[93]. The reverse is also true where “mild uncoupling” of Δμm can
substantially limit mitochondrial O2

��/H2O2 production [94]. Mi-
tochondria from a myriad of tissues contain proteins embedded in
the MIM that ferry protons from the IMS to the matrix which
controls mitochondrial O2

��/H2O2 production [95]. The un-
coupling protein family (UCPs), specifically UCP2 and UCP3, have
been shown to be required for the protection of various tissues
from oxidative stress via the control of mitochondrial O2

��/H2O2

production by induction of mild uncoupling of Δμm [32]. In addi-
tion, it has now been established that both proteins are controlled
by reversible S-glutathionylation where H2O2 is required to de-
glutathionylate and activate both proteins by an as of yet uni-
dentified enzyme [96–98]. Subsequent reglutathionylation of
UCP2 and UCP3 deactivates proton leaks. Recent work has also
identified UCP3 as a target for the thiol oxidoreductase activity of
Grx2 which catalyzes the protein S-glutathionylation of UCP3 [96].
Thus, proton leaks are sensitive to redox signaling which is re-
quired to control mitochondrial O2

��/H2O2 production. The con-
trol of leaks through UCP2 and UCP3 by reversible S-glutathiony-
lation also has important physiological implications. UCP2 is more
ubiquitously expressed while UCP3 is found almost exclusively in
skeletal muscle (Fig. 9). Reversible S-glutathionylation of UCP2 has
been found to play on important role in modulating glucose
glutathionylation controlled proton leaks. Complex III systematically oxidizes QH2

Q-cycle for another round of oxidation. Fully oxidized Q returns to the Q pool to be
electrochemical transmembrane potential of protons (ΔΨm) increasing membrane
menting mitochondrial O2

��/H2O2 production. PHASE 2, ACTIVATION: the rise in
ctivation of UCP2 and UCP3. Note that UCP2 and UCP3 are expressed in different
n is mediated by low mM increase in H2O2. The reaction is catalyzed by an as of yet
ner membrane decreasing protonic pressure on complex III thus limiting O2

��/H2O2

lts in the reglutathionylation and deactivation of UCP2 and UCP3. The reaction is
tion by complex III resumes with efficient recovery of electrons from QH�● in the
the text it also plays an important role in inducible proton leaks and is targeted for
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stimulated insulin release from pancreatic β cells [97]. Control of
leaks through UCP3 on the other hand is required to maintain
efficient glucose and fatty acid oxidation in skeletal muscle which
is most likely important for maintaining insulin sensitivity and
contractility [99,100]. Adenine nucleotide translocator (ANT),
which catalyzes the anti-port of ADP and ATP across the MIM also
catalyzes inducible proton leaks in various tissues including brain,
heart, skeletal muscle and liver. Intriguingly it is also a major site
for redox-mediated regulation particularly by S-glutathionylation
[101]. Although it has not been investigated, it would be important
to ascertain if S-glutathionylation reactions also modulate leaks
through ANT. It is also critical to point out that leaks through ANT
are also activated by covalent modification by nitrolipids and
4-HNE [102,103]. Thus, O2

��/H2O2 production by Complex III can
be indirectly controlled by redox signaling, mainly through the
activation and deactivation of proton leak mechanisms.

Numerous studies have also focused on Complex I which can
produce high amounts of O2

��/H2O2 via electron back flow from
various substrates that are involved in direct reduction of Q to QH2

as described above. It has also been well documented that Com-
plex I serves as a major hub for redox signaling [104]. Several
subunits on Complex I including Ndusf1 and Ndufv1, which form
part of the NADH binding site and are required to coordinate
several Fe–S clusters, are targets for reversible S-glutathionylation
which is mediated by Grx2 [104,105]. Deregulation of S-glu-
tathionylation of these subunits on Complex I not only disrupts its
activity but also increases mitochondrial O2

��/H2O2 production
which is associated with heart disease (decompensated hyper-
trophy), ischemia reperfusion injury, doxorubicin toxicity, Parkin-
son’s disease, and potentially liver disease [96,105–108]. ND3
subunit, which forms part of the Q binding site, can also be tar-
geted for modification by S-nitrosylation and potentially S-glu-
tathionylation [23]. Recent work has established pharmacological
induction of S-nitrosylation Cys39 of ND3 prevents ischemia-re-
perfusion injury and reduces myocardial infarct size [109]. Thus,
Complex I is a key site for redox regulation of mitochondrial
processes and can also serve as an important pharmacological
target in prevention of disease. As mentioned in the NADH/NAD
isopotential section, Quinlan et al. found that when NADH is
abundant Odh produces 8 times more O2

��/H2O2 Complex I [39].
However, in the same study, it was shown that reverse electron
flow through the quinone pool has the opposite effect – Complex I
serves as one of the major sites [39]. In fact, as mentioned above,
Complex I serves as a major source of O2

��/H2O2 when substrates
that feed electrons directly into the Q pool are being oxidized.
Most of studies that have shown that RET produces a large amount
of O2

��/H2O2 from Complex I utilize supraphysiological con-
centrations of substrate, most commonly succinate (5–10 mM).
Considering that under normal conditions succinate occurs in
much lower concentrations in mitochondria the role of RET in
Complex I-mediated O2

��/H2O2 has been questioned. However, a
very recent report has shown that succinate accumulates in the
ischemic myocardium and produces a high amount of O2

��/H2O2

following reperfusion leading to development of heart disease and
formation of myocardial infarcts [42]. Intriguingly, dimethyl mal-
onate, a membrane permeable Complex II inhibitor, decreased
myocardial infarct size [42]. Thus, RET from succinate to Complex I
may not be a physiologically relevant source of O2

��/H2O2 but
would appear to be a major source during ischemia-reperfusion
injury and heart disease.

Acyl-CoA is another intriguing source O2
��/H2O2 produced by

RET since fatty acids serve as a major energy source for several
tissues including exercised skeletal muscle, liver, and the myo-
cardium. In particular, �70–90% of the ATP generated by mi-
tochondria in cardiomyocytes is provided by fatty acid oxidation
[110]. At rest the human heart turns over �30 kg of ATP per day
and �90% of that ATP is provided by mitochondria meaning that
�18.9–24.3 kg of this ATP is produced by fatty acid oxidation
[111]. Studies have shown that high fat diet does induce diabetic
cardiomyopathy potentially through increased mitochondrial
O2

��/H2O2 production [112]. The fact that acyl-CoA, in particular
palmitoyl-carnitine, can produce O2

��/H2O2 by RET under specific
nutritional states indicates that fatty acid oxidation and RET could
contribute to mitochondrial O2

��/H2O2 in the myocardium in
physiological and pathological states. The amount of O2

��/H2O2

produced is also proportional to efficiency of electron flow to O2 at
Complex IV and the polarity of the MIM. Intriguingly Per-
evoshchikova et al. was also able to show that FAD in Complex II
also serves as an important site for O2

��/H2O2 when rat skeletal
muscle mitochondria are metabolizing either palmitoyl-carnitine
alone or palmitoyl-carnitine þ carnitine [44]. Thus, RET-mediated
O2

��/H2O2 production can also occur at sites other than Complex I
(e.g. Complex II). Several studies have shown that Complex II can
produce O2

��/H2O2 [41,113]. In fact, Complex II generates a sub-
stantial amount of O2

��/H2O2 especially when FADH2 oxidation is
prevented by Q binding site inhibitors [41]. It has been established
that the source of O2

��/H2O2 in Complex II is FAD in the SdhA
subunit of the Complex [41]. Siebels and Drӧse also established
using submitochondrial particles from bovine heart that Complex
II generated the most O2

��/H2O2 when only 100 mM succinate was
added to reaction chambers [41]. This is intriguing since it shows
that physiologically relevant levels of succinate can prompt
O2

��/H2O2 from Complex II. In addition, Complex II is sensitive to
redox modifications such as S-glutathionylation [114]. In fact,
when maintained in an S-glutathionylated state Complex II effi-
ciently metabolizes succinate and produces little O2

��/H2O2 in
cardiac tissue [114]. However, following ischemia-reperfusion in-
jury to the myocardium Complex II adopts a deglutathionylated
state and produces higher amounts of O2

��/H2O2. This also leads
to the accumulation of succinate (as high as 1 mM) which can
interact with orphan G-protein coupled receptor 91, SUCNR1,
leading to further development of cardiovascular disease, disrup-
tion of myocardial function, and inflammation [115]. It is clear that
RET can produce O2

��/H2O2 following oxidation of different sub-
strates and that several respiratory complexes can partake in its
production which has strong implications for O2

��/H2O2 produc-
tion in health and disease.
Measuring mitochondrial O2
��/H2O2 production

Methodologies that measure O2
�� directly

Accurate quantification of O2
�� production by mitochondria is

of importance considering it is the proximal ROS generated by
mitochondria and over production is associated with various
pathologies [116]. O2

�� production in mitochondria is always fa-
vorable given the superior concentration of O2 in comparison to
O2

�� ([O2]¼3�30 mM in mitochondria in vivo, [O2
��] �pM

range) [117]. The low concentration and short half-life of O2
�� is

attributed to SOD which dismutates O2
�� to H2O2 very rapidly

(1.8�109 M�1 s�1) [12]. This presents a significant hurdle in
quantification of O2

�� levels in mitochondria since O2
�� does not

last very long in solution and concentrations are extremely low. It
is also ideal to attempt to quantify O2

�� production in intact cell
systems or potentially in vivo considering it provides a biological
context for mitochondrial O2

�� production in health and disease.
The most popular chemical probe utilized to measure O2

�� in live
cells is MitoSOX which consists of a hydroethidine molecule (HE)
covalently bound to triphenylphosphonium ion (TPPþ) (Fig. 10)
[118]. HE is an O2

�� sensitive probe that fluoresces following a
reaction with O2

��. TPPþ is a lipophilic cation that promotes



Fig. 10. Proposed mechanism for the reaction of MitoSOX with O2
�� (modified from [121] and [120]). MitoSOX is composed of hydroethidine which reacts with O2

�� and
triphenylphosphonium (R-group) which prompts accumulation in mitochondria (1). The structure is univalently reduced by one electron generate a chemical structure that
resonates between a hydroethidine radical with the lone electron delocalized to throughout the ring (2a) and an amide radical (2b). Electron delocalization between the ring
and amide aids in stabilizing this reactive intermediate. This is followed by an interaction with O2

�� which results in the production of a perhydroxyl intermediate (3) which
is then dehydrated to yield a carbonyl derivative (4) that is then protonated to generate 2-hydroxy-ethidine or 2-hydroxy-MitoSOX (5).
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uptake of HE by mitochondria which is based on the charge dif-
ference between the matrix and intermembrane space (Fig. 10)
[119]. A number of studies have utilized MitoSOX to measure mi-
tochondrial O2

�� production using plate methods including ki-
netic reads or end-point measures, flow cytometry, HPLC analysis
of MitoSOX oxidation, and live cell imaging [120]. However, there
are a number of considerable drawbacks associated with the use of
MitoSOX. The first is the fact that HE can form non-fluorescent
dimers as a result of oxidation [120]. To properly quantify both the
red fluorescent product and the non-fluorescent dimer HPLC
techniques can be utilized however; it requires cell disruption thus
rendering any live cell imaging impossible. This impediment can
be overcome by measuring HE fluorescence at excitation wave-
length 396 nm which specifically excites HE that has reacted with
O2

�� but has not intercalated with DNA [121]. Second, the calcu-
lated rate of oxidation of MitoSOX by O2

�� is 3.9�106 M�1 s�1

which, although rapid, is several orders of magnitude slower than
SOD [121]. This would mean that (1) mitochondria would need to
generate a considerable amount of O2

�� to afford proper fluores-
cence detection and (2) enough MitoSOX would need to be utilized
to compete with SOD. Considering the high concentration
(�10 mM) and rapid kinetics of MnSOD this presents a significant
challenge in accurate quantification of O2

�� production by mi-
tochondria. In addition most assays are conducted at ambient
oxygen ([O2]atmosphere¼�200 mM) whereas the [O2] experienced
by mitochondria in vivo is far less [122]. This may lead to over-
estimation of mitochondrial O2

�� production. Finally, cell lines
and primary cells are usually cultured in highly artificial systems
such as a humidified atmosphere containing 5% CO2, 20% O2 in
media supplemented with ample amounts of energy substrates
and serum factors. In addition cell density can affect the quality of
the measurements leading to over or under estimation of mi-
tochondrial O2

�� production. Thus, a considerable amount of as-
say optimization must be undertaken to ensure that O2

�� pro-
duction by mitochondria is accurately measured. Most im-
portantly, intact cell systems lack context for in vivo production of
O2

�� considering the conditions are artificial, the high O2 tension,
and the reactivity of MitoSOX. Interestingly, Henderson et al.
recently developed a sensitive method for measuring real-time
production of O2

�� by mitochondria which utilizes a cytochrome C
functionalized amperometric sensor [123]. The same group re-
cently showed that this technique can also be utilized to accurately
measure O2

�� production in intact cell systems and even suc-
cessfully employed this technique to illustrate that mitochondrial
O2

�� produced from Complex II plays an important role in mela-
nogenesis and cellular pigmentation [124]. Another promising
chemical method for measuring O2

�� is the probe 4,5-dimethoxy-
2-nitro-benzenesulfonyl tetrafluorofluorescein (BESSo) which fol-
lowing a nucleophilic substitution reaction with O2

�� yields a
highly fluorescent tetrafluorofluorescein product [125].

The lack of an in vivo context with intact cell systems and
MitoSOX prompted investigations into cyclic permuted yellow
fluorescent protein (cpYFP). Unlike MitoSOX this probe can be
expressed stably within either cell systems or in vivo [126]. Fur-
ther, cpYFP can be selectively targeted to mitochondria by mi-
tochondrial localization sequences. Initially this protein based
probe showed a lot of promise and appeared to selectively detect
fluctuations in mitochondrial O2

�� production in heart tissue from
transgenic mice expressing cpYFP or in live cells transiently ex-
pressing the probe (Fig. 11) [126,127]. In addition, the observations
by the same group and others were extended pointing to a role for
stochastic O2

��
flashes in mitochondria in the opening of the

mitochondrial permeability transition pore and modulation of
other physiological processes [128,129]. However, detection of
spatiotemporal changes in O2

�� production would mean that
cpYFP would have to be highly selective and would have to react
with kinetics that are at very least similar to SOD. The O2

��

mediated changes in cpYFP fluorescence were attributed to oxi-
dation of Cys171 and Cys193 residues in the fluorescent protein. It is
unlikely that Cys residues partake in the detection of O2

�� con-
sidering the slow reaction kinetics of Cys with O2

�� [130]. Indeed,
O2

�� is both a weak oxidant and reductant and thus does not react
rapidly with a number of molecules except for Fe�S clusters [131].
In addition, a recent publication by Schwartzlander et al. showed
that Cys171 and Cys193 in cpYFP are not accessible to solutes [132].
Thus, given its charged nature, O2

�� cannot gain access to the two



Fig. 11. cpYFP is not a mitochondrial O2
�� indicator but pH detector. Cyclic permuted YFP (cpYFP) gene can be tagged with a mitochondrial localization sequence (MLS) and

stably expressed in cells or animal tissues. Note that cpYFP gene can also be placed under control of tissue specific promoters to allow for site specific expression of cpYFP.
Following gene transcription and translation the MLS selectively targets cpYFP for uptake and accumulation in the matrix of mitochondria where cpYFP detects transient
changes in mitochondrial metabolism and physiology. Although cpYFP has been utilized in numerous studies to measure “stochastic” changes in mitochondrial O2

��

emission the mechanism by which it does so remains elusive but also seems chemically improbable. Rather, given the features of cpYFP and its sensitivity to changes in
matrix pH it is far more likely that cpYFP serves as a protein-based pH sensor akin to SyPHer. As indicated in the text, it has been well documented that transient shifts in
cpYFP fluorescence are sensitive to changes in the concentration of Hþ in the matrix. In addition, shifts in cpYFP fluorescence correlate strongly with changes in Δμm as
indicated by fluctuations in TMRE fluorescence.
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Cys residues [132]. In addition, unlike other ROS detecting mole-
cules, the mechanism by which cpYFP changes its fluorescence in
response to O2

�� has not been adequately delineated. With this in
mind, it is improbable that cpYFP reacts with O2

�� since (1) Cys171

and Cys193 are inaccessible and (2) reaction kinetics are far too
slow and thus cannot compete with SOD.

Several studies have employed cpYFP to measure “stochastic
O2

��
flashes” in mitochondria. It is clear that a spatiotemporal

change in cpYFP fluorescence is being recorded. Considering it is
chemically implausible for O2

�� to react with cpYFP what biolo-
gical process is being measured? Intriguingly, the pH-sensitive
fluorescence probe SyPHer also contains cpYFP [130]. Schwartz-
lander et al. established that cpYFP actually detects fluctuations in
mitochondrial pH rather than O2

�� [130] (Fig. 11). Indeed, changes
in cpYFP fluorescence correlate strongly with changes in ΔΨm

[133]. It was also found that cpYFP responds poorly to xanthine/
xanthine oxidase, an enzyme system that generates high amounts
of O2

�� [132]. Further, SyPHer probe, which detects pH fluctua-
tions, is also a cpYFP [130] (Fig. 11). It is very important to note
that ΔΨm changes rapidly in response to various cellular stimuli,
ATP demand, nutrient supply, electron transfer efficiency, and in-
ducible proton leaks which will inevitably alter the overall pH of
the matrix environment. Thus, cpYFP is more likely to be an ap-
propriate probe utilized for measurement of pH changes in mi-
tochondria rather than O2

��.

H2O2 detection

H2O2 is the result of O2
�� dismutation. Unlike O2

��, H2O2 is
more stable and thus much easier to quantify. H2O2 can also freely
diffuse through membranes and also reacts readily with protein
cysteine thiols [134]. It is therefore critical to properly quantify
H2O2 levels in physiological and pathological states since it plays a
key role in redox signaling and can also induce oxidative damage
at high concentrations. Also, considering the rapidity of O2

��

dismutation measurement of H2O2 production can serve as a
proxy measure for O2

�� production. Unlike O2
�� detection a

number of chemical and protein based probes that allow the re-
liable quantification of H2O2 have been developed. These probes
are highly sensitive, selective, and have provided important in-
formation on H2O2 production and flux in isolated mitochondria,
live cells and in vivo. For isolated mitochondria, the Amplex Red
assay is the most commonly employed method utilized for
accurate measurement of H2O2 (Fig. 12). This assay relies on oxi-
dation of non-fluorescent Amplex Red by H2O2 producing fluor-
escent Resorufin, a reaction that requires the presence of horse-
radish peroxidase [135]. It should be noted that not all O2

�� is
converted to H2O2 by endogenous SOD since O2

�� can also react
with NO to form peroxynitrite. To maximize O2

�� dismutation,
exogenous SOD is also added to reaction mixtures. Given the fact
that exogenous enzymes need to be added, Amplex Red assays
cannot be carried out using intact cell systems. However, Amplex
Red assays can be applied to tissues and cells with permeabilized
plasma membranes. Another intriguing chemical method that can
be employed for the detection of mitochondrial H2O2 is the MitoB
method [136]. This method relies of the oxidization of arylboronic
acid by H2O2 to a corresponding phenol which can be detected by
fluorescence (Fig. 12). To ensure mitochondrial localization, the
arylboronic acid moiety is tagged to TPPþ and is thus referred to as
MitoB [136]. Both MitoB and MitoP can also be quantified by ra-
tiometric mass spectrometry where fluctuations in matrix H2O2

are reflected by ratiometric changes in MitoB to MitoP (e.g. low
H2O2 MitoP/MitoB is low whereas high H2O2 MitoP/MitoB is high)
(Fig. 12) [136]. Ratiometric spectroscopic detection substantially
enhances the sensitivity of the assay. This method has been uti-
lized to successfully quantify matrix H2O2 in vivo in D. melanoga-
ster and in mtDNA mutator mice and also to show that matrix
H2O2 levels increase with age [136–138]. Of note though is that
arylboronic acid compounds also react with peroxynitrite which
can compromise the direct measure of H2O2.

The ultimate goal is to perform quantitative measures of matrix
H2O2 in vivo so one can ascertain the function of mitochondrial
O2

��/H2O2 production in health and disease. Amplex Red cannot
be utilized for in vivo measurements and although MitoB does
provide quantitative information on matrix H2O2 in an in vivo
context it must be injected into specimens. TPPþ does not allow
selective accumulation of compounds in specific organs however;
it does accumulate the most in tissues that are rich in mitochon-
dria like heart, liver, and skeletal muscle. TPPþ has also been
documented to depolarize the MIM and could compromise mi-
tochondrial bioenergetics [139]. In addition, tissues must be iso-
lated and then pulverized so MitoB and MitoP can be extracted for
measurement meaning that MitoB can only be utilized for end-
point analysis and cannot detect spatiotemporal changes in H2O2

in live animals. To overcome these limitations, several groups have
developed protein based probes that can be selectively targeted to



Fig. 12. Detection of mitochondrial H2O2 with Amplex Red and MitoB. a. In the presence of H2O2, horseradish peroxidase catalyzes the oxidation of nonfluorescent Amplex
red forming fluorescent product resorufin. The fluorescent signal is directly proportion to the amount of H2O2 present in the sample. H2O2 can be generated within
mitochondria following dismutation of O2

�� which is exported by aquaporins for detection. Alternatively H2O2 can be produced outside the matrix environment if O2
�� is

produced in the intermembrane space. To ensure maximal conversion of O2
�� to H2O2, exogenous SOD can be added which provides a proxy measure of both O2

��/H2O2.
Control reactions may include addition of exogenous catalase. Note that presence of endogenous antioxidant system such as GSH/Gpx/GR and Prx/Trx/TR quench H2O2. Thus,
Gpx or Trx inhibitors can be utilized to afford accurate H2O2 quantification. b. The arylboronic acid moiety is tagged with a triphenylphosphonium ion (CH2�Pþ(Ph)3) group
which prompts matrix accumulation of the detector allowing for more accurate quantification of matrix H2O2. Following its interaction with H2O2 with MitoB, the corre-
sponding phenol can be detected by fluorescence. Alternatively, the tissue can be isolated and MitoP and MitoB levels can be subjected to LC-MS/MS analysis. Detection of
MitoP and MitoB levels by LC-MS/MS and calculation of the MitoP/MitoB ratio provides a highly quantitative measure of matrix H2O2 levels.
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mitochondria for H2O2 detection. With these probes it is also
possible to develop transgenic animals that have tissue-specific
expression of these protein based H2O2 probes which would allow
highly quantitative measurement of matrix H2O2 in specific or-
gans. Three highly sensitive fluorescent proteins have been de-
veloped that allow the direct and indirect quantification of matrix
Fig. 13. Protein-based mitochondrial H2O2 detectors. Three separate protein based prob
roGFP2-Orp1 which directly detect fluctuations in H2O2 and Grx1-roGFP2 which indire
which catalyzes the sequestration of H2O2 oxidizing two GSH generating GSSG). Mitocho
sequence with a mitochondrial localization signal (MLS).
H2O2; HyPer, roGFP-Orp1, and Grx1-roGFP (Fig. 13) [140,141].
HyPer was first developed by Belousov et al. and is composed of
cpYFP conjugated to prokaryotic H2O2-sensing protein OxyR.
Changes in HyPer fluorescence are reliant on Cys199 and Cys208 on
OxyR (Fig. 13) [140]. Oxidation of Cys199 in OxyR leads to formation
of SOH which then rapidly reacts with Cys208 to form an
es can be employed to detect mitochondrial H2O2 levels, HyPer (OxyR-cpYFP) and
ctly detects H2O2 via interactions with GSSG (produced by glutathione peroxidase
ndrial targeting of the different probes can be achieved by tagging the protein gene
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intramolecule disulfide linkage [142]. H2O2-mediated oxidation of
OxyR induces changes in cpYFP fluorescence (Fig. 13). It has been
shown in several studies that HyPer is highly sensitive to changes
in H2O2 which is attributed to the rapid reaction of Cys199 with
H2O2 [143]. In addition, HyPer is sensitive to changes in H2O2 in
the low mM range making it very advantageous for the quantifi-
cation of physiological shifts in H2O2 production [140]. Another
notable attribute of HyPer is that the disulfide linkages formed
following H2O2 mediated oxidation can be reduced endogenously
possibly by NADPH and thioredoxin [144]. This means that HyPer
can be recovered for another round of H2O2 detection allowing
spatiotemporal measurement of changes in matrix and cytosolic
H2O2. HyPer is now used routinely for measurement of dynamic
changes in H2O2 in live cells including during cellular signaling
and induction of apoptosis however; it has not yet been applied
in vivo [140,145]. It should also be noted that recent reports have
shown that HyPer is also sensitive to changes in pH which is likely
due to the cpYFP [146]. By contrast, roGFP2-Orp1 and Grx1-roGFP2
have both been utilized for the successful measurement of spa-
tiotemporal changes in minute amounts of H2O2 in fruit flies
(Fig. 13) [141]. roGFP2-Orp1 detects H2O2 directly whereas Grx1-
roGFP2 provides an indirect measure by reacting with glutathione
disulfide (GSSG), which is the result of the enzyme-mediated
oxidation of two reduced glutathione molecules with H2O2 [141].
For roGFP2-Orp1, a thiolate anion on Orp1 is oxidized by H2O2

forming a SOH which then reacts with a neighboring SH on Orp1
forming a disulfide bridge (Fig. 13) [141]. Through a disulfide ex-
change reaction, the two thiols on roGFP2 then become oxidized
changing the fluorescence intensity of the probe. Grx1-roGFP2
operates via a similar mechanism except a small increase in GSSG
prompts a thiol disulfide exchange reaction with Grx1 generating
an S-glutathionylated-Grx1-roGFP2 intermediate (Fig. 13) [147].
Through another series of thiol disulfide exchange reactions the
glutathionyl moiety is transferred to roGFP2 which then prompts
the formation of a disulfide bridge and a change in roGFP2 fluor-
escence. Both probes have been used for the sensitive quantifica-
tion of spatiotemporal changes in small amounts of H2O2 and
GSSG in the cytosol and mitochondria of mid-gut enterocytes in
Drosophila [141]. Based on sensitive time based measurements
Albrecht et al. was able to show that cells in vivo harbor natural
redox gradients in mitochondria and that these gradients display
substantial shifts with age [141]. Although these probes are new
and have not been used as extensively collectively these probes
show the most promise in terms of detecting spatiotemporal
changes in H2O2 in live animals.
Conclusions and perspectives

Mitochondrial O2
��/H2O2 plays a key role in cell communica-

tion at low amounts but can be a detriment at higher concentra-
tions. Whether or not O2

��/H2O2 serves as a tool utilized to
maintain cell function or is a harbinger of death depends on its
production and degradation. O2

��/H2O2 can serve as intrinsic
mitochondrial signaling molecules that modulate nutrient meta-
bolism and bioenergetics as well as other processes including
mitochondrial ultrastructure, protein import, and assembly of re-
spirasomes. Mitochondria can also emit H2O2 which plays a key
role in modulating various cellular functions and can even be
utilized in intercellular signaling. Thus, it is important to critically
evaluate how mitochondria generate O2

��/H2O2 in the presence of
different nutrients and following changes in redox environment
considering that mitochondrial ROS emission is important in cell
communication. Here, the 11 potential substrates for mitochon-
drial O2

��/H2O2 have been critically reviewed. Based on the ac-
cumulated evidence, five out of the 11 enzymes, namely Complex
I, II, III, Odh, and Pdh serve as the major sources of mitochondrial
O2

��/H2O2. The other 6 enzymes can produce O2
��/H2O2 but only

in small amounts which can be increased in the presence of high
concentrations of inhibitors and substrate. A strong exception to
this is G3PDH in brown fat mitochondria which illustrates the
highly unique properties of this tissue. In addition, as originally
put forth by Brand and colleagues, the 11 potential sites can be
classified according to isopotential group. Thus, mitochondria can
generate O2

��/H2O2 from 11 different substrate sources with
contributions from the different major sites listed above varying
according to nutrient and redox status in mitochondria. The major
sites are also subjected to heavy regulation, either directly by re-
dox signaling or indirectly by redox signaling-mediated control of
proton leaks, which adjusts mitochondrial O2

��/H2O2 production
in response to fluctuations in local redox environment. The fact
that 11 sources can contribute to mitochondrial O2

��/H2O2 pro-
duction illustrates the complexities associated with understanding
the contribution of mitochondrial O2

��/H2O2 in health and dis-
ease. Indeed, quantitative measurement of mitochondrial
O2

��/H2O2 production in vivo has proven to be the most sig-
nificant hurdle in advancing our understanding of how mi-
tochondrial O2

��/H2O2 influences the cellular environment. Al-
though quantitative measurement of O2

�� in vivo still remains out
of reach new methods that accurately measure H2O2 are currently
being utilized. These new quantitative methods will substantially
advance our understanding of mitochondrial O2

��/H2O2 tissue
function in vivo.
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