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Computational identification 
of multiple lysine PTM sites 
by analyzing the instance hardness 
and feature importance
Sabit Ahmed1*, Afrida Rahman1, Md. Al Mehedi Hasan1, Shamim Ahmad2 & S. M. Shovan1

Identification of post-translational modifications (PTM) is significant in the study of computational 
proteomics, cell biology, pathogenesis, and drug development due to its role in many bio-molecular 
mechanisms. Though there are several computational tools to identify individual PTMs, only three 
predictors have been established to predict multiple PTMs at the same lysine residue. Furthermore, 
detailed analysis and assessment on dataset balancing and the significance of different feature 
encoding techniques for a suitable multi-PTM prediction model are still lacking. This study introduces 
a computational method named ’iMul-kSite’ for predicting acetylation, crotonylation, methylation, 
succinylation, and glutarylation, from an unrecognized peptide sample with one, multiple, or no 
modifications. After successfully eliminating the redundant data samples from the majority class 
by analyzing the hardness of the sequence-coupling information, feature representation has been 
optimized by adopting the combination of ANOVA F-Test and incremental feature selection approach. 
The proposed predictor predicts multi-label PTM sites with 92.83% accuracy using the top 100 
features. It has also achieved a 93.36% aiming rate and 96.23% coverage rate, which are much better 
than the existing state-of-the-art predictors on the validation test. This performance indicates that 
’iMul-kSite’ can be used as a supportive tool for further K-PTM study. For the convenience of the 
experimental scientists, ’iMul-kSite’ has been deployed as a user-friendly web-server at http:// 103. 99. 
176. 239/ iMul- kSite.

Post-translational modifications (PTM) refers to the covalent addition of certain functional groups to a protein 
after the translation  process1. These modifications have significant effects on cellular processes and proteomic 
research, including cellular signalling, subcellular localization, protein folding, protein degradation, and are also 
linked to a wide variety of  diseases2,3. Therefore, identifying and comprehending PTM sites is crucial for scientific 
investigations in disease identification, prevention, and drug  developments4,5.

There are 20 amino acid residues, such as alanine (A), cysteine (C), lysine (K), arginine (R), etc. Modifica-
tions that occur at lysine (K) are named lysine modification or K-PTM. Single or multiple lysine residues may be 
modified individually or simultaneously where one residue can influence others. In other words, these covalent 
modifications can aid different K-PTM types, including acetylation, crotonylation, ubiquitination, methyla-
tion, butyrylation, succinylation, biotinylation, and ubiquitin-like  modifications6–8. Though there are several 
computational tools for predicting various K-PTMs separately, to the best of the authors’ knowledge, only three 
multi-label prediction systems have been developed so far that can take care of the multiplex Lys  residues8–14. Qiu 
et al. proposed iPTM-mLys in  20165, which could predict four different types of modifications (i.e. acetylation, 
crotonylation, methylation, and succinylation) simultaneously. The vectorized sequence-coupling model with the 
random forest algorithm was applied to construct iPTM-mLys5,15–17. Hasan and Ahmad proposed mLysPTMpred 
in  201818, where the dataset of iPTM-mLys was utilized to extract the sequence-coupled features, and the cost-
sensitive SVM was used as a learning algorithm. The most recent multi-PTM prediction system proposed by Sua 
et al.19 has utilized the combination of sequence graph transform (SGT) and convolutional neural networks. All 
the multi-label predictors, as mentioned earlier, need significant improvement in terms of prediction quality. 
Furthermore, the number of simultaneous K-PTM prediction capabilities needs to be enhanced. Though there are 
a few dedicated predictors with multi-PTM prediction capability, all these proposed systems have been trained 
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on the same dataset. Some challenges in this research area include constructing and preprocessing multi-label 
datasets from raw proteins, lacking multi-label proteins, handling data imbalance, reducing feature dimensions, 
developing multi-label classifications systems, using proper multi-label evaluation metrics etc. Therefore, adding 
more types of K-PTMs increases the complexity of this type of research. That might be the reason behind the 
existence of such a small number of multi-label predictors as well as only one benchmark dataset. Therefore, 
we have aimed to address these aforestated challenges and construct a highly efficient tool to meet the current 
demand in the study of post-translational modifications.

In this study, we have proposed a novel multi-label prediction system ’iMul-kSite’ to predict five different types 
of modifications (i.e. acetylation, crotonylation, methylation, succinylation, and glutarylation) concurrently. To 
develop a successful predictor for PTM sites, one of the main challenges is handling the imbalance in a dataset. 
Hence, the instance hardness (IH) based undersampling technique has been adopted to remove the redundant 
samples from the majority class. Another challenge is to elicit features from the input protein sequences as the 
appropriate features can play a crucial role in better prediction  performance18. This study has considered several 
feature encoding methods to develop iMul-kSite, where the amino acid factors, encoded binary  features12,20, pairs 
of k-spaced amino  acids21, and the vectorized sequence-coupled  model5,10,15 have been aggregated to encode 
a peptide segment. Afterwards, the analysis of variance (ANOVA) F test statistic along with the incremental 
feature selection approach has been used to eliminate the redundant and trivial  features22,23. The support vector 
machine classifier with the variable cost adjustment  process18 has been implemented to handle the imbalance 
in each benchmark  dataset24. A 5-fold cross-validation18 scheme has been repeated five times for validating the 
statistical significance of the prediction results, and the average performance of each metric has been reported. 
A detailed overview is illustrated in Fig. 1.

Methods
Dataset construction. Accurate identification of protein’s post-translational modifications often requires 
a rigorously processed benchmark dataset. As this study is related to the multi-class multi-label classification 
problem, a few steps have been followed to construct five valid benchmark datasets.

Figure 1.  The system flowchart of iMul-kSite.
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Primary data collection and preprocessing. In the current study, human protein sequences have been utilized for 
prediction model development and benchmarking. About 9380 protein sequences have been collected from the 
Universal Protein Resource (UniProt)25 by applying various constraints (accessed 22 September 2020). Firstly, 
navigate to the ‘Advanced Search’ option, select the ‘PTM/Processing’ and ‘Modified residue [FT]’ option, keep 
‘Any assertion method’ as ‘Evidence’. Then include another query space as ‘Organism [OS]’, choose ‘Homo sapi-
ens (Human) [9606]’ from the suggestions as ‘Term’. Finally, select the ‘Reviewed’ option as the third field by add-
ing one more query space. As this study is concerned with a multi-label classification problem, 5 different types 
of K-PTMs (i.e. acetylation, crotonylation, methylation, succinylation, and glutarylation) have been considered 
for the dataset construction. After applying a preliminary selection process with the specific keywords of each 
K-PTM, 1841 proteins have been obtained. For formulating peptide samples meticulously and comprehensively, 
Chou’s  scheme26 has been adopted. According to this scheme, a peptide segment can generally be expressed by,

where the symbol K denotes the responsible residue ’lysine’ at the centre, the subscript ζ being an integer, Q−ζ 
and Q+ζ denotes the ζ th leftward and ζ th rightward amino acid residues from the centre, and so forth. In this 
study, primarily a peptide sequence Pζ (K) can be categorized into two types,

where P+ζ (K) contains the positive subset of the peptides and P−ζ (K) contains the negative subset of the peptides 
with a lysine (K) residue at its centre, and the symbol ∈ indicated the set theory relationship. For equal-sized 
K-PTM site formation, (2ζ + 1)-tuple peptide window with K at its centre has been employed. During segmen-
tation, the lacking amino acid at both the right and left end has been filled with the nearest  residue5. After the 
peptide fragments have gone through some screening, such as the elimination of sequences in case of redundancy, 
the primary dataset has been constructed with the following form,

where the positive subset S+ζ (K) can contain any peptide samples which have one or more modifications (i.e. 
acetylation, crotonylation, methylation, succinylation, glutarylation) with K at the centre, while the negative 
subset S−ζ (K) can contain only the false K-PTM samples which have no modifications at all. The sliding window 
 method10 was adopted to segment the protein sequences with different window sizes where ζ = 1, 2, 3, . . . 24 . 
Based on the Accuracy value, window size was selected as (2ζ + 1) = 49 where ζ = 24 (i.e. 24 right stream and 
24 left stream amino acid residues). It should be mentioned that only the window sizes less than 51 were taken 
under consideration due to the compelling protein sequence  length10. Therefore, Eq. (1) has been reduced to,

Following the aforestated process, 5059 K-PTM samples and 81507 Non-K-PTM samples have been obtained.

Data imbalance management and benchmark dataset formation. It can be observed that the primary dataset is 
highly imbalanced where the ratio between K-PTM and Non-K-PTM sites is  1:16. The instance hardness (IH) 
based undersampling technique has been employed for reducing this  skewness27. Later at the classification level, 
a cost-sensitive SVM classifier has been utilized to address the imbalance in each K-PTM dataset.

Instance hardness undersampling. Smith, Martinez, and Giraud-Carrier have proposed the instance hardness 
(IH) undersampling technique for binary classification  problems27,28. In this study, we adopted this technique 
by measuring the hardness of the sequence-coupling information which have been extracted from the primary 
dataset by using Eqs. (10), (11) and (12). The detailed methodology of the vectorized sequence-coupling feature 
extraction technique has been discussed in the “Feature construction” section. From Fig. 1, it can be observed 
that one or more modifications can occur at 5059 ’K-PTM’ samples, where 81507 ’Non-K-PTM’ samples lack 
any of the modifications. The objective here is to find out the most suitable peptide samples which represent no 
modification at all. In this work, the hardness of an instance in the coupling feature set measures how likely it 
is to be misclassified. Higher hardness values indicate that the data samples are noisy or on the border between 
’K-PTM’ and ’Non-K-PTM’ classes, as the learning algorithms would cause them to overfit  correctly28. For a 
peptide sample (xi , yi) , p(yi|xi , h) denotes the conditional probability of label yi for the input feature vector xi 
given by the learning algorithms h. The higher the value of p(yi|xi , h) is, the more likely h assigns the correct label 
to xi , and it is quite opposite for the smaller value of p(yi|xi , h)27,28. The hardness of an instance (xi , yi) , concern-
ing h, is defined as,

Let H be the set of weak learners and p(h|t) be the corresponding weight of h ∈ H  , where 
t = (xi , yi) : xi ∈ X ∧ yi ∈ Y  . Hence, the hardness of an instance in the data sample takes the following form,

(1)Pζ (K) = Q−ζQ−(ζ−1)...Q−2Q−1KQ+1Q+2...Q+(ζ−1)Q+ζ

(2)Pζ (K) ∈

{

P+ζ (K), if its center is K-PTM site

P−ζ (K), if its center is Non-K-PTM site

(3)Sζ (K) = S+ζ (K) ∪ S−ζ (K)

(4)P(K) = Q−24Q−23...Q−2Q−1KQ+1Q+2...Q+23Q+24

(5)Ih[(xi , yi)] = 1− p(yi|xi , h)
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Following this concept, the imbalanced dataset has been resampled by eliminating the data points from the 
majority class with high instance hardness values, until the desired balancing ratio of 1:1 has been reached. To 
estimate the hardness of an instance, we utilized the cost-sensitive support vector  machine29–31 which will be 
discussed later in this study. It should be mentioned that scikit-learn’s  library32 has been used to implement the 
instance hardness (IH) based undersampling technique. Finally, 5059 positive and 5059 negative samples have 
been obtained, and the original peptide sequences with the expression of Eqs. (3) and (4) have been retrieved 
from the returned indices of the resampled dataset. The final benchmark datasets have been constructed by 
mapping the samples labeled as ’K-PTM’ and ’Non-K-PTM’ into each individual classes which takes the fol-
lowing form,

A comprehensive summary of dataset preparation has been presented in Fig. 1. The numbers of samples in 
the benchmark datasets are outlined in Table 1, and their detailed sequences and positions in the proteins are 
given in the Supplementary File. The distributions of different types of modifications in the benchmark datasets 
are tabulated in Table 2. It could be observed that our benchmark datasets contain 4089 samples belonging to 
one type of K-PTM, 861 to two types, 77 to three types, 26 to four types, and 6 to five types modifications.

Cost-sensitive classifiers. We have handled the imbalance between the K-PTMs and Non-K-PTM sites by uti-
lizing the instance hardness undersampling technique. However, it can be observed from Table  1 that still there 
exists some skewness between the positive and negative sites of each of the five modifications. Therefore, further 
adjustments are needed to deal with this issue. We have utilized five cost-sensitive SVM classifiers for mitigating 
the imbalance problem of five datasets in Table 1. A detailed discussion on the support vector machine predic-
tion algorithm and the proposed model development are presented in the “Support vector machine” and “Model 
development and validation” sections respectively.

Feature construction. With the evolution of the biological sequences, several encoding methods have 
been developed for extracting pertinent features hidden in the sequences. After preliminary analysis, it has been 
observed that the amino acid factors, encoded binary features, pairs of k-spaced amino acids, and the vectorized 
sequence  coupling12,15,20 technique are more appropriate for representing the protein sequences of the multiple 
lysine modification sites than any other encoding methods.

Amino acid factors. Five multidimensional  attributes20,33, which include polarity, secondary structure, molecu-
lar volume, electrostatic charge, and codon  diversity34, have been constructed from AAIndex by using multi-
variate statistical  analysis12. These five transformed properties can be introduced as amino acid factors (AAF)34. 
Since the AAF can reduce the dimensionality of the feature space of physicochemical properties efficiently, it has 
been utilized in many biological  studies12,34. The dimensionality of feature vectors has been calculated as follows,

(6)

I[(xi , yi)] =
∑

H

(1− p(yi|xi , h))p(h|t)

=
∑

H

p(h|t)−
∑

H

p(yi|xi , h)p(h|t)

= 1−
∑

H

p(yi|xi , h)p(h|t)

(7)
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Sζ (acetylation) = S+ζ (acetylation) ∪ S−ζ (acetylation)

Sζ (crotonylation) = S+ζ (crotonylation) ∪ S−ζ (crotonylation)

Sζ (methylation) = S+ζ (methylation) ∪ S−ζ (methylation)

Sζ (succinylation) = S+ζ (succinylation) ∪ S−ζ (succinylation)

Sζ (glutarylation) = S+ζ (glutarylation) ∪ S−ζ (glutarylation)

Table 1.  Number of samples in the benchmark dataset for different K-PTMs.

Attribute Sζ (acetylation) Sζ (crotonylation) Sζ (methylation) Sζ (succinylation) Sζ (glutarylation)

True 4154 208 325 1253 236

False 5964 9910 9793 8865 9882

Table 2.  K-PTM distributions in the training set.

Attribute 1 K-Type 2 K-Types 3 K-Types 4 K-Types 5 K-Types Non-K-Types

Benchmark dataset 4089 861 77 26 6 5059
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With a peptide sequence of length 27 and previously described five amino acid factors, 49×5 = 245 dimen-
sion features have been derived by using this formula.

Binary encoding. Binary  encoding12 can represent the amino acid position and composition by using 20 binary 
bits for one amino  acid12. But one additional bit has been conjoined to handle the complexity of sliding windows. 
For 21 amino acids structured as ‘ACDEFGHIKLMNPQRSTVWYZ’, each residue inside a sequence fragment 
can be formed by a 21-dimension binary  vector12. For instance, residue ‘A’, ‘G’ and ‘Z’ have been encoded as 
‘100000000000000000000’, ‘000000100000000000000’ and ‘000000000000000000001’ respectively. According to 
this concept, each resultant peptide segment is expressed as 49×21 = 1029-dimensional feature vectors.

Pairs of k‑spaced amino acids. The formation of k-spaced amino acid pairs encoding  technique12,21,35 calculates 
the occurrence frequencies of the pairs of k-spaced amino acids from a segmented protein sample, that can 
express the short linear motif information out of  it12,30. For instance, the encoding of a peptide segment will be a 
441-dimensional feature vector if k = 0 . This can be defined as,

where n stands for any of amino acid, NTotal means the occurrence frequency of all k-spaced amino acid  pairs35 
and NAnA means the occurrence frequency of the AnA pairs in the  segment20 when k = 0 . In this study, after 
merging each of the 441-dimension feature vectors for k = 0, 1, 2, 3, 4 , a total of 2205-dimensional features have 
been formed.

Sequence coupling. The composition of pseudo amino acid or PseAAC 10,36,37 has been designed to preserve the 
sequence pattern information, which is a much harder task for any existing machine learning  algorithm38. In this 
study, incorporating sequence coupling information into Chou’s general PseAAC has been adopted for extract-
ing features from peptide  sequences5,15,18. It can be defined as,

where,

where PC+

−24 in Eq. (11) denotes the conditional probability of amino acid Q−24 at the leftmost position given that 
its adjacent right member is Q−23 and so  forth5,18. In contrast, only P+−1 and P++1 are of non-contingent probability 
as K is the adjoining member of both amino acids at position Q−1 and Q+1 . All the conditional probability values 
have been extracted from the positive training dataset. Additionally, all the probability values in Eq. (12) are 
identical to those of Eq. (11) other than that they can be derived from the negative training dataset. Thus, after 
omitting K from the center, (49− 1) = 48 dimension features have been obtained.

Feature ensembling. Initially, the four aforestated feature encoding techniques (i.e. AAF, BE, CKSAAP, and 
sequence coupling) have been implemented separately to encode the training peptides. However, for extracting 
more PTM-contextual information from the protein sequences, encoded features have been ensembled serially, 
and scaled through standardization. Finally, (49×5)+ (49×21)+ (441×5)+ 48 = 3527 dimension features 
have been obtained.

Feature selection. Since the dimension of the encoded features is higher, irrelevant, and redundant fea-
tures should be removed to avoid learning complexity. For this reason, the analysis of variance (ANOVA) F test 
statistic  technique22,39 has been adopted. It tests the null hypothesis (i.e. all the means of different groups were 
equal) against the alternative hypothesis (i.e. all the means differed from each other). The one-way ANOVA can 
be defined as,

where n =
∑k

i=1 ni , Yi. = Yi./ni , Y .. = Y../n
and
s2i =

∑ni
j=1(Yij − Yi.)

2/(ni − 1).
It should be mentioned that the dot in Yi. indicates an aggregation over the j  index39. Where Yi. =

∑ni
j=1 Yij 

and Y.. =
∑k

i=1

∑ni
j=1 Yij . The calculated F values are used to rank the features. The discriminative capability of 

a predictor is better for higher F values.

(8)D = peptide sequence length× number of factors

(9)(NAnA/NTotal ,NAnC/NTotal , ...,NYnY/NTotal)441

(10)P(K) = P+(K)− P−(K)

(11)P+(K) =

[
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+
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+
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+
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Support vector machine. The support vector machine (SVM)29–31, one of the dominant statistical learning 
algorithms was adopted as a core prediction algorithm. It seeks the optimum hyperplane with the highest margin 
between two  groups18,40. Furthermore, it solves the problem of constraint optimization as described below

Subject to: 
∑n

i=1 yiαi = 0, 0 ≤ αi ≤ C , for all i = 1, 2, 3, ..., n . After involving the kernel function, the discri-
minant function of SVM took the following form

In this paper, the radial basis function  kernel18,41 was applied to construct SVM classifier and given by, 
k(xi , xj) = exp(−γ �xi − xj�

2) , where γ > 042. As the benchmark dataset was highly imbalanced, different error 
cost (DEC)18 method had been used to tackle the class imbalance  problem24,43. According to this approach, the 
SVM soft margin objective function was adjusted to allocate two costs for  misclassification12, such as C+ for the 
positive class instances and C− for the negative class instances

In Eq. (16), W+ is the weight for the positive instances and W− is the weight for the negative instances and 
defined by

 W+ = M
2∗M1

, W− = M
2∗M2

 where M is the total number of elements, M1 is the number of elements for the 
positive class, and M2 is the number of elements for the negative class.

Evaluation metrics. As shown in Table 1 and Supplementary Material, the total number of peptide samples 
are 10118 in total, of which 4154 are labelled with ‘acetylation’, 208 with ‘crotonylation’, 325 with ‘methylation’, 
1253 with ‘succinylation’, 236 with ‘glutarylation’, and 5059 with ‘Non-K-PTM’. Since a sample can contain more 
than one labels, metrics for multi-label  systems5,18 have been utilized instead of ordinary metrics for single-label 
 systems9,10,12,44. According to Chou’s  formulation45, the metrics for multi-label systems can be defined as,

where N and L are the total numbers of the samples and labels in the system  respectively5,18, ∪ and ∩ denotes 
the ‘union’ and ‘intersection’ in the set theory, || || means the operator acting on the set to calculate the number 
of its elements, Yi and Y ′

i  denotes the subset that contained all the labels experiment-observed and all the labels 
predicted for the ith sample respectively, and

The metrics defined above have been applied effectively in several multi-label based  systems5,18.

Model development and validation. In this study, five separate SVM  classifiers18 have been used to pre-
dict acetylation, crotonylation, methylation, succinylation, and glutarylation sites. Each of the classifiers has per-
formed binary classification on the benchmark dataset described in Table 1. For all five K-PTM types, necessary 
features have been extracted by integrating multiple encoding methods and 100 optimal features with ANOVA 
F-test have been selected to train the models, as shown in Fig. 1. The radial basis function (RBF)  kernel40,46 has 
been used for each SVM classifier. As there is a lack of details about the exact 5-way splits of the  dataset40, five 
complete runs of 5-fold cross-validation have been  executed5,18,47. The misclassification cost C has been calcu-
lated according to Eq.  (16) for handling the data imbalance issue. In this study, libSVM’s default parameters 
(i.e. C = 1 and γ = 1/number of features) have been selected to train the model. Eventually, after training the 
five binary SVM classifiers with the appropriate hyperparameters, multi-label predictor iMul-kSite has been 
constructed by combining the outputs from these  classifiers40, as depicted in Fig.  1. Five times repetition of 
the 5-fold cross-validation40 have produced five sets of values of all metrics, which are defined in the previous 
section. The average results of each multi-label metric have been taken to evaluate the final model. It should be 
mentioned that Matlab 2019a and python 3.7.3 have been utilized to implement the system.

(14)maximizeα
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Results
Incremental feature selection. The feature selection procedure has been implemented in two steps. Pri-
marily, all the features have been tested with the analysis of variance (ANOVA) and the features with statistical 
significance have been  obtained48. Hence, all of the 3527 features have been ranked according to the calculated 
F values.

Later, the incremental feature selection (IFS)12 algorithm has been applied for selecting the optimal number 
of  features12,48. For each feature subset of top m ( m = 50, 100, 150, . . . , 3527 ), one SVM classifier with libSVM’s 
default  parameter30,49 has been trained for each K-PTM type and its accuracy and absolute-false rate have been 
measured by adopting 5-fold cross-validation. As depicted in Fig. 2, the highest accuracy of 92.83% with the 
lowest absolute-false rate of 2.44% has been achieved with 100 leading features. Finally, the proposed predictor 
kMul-iSite has been constructed by utilizing the top 100 features.

Prediction performance of iMul-kSite. The performance of the iMul-kSite predictor derived from the 
aforementioned multi-label metrics is given in Table 3. The values of the five metrics are the average result of 
five times complete run of 5-fold cross-validation on the benchmark dataset. In Eq. (17), for the first four met-
rics, the higher the rate is, the better the performance will be, and for the last one, it is entirely the  opposite18. 
The rate of the most crucial metric ‘Accuracy’ for our proposed predictor iMul-kSite is 92.83%. Besides, it has 
achieved a 93.36% ‘Aiming’ or ‘Precision’ rate which represents the average ratio of the predicted labels that hit 
the target of the original labels. The average ratio of the original labels that are covered by the hits of prediction 
referred to as ‘Coverage’ is 96.23%. To the best of the authors’ knowledge, no multi-label predictor has achieved 
a coverage rate of over 90% so far. In addition to that, the experimentally obtained rate of the most stringent and 
harsh metric ‘Absolute-True’ is 88.84% which is significant for any multi-label prediction system. Furthermore, 
the rate of ‘Absolute-False’ or ‘Hamming-Loss’ denoting the average ratio of completely wrong hits over the total 
prediction events is 2.44%.

Comparison with existing multi-label predictors. According to the best of the authors’ knowledge, 
there are only three multi-label prediction systems that can predict multiple K-PTM sites simultaneously. All 
of these predictors have been constructed for identifying four types of K-PTMs i.e. acetylation, crotonylation, 
methylation, and succinylation. Qiu et  al.5 have constructed iPTM-mLys, which is the first-ever multi-PTM 
prediction system for lysine modifications. Hasan and  Ahmad18 have proposed another multi-label prediction 
system termed as mLysPTMpred. Recently, Sua et  al.19 have constructed a method with the combination of 
convolutional neural network and sequence graph transform (CNN + SGT). The last two systems have achieved 
comparatively higher prediction performance than iPTM-mLys. They also have surpassed the milestone of 
reaching over 80% absolute-true rate.

0 450 900 1350 1800 2250 2700 3150 3600
Number of features

0.85

0.875

0.9

0.925

0.95

A
cc

ur
ac

y

0 450 900 1350 1800 2250 2700 3150 3600
Number of features

0.85

0.875

0.9

0.925

0.95

A
cc

ur
ac

y

(100, 0.9283)

(a)

50 500 950 1400 1850 2300 2750 3200 3650
Number of features

0.015

0.035

0.055

A
bs

ol
ut

e-
fa

ls
e

50 500 950 1400 1850 2300 2750 3200 3650
Number of features

0.015

0.035

0.055

A
bs

ol
ut

e-
fa

ls
e

(100, 0.244)

(b)

Figure 2.  The IFS curves: (a) Feature range 50–3527 (Features vs. Accuracy). (b) Feature range 50–3527 
(Features vs. Absolute-false).

Table 3.  Cross-validation performance of the existing predictors. The highest performance is indicated with 
bold texts. aMethod proposed by Nie et al.19 b,cCorrespond to the iMul-kSite performances on the benchmark 
datasets containing 4-PTMs and 5-PTMs respectively. *Corresponds to the 4 K-PTMs used in the previous 
studies i.e. acetylation, crotonylation, methylation and succinylation.

Predictors Functionality Aiming(%) Coverage(%) Accuracy(%) Absolute-True(%) Absolute-False(%)

iPTM-mLys 4 K-PTMs 69.78 74.54 68.37 60.92 13.40

mLysPTMpred 4 K-PTMs 84.82 86.56 83.73 79.73 6.66

CNN + SGTa 4 K-PTMs 83.91 83.91 82.75 85.21 4.27

iMul-kSite b 4 K-PTMs* 93.18± (0.06) 96.13± (0.09) 92.70± (0.07) 88.77± (0.08) 2.97± (0.03)

iMul-kSite c 5 K-PTMs 93.36± (0.05) 96.23± (0.07) 92.83± (0.07) 88.84 ± (0.11) 2.44 ± (0.02)
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However, we have constructed a novel multi-PTM site predictor iMul-kSite which can predict 5 K-PTM 
sites concurrently. In addition to that, we have excluded the glutarylation sites from the benchmark dataset and 
reported the performance of iMul-kSite on the rest of the 4 K-PTMs in Table 3. In comparison with the recently 
developed multi-label predictor  mLysPTMpred18, it can be observed that the rate of the most crucial metric 
‘Accuracy’ for the proposed predictor iMul-kSite has been increased from 84.82% to 92.83%. Our proposed 
system has also achieved 8.54% and 9.67% increased aiming and coverage rates respectively. Furthermore, the 
absolute-true has reached 88.84% and the absolute-false has reached 2.44%. Therefore, the experimental results 
reported in Table 3 indicate that the constructed multi-label predictor iMul-kSite has achieved better perfor-
mance than the existing state-of-art multi-PTM predictors even after the inclusion of one more type of PTM 
site prediction  functionality5,18,19.

It should be mentioned that a Q-string protein sequence (Q16778) has been utilized in iPTM-mLys, mLysPT-
Mpred, and Nie’s method for independent  test5,18,19. Though these multi-PTM predictors do not account for 
glutarylation sites to be predicted, the independent test results of these predictors have been included in Table 4 
for demonstrating the prediction accuracy of the proposed system. According to Eq. (17), the aiming, coverage, 
accuracy, and absolute-true rates are 95.00%, and the absolute-false rate is 1.67%. The superior performance 
obtained from both the cross-validation and independent test demonstrates the validity of our proposed model 
and it could be a high throughput tool for multi-label PTM site identification.

Predictive performance of different feature encoding schemes. The performance obtained by 
iMul-kSite has been further compared with multiple baseline K-PTM prediction systems, developed using dif-
ferent feature extraction methods, such as the amino acid factors (AAF), binary encoding (BE), pairs of k-spaced 
amino acids (CKSAAP), and incorporation of sequence coupling information into general PseAAC 12,15,20,34,50,51 
to estimate iMul-kSite’s K-PTM related information extraction capability. The performances of the specified 
feature encoding schemes evaluated by 5-fold cross-validation are depicted in Fig. 3.

It may be observed that the amino acid factor (AAF) has acquired a higher absolute-false rate of 9.21% 
with considerably lower accuracy, absolute-true, aiming, and coverage rate. However, much better results have 
been picked up by binary encoding (BE) schemes. It has reached 77.35% accuracy with a 79.49% aiming rate 
and a 79.50% coverage rate. The absolute-false rate is reduced to 7.82% with an absolute-true rate of 73.05%. 
The composition of the k-spaced amino acid pairs (CKSAAP)12,52 encoding technique has been adopted for the 
different combinations of k, in which the ’0-spaced ( k = 0 ) amino acid pairs’ has produced the lowest accu-
racy, aiming, coverage and absolute-true rate and the highest absolute-false rate. The performances secured by 
the composition of 1-spaced ( k = 0, 1 ), 2-spaced ( k = 0, 1, 2 ), and 3-spaced ( k = 0, 1, 2, 3 ) amino acid pairs 
have been improved a little and maximized for the composition of 4-spaced ( k = 0, 1, 2, 3, 4 ) amino acid pairs 
as illustrated in Fig. 3. It has achieved 74.44% accuracy, which is the topmost accuracy among the various 
combinations of CKSAAP encoding schemes but compared to other feature extraction techniques, it is not a 
desirable performance. Sequence-coupling, which is one of the most crucial encoding strategies, has attained 
a higher accuracy rate of 92.20%, an aiming rate of 92.62% with a much lower absolute-false rate of 2.66%. It 

Table 4.  Performance of different predictors on the Q-string independent test set. The best achievable 
performance has been indicated with bold texts. aMethod proposed by Sua et al.19.

Predictors Functionality Aiming (%) Coverage (%) Accuracy (%) Absolute-true (%) Absolute-false (%)

iPTM-mLys 4 K-PTMs 67.50 65.00 62.50 55.00 15.00

mLysPTMpred 4 K-PTMs 88.33 87.50 85.83 80.00 6.00

CNN + SGT a 4 K-PTMs 65.00 65.00 65.00 85.00 5.00

iMul-kSite 5 K-PTMs 95.00 95.00 95.00 95.00 1.67

Figure 3.  Performance comparison between different feature encoding techniques.
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has obtained a coverage rate above 90%, which is a rare example in bioinformatics. Therefore, integrating all 
the feature extraction methods has been considered a successful approach for developing a multi-label predic-
tor. Consequently, the sequence-coupling has been combined with amino acid factor, binary encoding, and the 
composition of k-spaced amino acid pairs where k = 0, 1, 2, 3, 4. But the performances of the integrated features 
have been degraded and for 3527 dimension features, accuracy has been reduced to 86.55% with the increased 
absolute-false rate of 4.57%. Later, 100 optimal features have been selected from the high dimension features by 
conducting ANOVA F-test. By using the libSVM’s default parameter value of C and gamma, accuracy and aim-
ing rate have been reached 92.83% and 93.36%  respectively49. The most uncompromising metric absolute-true 
rate is 88.84% with a lower absolute-false rate of 2.44%. Figure 3 points out that the model constructed with 
the informative features termed as ’iMul-kSite’ has achieved a discernible performance among all the feature 
encoding techniques described earlier.

Optimal features analysis. The feature distribution for different K-PTM types is shown in Fig. 4. Moreo-
ver, the percentages of each type of feature selected with ANOVA and IFS are illustrated in Table 5 for a better 
understanding of the importance and dominance of the corresponding features. For the acetylation feature set, 
out of 100 optimal features, 3 belong to the AAF, 12 belong to the BE, 37 belong to the CKSAAP, and 48 belong 
to the sequence-coupling. Therefore, the ratios of selected dimensions of these four types of features are 1.23% 
(3/245), 1.17% (12/1029), 1.68% (37/2205), and 100% (48/48) respectively.

The crotonylation feature set comprises 46 sequence-coupling features, 12 BE features, and 42 CKSAAP 
features. Figure 4 and Table 5 show that the optimal feature set of crotonylation does not contain any of the 
AAF features. Hence, the selected dimension ratios of BE, CKSAAP, and sequence-coupling features are 1.17% 
(12/1029), 1.91% 42/2205), and 95.83% (46/48) respectively. Besides, the methylation feature set consists of 3 BE 
features, 49 CKSAAP features, and 48 sequence-coupling features, and the ratios of the selected dimensions for 
each type of feature are 0.29% (3/1029), 2.23% (49/2205), and 100% (48/48) respectively. For the succinylation 
dataset, 5, 3, 44, and 48 features belong to the AAF, BE, CKSAAP, and sequence-coupling respectively. The dimen-
sion ratios for AAF, BE, CKSAAP, and sequence-coupling are 2.04% (5/245), 0.29% (3/1029), 2.00% (44/2205), 
and 100% (48/48) respectively. For the glutarylation dataset, 9, 44, and 47 features belong to the BE, CKSAAP, 
and sequence-coupling respectively. The dimension ratios for BE, CKSAAP, and sequence-coupling are 0.88% 
(9/1029), 2.00% (44/2205), and 97.92% (47/48) respectively.

As reflected in Table 5, the selected feature dimensions for BE, AAF, and CKSAAP have varied over different 
types of K-PTM site prediction. The sequence-coupling features have a stronger influence on the identification of 
all of the five K-PTM sites. In contrast, BE, and CKSAAP features have much smaller and almost similar effects 
on each K-PTM site prediction. AAF features have a slightly better impact on the acetylation and succinylation 
site prediction but those have barely any effect on the crotonylation, methylation, and glutarylation site predic-
tion. Therefore, it may be concluded that the proposed model augmented the sequence-coupling effect with the 
essential features of AAF, BE, and CKSAAP has intensified the prediction performance of iMul-kSite.

Analysis on different modifications. The multi-label predictor iMul-kSite has been developed by com-
bining outputs from the five optimized binary classifiers as discussed in the previous section. Though the final 

Figure 4.  Feature distribution in the optimal feature sets.

Table 5.  Percentage of features selected with ANOVA F-Test and IFS.

Feature name Acetylation Crotonylation Methylation Succinylation Glutarylation

AAF (%) 1.23 0.00 0.00 2.04 0.00

BE (%) 1.17 1.17 0.29 0.29 0.88

CKSAAP (%) 1.68 1.91 2.23 2.00 2.00

Sequence-coupling (%) 100.00 95.83 100.00 100.00 97.92
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outputs have been evaluated by the multi-label metric system, each of the individual classifiers has been evalu-
ated and tuned depending on the area under curve (AUC) value. From Table 1, it can be seen that the acetyla-
tion dataset is quite a balanced dataset. But The imbalance ratio of the number of succinylated sites to that of 
non-succinylated sites is approximately 1:7. On the other hand, the crotonylation, methylation and glutarylation 
datasets have higher imbalance ratios (around 1:40) between the number of positive and negative peptides. In 
this study, the imbalance between the positive and negative sites for different datasets has been handled in two 
stages. Firstly, the ‘K-PTM’ and ‘Non-K-PTM’ sites containing samples have been resampled at the dataset level. 
Later, the imbalance in each modification dataset has been minimized at the classifier level. It has been observed 
that, the average AUC of acetylation and succinylation classifiers were 97.64% and 98.44%, respectively. On the 
other hand, the average AUC values of crotonylation, methylation and glutarylation are 99.98%, 99.89% and 
99.96% respectively. It can be concluded that after applying successful data balancing techniques at different 
levels, the constructed predictor iMul-kSite has demonstrated its superior performance for identifying all five 
types of different modifications.

Web-server. To aid the experimental researches, a user-oriented web-server for iMul-kSite has been devel-
oped. It can be found at http:// 103. 99. 176. 239/ iMul- kSite where proper guidelines for submitting query protein 
sequences are provided. Users are allowed to submit query sequences either in the input box or in a batch file. For 
better understanding, a few protein sequences taken from the independent test dataset are included as examples. 
In addition to that, the benchmark dataset and the training features used for constructing iMul-kSite will be 
provided upon user request.

Limitations
To improve the efficiency as well as to reduce the computational complexity of identifying 5 K-PTMs simultane-
ously, we considered instance hardness threshold (IHT) as an undersampling technique and incremental feature 
selection (IFS) with ANOVA F-Test as feature selection algorithm. Other structural features and evolutionary 
features might be utilized to improve the performance. Currently, our predictor iMul-kSite can deal with only 
five modifications i.e. acetylation, crotonylation, methylation, succinylation and glutarylation. We would include 
more types of modifications in our future study.

Conclusion
Understanding the significance of identifying multiple lysine PTM sites, an efficient and successful predictor 
iMul-kSite has been developed with five lysine PTM sites prediction capability. After adopting successful data 
balancing methods, optimized features with the cost-sensitive learning algorithms have improved the predic-
tion performance of the proposed predictor iMul-kSite significantly. Experimental outcomes demonstrate that 
iMul-kSite is highly promising compared to the existing state-of-the-art multiple lysine PTM site predictors. It 
is expected to become a high throughput tool for the experimental researchers for further PTM study on the 
lysine residues. Even experimental scientists may use this web-based tool without knowing its implementation 
details. Besides, a similar methodology of the proposed predictor can be used in the study of other PTMs such as 
C-PTM, R-PTM, and S-PTM that correspond to multi-label PTM sites at Cys, Arg, and Ser residues respectively. 
However, iMul-kSite was designed for five K-PTM types. To extend its prediction capability, other PTM types 
with new protein sequences can be added in the future.
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