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Artificial Gauge Field and 
Topological Phase in a 
Conventional Two-dimensional 
Electron Gas with Antidot Lattices
Likun Shi1, Wenkai Lou1, F. Cheng1, Y. L. Zou1, Wen Yang2 & Kai Chang1

Based on the Born-Oppemheimer approximation, we divide the total electron Hamiltonian in a 
spin-orbit coupled system into the slow orbital motion and the fast interband transition processes. 
We find that the fast motion induces a gauge field on the slow orbital motion, perpendicular to the 
electron momentum, inducing a topological phase. From this general designing principle, we present 
a theory for generating artificial gauge field and topological phase in a conventional two-dimensional 
electron gas embedded in parabolically graded GaAs/InxGa1−xAs/GaAs quantum wells with antidot 
lattices. By tuning the etching depth and period of the antidot lattices, the band folding caused by 
the antidot potential leads to the formation of minibands and band inversions between neighboring 
subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and 
leads to many pairs of helical edge states in these gaps.

Exploring of various topological quantum states is always one of the central issue of condensed matter 
physics1–3. Topological insulators (TIs)4, a new class of solids, posses unique properties such as robust 
gapless helical edge or surface states and exotic topological excitations4–26. The helical edge states of 
two-dimensional (2D) TIs are protected strictly against elastic backscattering from nonmagnetic impu-
rities. This feature leads to dissipationless conducting channels and therefore is promising for possible 
applications in spintronics, quantum information, thermoelectric transport and on-chip interconnection 
in integrated circuit. These novel applications require large nontrivial gaps, which suppress the coupling 
between the edge and bulk states, leading to dissipationless edge transport. For this purpose, there is an 
ongoing search for feasible realizations of various narrow gap materials containing heavy elements, e.g., 
CdTe/HgTe/CdTe quantum wells (QWs)7–9, and Tin film22. However, fabrication of high-quality sam-
ples of these proposed structures still remains a challenging task, requiring precise control for material 
growth.

In this work, we demonstrate that conventional semiconductor GaAs/InxGa1−xAs/GaAs 
two-dimensional electron gas (2DEG) with antidot lattices can be driven into the TI phase. The 2DEGs 
provide a promising playground for realizing TI states with quite large nontrivial gap (~20 meV) oper-
ating at liquid nitrigen temperature regime, instead of searching new materials containing heavy atoms. 
We first present a general analysis for generating an artificial gauge field in a semiconductor 2DEG, then 
we demonstrate band inversion between neighboring subbands because of inter-subbands spin-orbit inter-
action (ISOI) utilizing antidot lattices created by well-developed semiconductor etching technique, and 
generate the TI phase with many pairs of helical edge states. This suggests a completely new method to 
generate topological phase in conventional semiconductor 2DEGs without strong spin-orbit interaction 
(SOI), at liquid nitrigen temperature regime.
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Results
General design principle: gauge field from Born-Oppenheimer approximation.  First we dis-
cuss the emergence of an artificial gauge field in a system of electrons in a 2D system described by a 
low-energy single-particle Hamiltonian  σ τ σ τ= ( ) ⊗ + ∑ ( ) ⊗, =H dk ki j ij i j0 0 1

3 , where σi and τi 
( = , , )i 1 2 3  are Pauli matrices describing the electron spin and the conduction τ( = + )13  and valence 
τ( = − )13  bands, respectively, and σ τ= = ×I0 0 2 2 are identity matrices. Taking =d Akx31 , =d Ak y02 , 
= −d M Bk03

2 and other =d 0ij , we obtain the Bernevig-Hughes-Zhang (BHZ) Hamiltonian for 2D 
TIs7. Neglecting the band index τ, and taking α β= − −d k ky x1 , α β= +d k kx y2 , d3 =  0, we get the 
Hamiltonian for a 2DEG with Rashba and Dresselhaus SOIs, where α and β are the strengths of Rashba 
and Dresselhaus SOIs, respectively. Next, we divide the total Hamiltonian at the band edge into the intra-
band (typical energy scale is about 10−2 meV), slow part  σ τ= ( ) ⊗H korb 0 0 and the inter-band (typical 
energy scale is about 1 ~ 102 meV), fast part σ τ= ∑ ( ) ⊗, =H d ki j ij i jIB 1

3 , which usually arises from the 
SOIs or ISOIs in real materials. The eigenstate of the total Hamiltonian can be decomposed into the fast 
and slow components: φ χΨ( ) = ∑ ( ) ( )k k kn n n , where χ ( )k{ }n  are eigenstates of the fast part HIB 
and φ ( )k{ }n  describe the slow part. The fast spin dynamics compared with the slow orbital motion allow 
us to make the Born-Oppenhenmer approximation, i.e., neglecting the coupling between different 
χ ( )kn , and derive an effective Hamiltonian governing the slow orbital motion φ ( )kn



χ σ χ( ) = ( ) ( , ) + ( , ) ( )

= ( , − ) + ( ), ( )

ˆ
ˆ

ˆH H H
H

k k k r k k
k r A k 1
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where  χ χ( ) = ( ) ( )Hk k kn n nIB  acts as an effective potential that seperates different bands χ ( )k{ }n  
and χ χ= − ( ) ∂ ( )iA k kn n nk  is a gauge potential in the momentum space of the slow orbital motion, 
due to the interband coupling to the fast spin dynamics27,28. For the BHZ Hamiltonian, the gauge poten-
tial An leads to an effective Lorentz force ( ),F kx y  in the momentum space perpendicular to the electric 
field E:
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where sn =  ± 1 denotes spin up or down state while tn =  ± 1 denotes the conduction or valence band, 
respectively (n =  1, 2, 3, 4). The Chern number ∫π= ( / ) = + ( / ) /,C kF s t M B1 2 d [1 sign ] 2n xy n n nBZ

2  is 
obtained by integrating the field strength Fxy,n in the Brillouin zone. The sign change in M would induce 
a change of the Chern number by 1, which corresponds to the topological phase transition29.

For a 2DEG with Rashba and Dresselhaus SOIs, we find ( ) =F k 0xy , which means that the Chern 
number vanishes in 2DEG with SOIs. Comparing the Hamiltonian of 2D TIs to that of 2DEGs with SOIs, 
one can see clearly that 2D TIs posses an additional degree of freedom: the band index τ. In order to 
generate the gauge field and realize TI phases in a 2DEG, one needs to create minibands and band inver-
sion in 2DEGs. Based on the above designing principle, we will create topological phase in conventional 
semiconductor 2DEG. This is the first demonstration of the formation of a TI phase in the s-like band 
systems, i.e., a 2DEG with nanostructured antidot lattice shown schematically in Fig. 1(a).

Topological phase transition in two-dimensional electron gas: effective model.  Nanostructured 
antidot lattices, consisting of periodically arranged holes that are etched in a 2DEG, form a strongly 
repulsive egg-carton-like periodic potential in a 2DEG30–37. This artificial crystals lead to a wide variety of 
phenomena, for instance, Weiss oscillation, chaotic dynamics of electrons, the formation of an electronic 
miniband structure and massless Dirac fermions. At low temperatures, the mean free path of electrons 
is much longer than the period of antidot lattices ranging from 10 to 100 nanometers. The modulated 
periodic potential can also be created by electron beam lithography electrodeposition and periodic arrays 
of metallic nanodots can be realized on semiconductor surfaces. Due to elastic strains producing these 
dots, a sufficiently strong piezoelectric potential modulation results in miniband effects in the underlying 
2DEG32,33. Very recently, a honeycomb lattice of coronene molecules was created by using a cryogenic 
scanning tunneling microscope on a Cu(111) surface to construct artificial graphene-like lattice with the 
lattice constant approaching 5 nm37.

We consider the 2DEG in a GaAs/InxGa1−xAs/GaAs parabolically graded QW, which was fabricated 
successfully before38–40, with a triangular antidot lattice (see Fig.  1(a). Before going to the numerical 
calculation, we first give a clear physical picture for the emergence of a TI phase in this 2DEG system 
upon nanostructuring with antidot lattice. The simplest description of the 2DEG system is obtained by 
reducing the eight-band Kane model to the lowest conduction subbands of the QW (see Methods). This 
gives the Hamiltonian for the 2DEG with periodic antidot lattice potential V(x, y):
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( )τ ητ σ σ= / + ∆ + + + ( , ), ( )ħH k m k k V x y2 3z x x
x

y
y2 2

12

where τ ( = , , )i x y zi  are Pauli matrices describing the first and second QW subbands χ ( )z{ }n  ( = , )n 1 2  
of effective mass m, and σ i ( = , , )i x y z  refer to the electron spin. The second term τ∆ z12  comes from 
the energy difference ∆2 12 between the first and second subbands [see Fig.  1(b)]. The third term 
( )ητ σ σ+k kx x

x
y

y  describes the inter-subbands SOI (ISOI) obtained from the eight-band Kane model 
using the Löwdin perturbation theory41 (see Methods). The coupling strength η is

∑η χ χ= ( )
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where ( )E zg  and ∆ ( )z0  are the band gap and spin split-off splitting in the QW region, 
( ) ≡ ( ) + ∆ ( )′E z E z zg g 0 , and ( )P z  is the Kane matrix element. The SOIs in 2DEGs usually come from 

the asymmetry of the QWs, i.e., Rashba SOI. Surprisingly, the ISOI can appear in a symmetric parabol-
ically graded QW, behaving like a hidden SOI. From Eq. (4), one can see that the ISOI arises from the 
spatial variations of the bandgap ( )E zg , the Kane matrix ( )P z , and the intrinsic SOI ∆ ( )z0 , i.e., the 
variation of the concentration of In component, which behaves like an effective local electric field. This 
local electric field would not push the electron and the hole states to the left and right sides of the QW, 
but it can induce a considerably large ISOI hidden in symmetric QWs. The initial χ ( )z1  and final states 
χ ( )z2  are neighboring subbands having opposite parity, while the variations of ( )E zg , ( )P z  and ∆ ( )z0  

Figure 1.  Schematic of the proposed structure and its energy bands. (a) A GaAs/InxGa1−xAs/GaAs 
parabolically graded QW with an antidot lattice, which can be created by etching technique. (b) Band profile 
and the first and second subbands of the parabolically graded QW. (c) Brillouin zone folding induced by a 
triangular antidot lattice. The numbers 1–5 denote the first to the fifth Brillouin zones of the antidot lattice. 
(d) Minibands of the antidot lattice from folding the first and second subbands of the QW (Q =  2π/a and a 
is the antidot lattice constant). Note that band inversion occurs between neighboring minibands.
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in a symmetric QW are odd. This means that the ISOI can exist in symmetric QWs. Here we neglect 
Dresselhaus SOI term which is proportional to π( / )~k dz

2 2 (d is the thickness of the QW) because in 
our proposal the QW thickness is quite large (300A), therefore the strength of Dresselhaus SOI is quite 
weak. We would also emphasize that the Dresselhaus SOI only exists in the same subband, which is an 
intra-subband interaction and will not affect our above analysis and topological nontrivial gap in such 
system, i.e., the band inversion between two adjacent subbands.

The first and second subbands both form minibands due to the Brillouin zone folding caused by the 
antidot lattice. The band inversion could occur between the two adjacent minibands of the first subband 
ψ χ= ( ) ( , )+ ,z u x yk n1 1

 and the second subband ψ χ= ( ) ( , )− ,z u x yk n2 2
 (see Fig.  1(d), where ( , ),u x yk n  

is the n th miniband formed by the antidot lattice. We model the triangular antidot lattice potential 
( , )V x y  by a periodic potential ∑ ( ⋅ )+=V Q r[1 cos ]i i0 1

3   with potential height V0
32,41–44, π= ( / )( , )aQ 2 1 01 , 

π= ( / )(− / , − / )aQ 2 1 2 3 22 , π= ( / )(− / , / )aQ 2 1 2 3 23  and a is the triangular antidot lattice 
constant (see Methods).

To describe the four minibands (two spin-degenerate minibands) ψ , ↑+ , ψ , ↓− , ψ , ↓+ , ψ , ↑−  
involved in the band inversion, we treat other electron and hole minibands by Löwdin perturbation 
theory and reduce the eight-band Kane k · p model to the following effective Hamiltonian within the 
basis ψ( , ↑+ , ψ , ↓− , ψ , ↓+ , ψ , ↑ )− :
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(see Methods and Supplementary Note 2), which assumes the same form as the D =  0 BHZ Hamiltonian. 
Here = ±±k k ikx y, = ∆ − ∆M 12 Fold [see Fig.  1(b)], = − /ħ ⁎B m22 , and A characterize the ISOI 
strength between neighboring minibands with opposite spin. This Hamiltonian obviously has a Z2 topo-
logical phase when M <  0, corresponding to band inversion.

Topological phase transition in two-dimensional electron gas: numerical calculation.  We 
employ the eight-band Kane k ·  p model to calculate the subband structure with SOIs in a 40-nm-thick 
GaAs/InxGa1−xAs/GaAs parabolically graded QWs38,39, as plotted in Fig.  2(a). The energy difference 
between the minima of the first and second subbands at Γ  point is about 90 meV (see Fig. 2(a). In order 
to calculate the miniband structures caused by an in-plane periodic potential induced by the triangular 
antidot lattice, we reduce the eight-band model to an effective four-band k ·  p Hamiltonian by includ-
ing the lowest 20 electron subbands and 54 highest hole subbands in the QW, to reproduce the energy 
dispersions of the first and second subbands calculated from the eight-band Kane model (see Fig. 2a). 
The parameters in the four-band Hamiltonian is given Supplementary Note 2. The minibands from the 
four-band k ·  p Hamiltonian are shown in Fig. 2(b,c). These minibands originates from folding the first 
and second subbands of the QW into the first Brillouin zone of the antidot lattice [Fig. 1(c)]. By tuning 
the antidot lattice constant a and the potential height V0, i.e., the etching depth of the antidot lattice, 
many band inversions appear between these minibands, which can be clearly seen in Fig.  2(b,c). The 
minigaps between these minibands are opened by the ISOI shown in Eq. (4) [see Fig. 2(b,c)].

To demonstrate that these minigaps are topologically nontrivial, we determine the parity of each 
miniband at the four time-reversal invariant momenta11 Γ i (i =  0, 1, 2, 3) in the first Brillouin zone 
shown in Fig. 1(c). For the lowest N spin-degenerate minibands being occupied, the Z2 invariant is given 
by δ δ ξ(− ) = ∏ , = ∏ (Γ )ν

=1 i i i m
N

m i1 2 , where ξ (Γ ) = ±1m i2  is the parity of the 2mth occupied minib-
and at Γ i. Our calculation gives ν = 1 at all the minigaps, which proves the whole system is in the 
quantum spin-Hall phase (see Methods).

Next, we demonstrate the emergence of topological edge states upon etching the QW into a Hall 
bar structure along two different directions (x axis and y axis). As shown in Fig. 3, a pair of topological 
helical edge states appear inside each nontrivial minigap. For example, we can see topological helical 
edge states in the lowest two nontrivial minigaps near ~186.5 meV and ~255 meV, respectively. The hel-
ical edge state pairs in these minigaps would lead to higher conductance plateaus as the Fermi energy 
increases by increasing the doping level. The helical edge states do not overlap with the bulk states, 
making it possible to be detected experimentally.

The lowest nontrivial minigaps is quite small (about 0.5 meV), but the second minigap is larger (about 
5 meV). By tuning the period and potential height of the antidot lattice, the nontrivial minigaps can be 
significantly enhanced [see Fig.  4(a,b)]. For example, the lowest minigaps can be enhanced to 5 meV, 
which is already comparable with that in HgTe and InAs/GaSb QW systems (~10 meV)8,9. The second 
minigaps can approach 20 meV, which means the TI phase can be realized at liquid nitrigen temperature 
regime. From Fig. 4(a,b), one can see that the lowest nontrivial minigap is closed as the lattice constant 
a increases, but the second higher nontrivial minigap survives, i.e., the TI phase can exist even at large 
lattice constants, e.g., 25 nm. We remark that the randomness of the size and position, i.e., disorder 
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effect, might smear our the nontrivial minigap. However, the previous works45–47 demonstrated that the 
disorder effect would not cancel topological phase, instead, it will lead to topological Anderson insulator 
phase where the edge states can exist even for very strong disorder strength, which is much larger than 
the bandgap.

Experimental detection scheme.  One way to detect the aforementioned edge states (shown in 
Fig. 3) is the standard four terminal measurements as demonstrated in previous works8,9. In contrast to 
HgTe and InAs/GaSb quantum well systems, there are many pairs of helical edge states in our system 
between these inverted minibands, which leads to higher plateaus with increasing the Fermi energy. 
Another possible way is microwave impedance microscopy which makes spatial-resolved nano-scale 
images (< 100 nm) of the conductivity and permittivity of a sample48. The unoccupied edge states in 
higher minigaps can be detected using the angle-resolved photonemission technique49, which has already 
been successfully applied to identify occupied and unoccupied surface states in Bi2Se3 and Bi2TexSe3

49–51.

Discussion
Our proposal is based on a general analysis about the electron orbital motion in TIs. By using the 
Born-Oppenheimer approximation, we find that the fast motion will induce a spin-dependent gauge 

Figure 2.  Subbands of the QW and minibands of the antidot lattice. (a) Band structure of a  
GaAs/InxGa1−xAs/GaAs parabolically graded QW from eight-band Kane model. The red and blue dashed 
(solid) curves denote the first and second subbands from the eight-band Kane model (the reduced four-band 
model). The inset shows the spatial distributions of the first and second subbands. (b,c): minibands of a 
parabolically graded QW for two different triangular antidot lattices: the lattice constants and barrier heights 
V0 of the antidot lattices are a =  17 nm, V0 =  200 meV for (b) and 12.5 nm, 300 meV for (c). The minibands 
are inverted and the minigaps are opened.
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field on slow orbital motion. Based on this general analysis, we demonstrate theoretically the TI phase 
in a conventional 2DEG embedded in a symmetric parabolically graded GaAs/InxGa1−xAs/GaAs QW, 
with antidot lattices created by well-developed etching technique. The key point is to create a ISOI in 
a symmetric quantum well, in contrast to conventional SOI in asymmetric QWs. This hidden ISOI in 
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Figure 3.  Edge states in nontrivial minigaps of a Hall bar structure of the antidot lattice. The Hall bar 
orientation is along the x axis (a) or y axis (c), as sketched in the insets of (b,d), respectively. The lower 
panels (b,d) amplify the lowest nontrivial minigaps and gapless topological edge states. The lattice constant 
of the antidot lattice is a =  17 nm. The blue curves indicate the spatial distributions of the edge states.

Figure 4.  Phase diagrams of the antidot lattice on a GaAs/InxGa1−xAs/GaAs parabolically graded QWs. 
The lowest (a) and second (b) minigap vs. antidot lattice constant a and potential height V0. Negative 
(Positive) minigap indicates TI phase (normal phase).
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symmetric QWs induces a spin-dependent effective Lorentz force on the electrons, and generates the 
TI phases in such system. Interestingly, such ISOI exists in conventional semiconductors with a positive 
bandgap, i.e., normal band structures can generate quite large nontrivial gaps approaching 20 meV. This 
make it possible to observe the quantum spin Hall effect in liquid nitrigen temperature regime.

So far, all members of TI family are narrow bandgap systems containing heavy atoms. Our proposal 
breaks this constraint, and makes it possible to realize TI phase in conventional semiconductor 2DEG 
using the well-developed semiconductor fabrication techniques. The presence of the TI phase in parabol-
ically graded QWs with antidot lattice can largely advance the application of this new quantum state in 
existing electronics and optoelectronics devices. The general designing principle proposed in this work, 
i.e., the gauge field acting on slow orbital motion induced by interband coupling, paves a new way for 
generating nontrivial topological phases, such as quantum spin Hall phase and even quantum anomalous 
Hall phases by doping magnetic ions, in conventional semiconductor 2DEGs, and suggests a promising 
approach to integrate it in well developed semiconductor electronic devices.

Methods
Effective spin-orbit coupling in a quantum well.  For a symmetric quantum well grown along 
(001) direction (the z axis), effective spin-orbit coupling exists between subbands with opposite parities. 
This effective spin-orbit coupling comes from interband coupling and can be understand by reducing the 
8 ×  8 Kane Hamiltonian to a 2 ×  2 effective Hamiltonian.

To the first order of k, the 8 ×  8 Kane Hamiltonian in the basis ( , ↑i S ,  , ↓i S ,   / , /3 2 1 2 ,  / , − /3 2 1 2 , 
/ , /3 2 3 2 , / , − /3 2 3 2 , / , /1 2 1 2 , / , − / )1 2 1 2  around the Γ  point is

=









,

( )
× †H

H H

H H 6
c cv
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8 8

where = ×H Ic c 2 2 and  = ⊕× ×H I Iv v s4 4 2 2 are 2 ×  2 and 6 ×  6 diagonal part for conduction and 
valence bands, and the 2 ×  6 matrix

=
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represents the interband coupling. Specifically,  = /( ) +ħ k m V2i i
2 2  is the kinetic energy plus the total 

potential for the conduction/valence/spin-split (i =  c/v/s) bands, with − =V V Ec v g  the band gap and 
− = ∆V Vv s 0 the band off set. = ±±k k ikx y and = − ( / )ħP i m S p Xc x v0  parameterize the inter-

band coupling.
The eigenvalue problem can be expressed as

ϕ
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ϕ
ϕ
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where ϕc is a two-component spinor for conduction bands and ϕv is a six-component spinor for valence 
bands. Since we focus on the conduction bands, ϕ ε ψ= ( − )− †H Hv v cv c

1  can be eliminated and gives the 
effective Schrödinger-type equation ϕ εϕ=H c ceff , with ε= + ( − )− †H H H H Hc cv v cveff

1  for conduc-
tion bands. Without loss of generality, we assume the quantum well is non-uniform only along the z 
direction, e.g., a parabolically graded QW. By straightforward algebra, we have = ( )↑↓ ↓↑ †

H Heff eff  
ε=∑ ( / ) ( ) ( − ( )) ( ),= , −

−k P z z P z k3 [ ]i v s i z
1 , where ↑↓Heff  and ↓↑Heff  represent the effective spin-orbit cou-

pling between the spin up and down electron.
Since we focus on the lowest conduction subbands, we have ε − ( ) ≈ ( )z E zv g  and 
ε − ( ) ≈ ( ) + ∆ ( ) ≡ ( )′z E z z E zs g g0 . Because ( )E zg  and ( )′E zg  are much larger than the subband 

energies in the wide QWs under consideration, we keep the zero-th order terms ( )−E zg
1  and ( )′

−E zg
1 in 

the expansion, and project the spin-orbit coupling operator ↑↓Heff  into the two lowest spin-degenerate 
subbands χ( ( )z1 , χ ( ) )z2  to obtain the ISOI ( )ητ σ σ+k kx x

x
y

y , where η is given in Eq. (4), σi denotes 
the real electron spin, and τi refers to the Pauli matrix describing the the subband index.

Band edge wave functions in folded Brillouin zone.  We consider a parabolically graded QW in 
the presence of an antidot lattice, which can be generally described by a potential ( ) = ∑ ( )

∼ ⋅V V er q i
q

q r 
with the lattice periodicity.
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For a triangular antidot lattice, the reciprocal lattice vectors in the hexagonal Brillouin zone are 
π= ( / )( , )aQ 2 3 3 01 , π= ( / )(− / , − / )aQ 2 3 3 2 3 3 22 , = −( + )Q Q Q3 1 2 . The envelope functions of 

the lowest miniband at the band edge (k =  0, Γ  point) is ( ) = − ∑ ( )/ ( ⋅ )
∼

Γ, = ħu mV Qr Q Q r1 [2 ]cosl l l1 1
3 2 2 . 

For higher minibands, their envelope functions ( )Γ,u rn  (n =  2, 3, 4, 5, 6, 7) at the band edge are linear 
combinations of the six wave vector components ( ± ⋅e iQ r1 , ± ⋅e iQ r2 , )± ⋅e iQ r3 , e.g., ( ) ∝ ∑ ( ⋅ )Γ, =u r Q rsinl l2 1

3  
and ( ) ∝ ∑ ( ⋅ )Γ, =u r Q rcosl l7 1

3 . The most important minibands are ( ),u rk 1 , ( ),u rk 2  and ( ),u rk 4 : the lowest 
nontrivial minigap occurs between ( ),u rk 1  and ( ),u rk 2 , and the second nontrivial minigap occurs between 
( ),u rk 2  and ( ),u rk 4 .

Effective BHZ Hamiltonian near Γ point.  The lowest two subbands χ ( )z1  and χ ( )z2  in a parabol-
ically graded QW have even and odd opposite parities, an effective spin-orbit interaction 

( )χ η σ σ χ( ) ( ) + ( )z z k k zx
x

y
y

1 2  appears. When the Brillouin zone is folded by the triangular anti-dot 
lattice, the lowest nontrivial minigap appears between the miniband pair χ ( ), ( ),z u rk1 2  and 
χ ( ), ( ),z u rk2 1 , i.e., the second miniband of the first subband and the first miniband of the second 
subband. The second nontrivial minigap appears between the miniband pair χ ( ), ( ),z u rk2 2  and 
χ ( ), ( ),z u rk1 4 , i.e., the second miniband of the second subband and the fourth miniband of the first 
subband. To obtain an effective Hamiltonian near each minigap, we project the Hamiltonian 

( )τ ητ σ σ= / + ∆ + + + ( , )ħH k m k k V x y2 z x x
x

y
y2 2

12  onto the corresponding miniband pair and 
obtain an effective BHZ model Eq. (5) in the basis ψ , ↑+ , ψ , ↓− , ψ , ↓+ , ψ , ↑− , where ψ+  is the 
miniband above ψ−  by 2M at the Γ  point, = − /ħ ⁎B m22  characters the band dispersions with the 
effective mass m* near the band edge, and A characterize the intersubband spin-orbit coupling. At the Γ  
point

( )
( )

( )

ψ η σ σ ψ χ η χ

σ σ

σ σ

( ) + = ( ) ( ) ( )

⋅ ( ) − ∂ − ∂ ( )

= + . ( )

+ − ( ) ( )

, ( ) , ( )

z k k z z z

u r i i u r

A k k 9

x
x

y
y

k x x y y k

x
x

y
y

1 2 2 1

2 2 1 4

The accurate coupling strength can be estimated by numerical calculating based on the eight-band 
Kane model.

For BHZ model, a Z2 topological transition from the normal phase to the topological insulator phase 
would occur when = ∆ − ∆M 12 Fold [see Fig. 1(b)] changes sign from positive to negative, which can 
be controlled by adjusting the lattice constants and etching depths of antidots.

Verification of non-trivial Z2 topological invariant.  Topological insulators with dissipationless 
edge states and ordinary insulators are distinguished by different Z2 invariants. For 2D systems, Fu and 
Kane11 have shown that the Z2 invariant can be determined from the parity of the occupied band at the 
four time-reversal invariant momenta in the Brillouin zone. The Z2 invariant ν = ,0 1, which distin-
guishes the quantum spin-Hall phase in two dimensions, is given by

∏

∏

δ

δ ξ

(− ) = ,

= (Γ ),
( )

ν

=

1

10

i
i

i
m

N

m i
1

2

where ξ (Γ ) = ±1m i2  is the parity eigenvalue of the 2mth occupied energy band at the time-reversal 
invariant point Γ i, which shares the same eigenvalue ξ ξ= −m m2 2 1 with its Kramer degenerate partner. 
The four time-reversal invariant points Γ = ( + )/=( ) n nQ Q 2i n n 1 1 2 21 2

, where , = ,n n 0 11 2 . The calcu-
lated parity eigenvalue of the 2mth (m =  1, 2, 3, 4, 5, 6) occupied energy band at Γ ι are listed:

                                                                 (11)
From the above calculation, we can confirm that the Z2 invariant ν =  1 at the 2mth (m =  2, 5, 6) 

occupied band where the minigaps open, and the system enters the TI phase and the dissipationless 
edge states appear.
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