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IMPACT: Genomic Annotation of Cell-State-Specific
Regulatory Elements Inferred from the Epigenome
of Bound Transcription Factors
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Despite significant progress in annotating the genome with experimental methods, much of the regulatory noncoding genome remains

poorly defined. Here we assert that regulatory elements may be characterized by leveraging local epigenomic signatures where specific

transcription factors (TFs) are bound. To link these two features, we introduce IMPACT, a genome annotation strategy that identifies reg-

ulatory elements defined by cell-state-specific TF binding profiles, learned from 515 chromatin and sequence annotations. We validate

IMPACTusing multiple compelling applications. First, IMPACT distinguishes between bound and unbound TF motif sites with high ac-

curacy (average AUPRC 0.81, SE 0.07; across 8 tested TFs) and outperforms state-of-the-art TF binding prediction methods, MocapG,

MocapS, and Virtual ChIP-seq. Second, in eight tested cell types, RNA polymerase II IMPACT annotations capture more cis-eQTL vari-

ation than sequence-based annotations, such as promoters and TSS windows (25% average increase in enrichment). Third, integration

with rheumatoid arthritis (RA) summary statistics from European (N¼ 38,242) and East Asian (N¼ 22,515) populations revealed that the

top 5% of CD4þ Treg IMPACT regulatory elements capture 85.7% of RA h2, the most comprehensive explanation for RA h2 to date. In

comparison, the average RA h2 captured by compared CD4þ T histone marks is 42.3% and by CD4þ T specifically expressed gene sets is

36.4%. Lastly, we find that IMPACT may be used in many different cell types to identify complex trait associated regulatory elements.
Introduction

Transcriptional regulation is the foundation for many

complex biological phenotypes, from gene expression to

disease susceptibility. However, the complexity of gene

regulation, controlled by more than 1,600 human tran-

scription factors (TFs)1 influencing some 20,000 protein

coding genes, has made functional annotation of the regu-

lome difficult. Tens of thousands of genomic annotations

have been experimentally generated, enabling the success

of unsupervised methods such as chromHMM2 and Seg-

way3 to identify global chromatin patterns that better

characterize genomic function. However, linking specific

regulatory processes to these identified patterns is

challenging. Furthermore, although genome-wide associa-

tion studies (GWASs) have identified �10,000 trait-associ-

ated variants across hundreds of polygenic traits,4 most

variants lie in noncoding regulatory regions with uncer-

tain function.

With continually increasing numbers of genomic anno-

tations generated from high-throughput experimental as-

says, in silico functional characterization of variants has

growing potential. These assays include genome-wide
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open chromatin, histone mark, and RNA expression

profiling, each separately possible at the single-cell level.

Initially contributed by genomic consortia, such as

ENCODE5 and Roadmap,6 these assays have become

more common as easy-to-implement protocols have been

developed, thereby contributing to the growing rate of

genomic annotation generation.

Recently, integration of datasets, particularly those

indicating regulatory elements, with GWAS data has suc-

cessfully led to the identification of categories of disease-

driving variants enriched for genetic heritability (h2).7–9

Such regulatory annotations identify active promoters

and enhancers through open chromatin or histone mark

occupancy assays in a cell type of interest.7,8,10–13 How-

ever, these annotations include both cell-type-specific

and -nonspecific elements, the latter of which may affect

a wide range of cellular functions that are not necessarily

intrinsic to disease-driving cell states. Therefore, we hy-

pothesized that the identification of regulatory elements

specifically driving functional states would help us

to not only better characterize regulatory elements

genome-wide, but also better capture polygenic h2 of

complex traits and diseases. Once the most enriched
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Figure 1. IMPACT: A Genome Annotation Strategy to Identify Cell-State-Specific Regulatory Elements
IMPACT learns a chromatin profile of cell-state-specific regulation, distinguishing master TF (red) regulatory elements (TF-bound motif
sites, blue) from inactive regulatory elements (unbound motif sites, purple). Here, cell-state-specific open chromatin and cell-state-spe-
cific H3K4me1 are strong predictors of cell-state-specific regulatory elements. Cell-state-nonspecific open chromatin and nonspecific
H3K4me1 are less informative, marking all types of regulatory elements, while H3K9me3 strongly implicates inactive regulatory ele-
ments. IMPACT should re-identify regulatory elements marked by master TF binding (peak 1) and those with similar chromatin profiles,
presumably sites of related cell-state-specific processes (peak 2). IMPACT should not predict regulation at cell-state-nonspecific elements
(peak 3), such as promoters of housekeeping genes.
classes of regulatory elements are recognized, then it may

become possible to generate biologically founded mecha-

nistic hypotheses.

Here, we introduce IMPACT (inference and modeling of

phenotype-related active transcription), a diversely appli-

cable genome annotation strategy to predict cell-state-spe-

cific regulatory elements. We take a two-step approach to

define IMPACT regulatory elements. First, we choose a sin-

gle key TF, known to regulate a cell-state-specific process,

and then identify binding motif sites genome-wide, dis-

tinguishing between those that are bound and unbound

using genomic occupancy identified by ChIP-seq in the

corresponding cell state. Here, the term ‘‘cell state spe-

cific’’ refers to the observed experimental binding sites

of a key TF, which itself may not be entirely cell state spe-

cific, assayed in the target cell state. Second, IMPACT pre-

dicts TF occupancy at binding motif sites by aggregating

and performing feature selection on 503 cell-type-specific

epigenomic features and 12 sequence features in an elastic

net logistic regression model. The IMPACT model frame-

work can easily be expanded to accommodate thousands

of epigenomic annotations and is amenable to increasing

rates of data generation. From this regression we learn a

TF binding chromatin profile, which IMPACT uses to
880 The American Journal of Human Genetics 104, 879–895, May 2,
probabilistically annotate the genome at nucleotide reso-

lution. We refer to high scoring regions as cell-state-spe-

cific regulatory elements (Figure 1). With this approach,

we aim to better pinpoint sites of causal variation

of gene expression and polygenic trait heritability

by modeling trait-driving cell-state-specific regulatory

processes.
Material and Methods

Statistical Methods
IMPACT Model

We build a model that predicts TF binding on a motif site by

learning the epigenomic profiles of the TF binding sites. We use lo-

gistic regression to model the log odds of TF binding on a motif

site, or putative binding site, based on a linear combination of

the effects bj of the j epigenomic or sequence features (Table S1),

where b0 is an intercept:

log

�
p

1� p

�
¼ b0 þ b1X1 þ b2X2 þ.þ bjXj;

where Xj is a value defining some relationship between feature j

and the motif site and p is the probability of TF binding at the

motif site. From the log odds, which ranges from negative to
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positive infinity, we compute the probability of TF binding,

ranging from 0 to 1:

p ¼ 1

1þ e�ðb0þb1X1þb2X2þ.þ bjXjÞ :

We use a logistic regression framework with elastic net regulari-

zation implemented by the cv.glmnet R (v.1.0.143) package,14 in

which optimal b are fit according to the following objective

function,

argmin
b

�
kY � Xb k 2 þ 1

2
ð1� aÞkb k2 þ a k b k

�
;

where Y represents the binary vector indicating TF bound or un-

bound motif sites, X is a matrix defining the feature characteriza-

tion of each motif site, and a is the mix term between the ridge

(L2), kb k2, and lasso (L1), kb k , penalties, where 0 %a% 1. We

find that no a significantly outperforms the others (Figure S1).

Therefore, we select a ¼ 0.5 to make a compromise between spar-

sity and information content; enforcing sparsity with lasso

performs feature selection thereby helping to avoid overfitting.

However, excessive feature selection may remove important infor-

mation. We use elastic net regularization for two reasons: (1) our

model has a large number of features (N > 500) that may result

in overfitting if feature selection is not performed (L1 penalty)

and (2) the L2 penalty makes the objective function convex,

with one stable solution.

Training IMPACT

For each cell state that we model, we train IMPACT to distinguish

cell-state-specific regulatory from non-specific or inactive regula-

tory regions based on cell-state-specific binding of a single key

TF. For training, we define the cell-state-specific regulatory class

as TF-boundmotif sites and the non-specific or inactive regulatory

class as unbound motif sites. To define TF-bound motif sites, we

use HOMER15 (v.4.8.3) to scan TF ChIP-seq peaks for k-mers

with a sequence similarity score, computed from the PWM (posi-

tion weight matrix) across k nucleotides, that is greater than or

equal to the TF binding motif detection threshold, empirically

determined by HOMER. Specifically, this log-odds detection

threshold is equal to the maximum achievable log odds

(computed from the PWM) minus an empirically derived

acceptable degree of mismatches. A detailed description of this

calculationmay be found in the HOMER documentation (Web Re-

sources).We have observed that atmost three well-tolerated nucle-

otide mismatches are permitted for every ten nucleotides. HOMER

then scans the genome to assess whether a putative motif site ex-

ceeds the detection threshold. The motif-specific detection

threshold for each TF used in this study can be found in

Table S2. To test how sensitive our selection of training data and

genomic annotation is to this parameter, we iterated over multiple

motif detection thresholds ranging from lenient to strict

(Figure S2). We observe that small changes in the motif log-odds

detection threshold lead to modest changes in the proportion of

peaks with a detectable motif. For example, decreasing the

threshold by 0.5 leads to an increase of at most 10% of ChIP-seq

peaks with a detectable motif, and increasing the threshold by

0.5 leads to a decrease of at most 12% of ChIP-seq peaks with a

detectable motif. Regarding genomic annotation, we used IFN-G,

the quintessential target gene of the TF T-BET, to demonstrate

how IMPACT regulatory element probabilities changed in this

locus as a result of changing the motif detection threshold

(Figure S2). For the following thresholds 4, 5, 6, 6.2 (0.5 lower
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than the default T-BET detection threshold), 6.7 (default

threshold), 7.2 (0.5 greater than the default threshold), 8, and 9,

we find that IMPACT regulatory element probabilities do not

significantly vary over the IFN-G locus, suggesting that IMPACT

genomic annotation is not sensitive to the motif detection

threshold parameter.

For each ChIP-seq peak with at least one motif match, we retain

only the coordinates of the highest scoring motif match to use in

our training set. This ensures that each instance of a bound motif

site is in a separate ChIP-seq peak, which avoids double counting

ChIP-seq peaks. In terms of training a logistic regression model,

this helps to ensure that no twomotif instances are in overlapping

or proximal genomic coordinates andmay be considered indepen-

dent. We randomly select 1,000 TF-bound motif sites in each

training instance.

To define unbound motif sites, we use the genome-wide TF

motif scan performed above and select motif matches that do

not overlap the corresponding TF ChIP-seq peaks. Then, we retain

the genomic coordinates of these matches. We randomly select

10,000 unbound motif sites in each training instance. We select

1,000 bound motif sites and 10,000 unbound motif sites for the

following two reasons. First, of all tested TFs, the smallest dataset

contained just over 1,000 bound motif sites. Therefore, to uni-

formly train IMPACT models across TFs, we required the same

number of bound motif sites be used in each instance. Second,

for the purpose of genome-wide regulatory annotation, we

attempt to make our training data represent hypothesized

genome-wide regulatory proportions. To this end, we arbitrarily

required ten times as many unbound motif sites as bound motif

sites to reflect an approximate genome-wide ratio of non-regula-

tory to regulatory elements, respectively.16,17 For the purposes of

benchmarking IMPACT against state-of-the-art methods, we as-

sessed each model’s performance on the same sets of motif sites.

IMPACT is trained to distinguish TF-bound motif sites from un-

bound motif sites by their epigenomic and sequence feature char-

acterization. We build a feature matrix by reporting overlap of an

annotation and amotif site with a value of 1 and no overlap with a

value of 0. Each feature characterization is represented twice in the

model, first with respect to local regions and second with respect

to distal regions. In the local case, for each motif site and for

each feature, we quantify direct positional overlap. In the distal

case, we quantify feature overlap with a distal nucleotide relative

to the motif site. We reason that although a motif site may not

directly overlap a particular feature, such as a promoter, it may

be informative to know that there is one nearby. For example,

we might look 1,000 nucleotides away from the motif site and

report feature overlap at either the upstream or downstream posi-

tion with a single value of 1 or overlap at neither with a value of 0.

After parameter optimization, we set this distance value to 1,000

nucleotides (Figure S1). We do not use absolute distance between

annotation and motif site to characterize our feature space in

the interest of computational efficiency with specific regard to

nucleotide-based genome-wide annotation. Furthermore, IMPACT

prediction performance for no TF is significantly improved by

using the absolute distance feature characterization strategy

(all p > 0.60) (Figure S3).

We note that using motif site-centric gold standards has multi-

ple advantages over predicting TF binding on entire ChIP-seq

peak regions. First, using motif sites serves as a quality control

for pioneer TF ChIP-seq data, in which case we know the TF is in-

teracting directly with the DNA. Second, it provides an intuitive

interpretation for binary labeling as a motif site may be either
rican Journal of Human Genetics 104, 879–895, May 2, 2019 881



bound or unbound. Such binary interpretation is not applicable to

ChIP-seq peaks, which can each implicate hundreds of nucleo-

tides. Rather than a TF binding uniformly throughout the peak,

it is more likely that the ChIP-seq signal is coming from a smaller

region of TF binding within the peak, making the use of motif sites

an attractive strategy to better localize the signal. Third, it provides

TF specificity by focusing on sequences within the peak that only

the TF of interest may interact with, whereas within the coordi-

nates of one ChIP-seq peak multiple TFs may be binding. We

also observed that on average IMPACT predicts TF binding signif-

icantly better when using motif site-centric gold standards accord-

ing to the AUPRC performance metric (0.18 average increase in

AUPRC; all Student’s t test p < 8.3e�36, except for TCF7L2)

(Figure S3). Moreover, we find that IMPACT regulatory element

probabilities are significantly higher (all p < 0.05, Student’s

t test) at nucleotides located in both a motif site and a ChIP-seq

peak (Figure S3), suggesting that motif sites provide a non-redun-

dant layer of regulatory information beyond ChIP-seq peak signal.

These results suggest that IMPACT’s ability to score motif sites

with higher regulatory potential might be used as a strategy to

perform quality control on ChIP-seq peaks.

To train the elastic net logistic regression model, we partition

the sets of TF-bound and -unbound motif sites by randomly sam-

pling 80% of each set, to be used for 10-fold cross validation (CV),

in which these subsets are further partitioned into 90%/10% train/

test. The remaining 20%, completely unseen by the CV and not

overlapping with the initial 80%, is used as a validation set. In

this binary classification problem, probabilistic outputs from the

logistic regression are made binary by applying thresholds in the

CV. The threshold vector is a sequence from 0 to 1, with resolution

of 0.0025, resulting in 401 applied thresholds.We applied IMPACT

genome-wide to assign nucleotide-resolution cell-state-specific

regulatory element probabilities, using the model b learned from

the elastic net logistic regression CV.

Interpreting IMPACT Regulatory Element Probabilities

Genome-wide, IMPACT evaluates each nucleotide’s regulatory

element potential with respect to a particular TF/cell-state pair

and assigns a probability to each nucleotide. In order to under-

stand these probabilities, we compare their distribution across

the bound motif site class and the unbound class. As expected,

we observe significantly higher IMPACT predictions at TF-bound

motif sites compared to unbound motif sites (all p < 1e�3, Stu-

dent’s t test); unbound motif sites have regulatory probabilities

near 0 (Figure S4). This separation informs the interpretation of

genome-wide predictions: truly inactive/non-specific regulatory

elements are expected to have predicted values close to 0, rather

than an arbitrary or uninterpretable non-zero decision boundary.

cis-eQTL Causal Variation Enrichment

We computed a genome-wide enrichment of cis-eQTL causal asso-

ciation across various functional annotations. To this end, we

gathered gene-based cis-window summary statistics. Then, for

each gene and for each annotation, an enrichment was calculated

explicitly as:

Enrichmentg;a ¼
�PN

i¼ 1c
2
g

�.
N�PM

j¼ 1c
2
g

�.
M
;

where g is the gene, a is the annotation, N is the number of vari-

ants within annotation a, M is the number of variants outside

annotation a, i is the ith variant, j is the jth variant, and c2 is the

chi-square statistic of the association between gene g and SNP i

or j. We then computed genome-wide standard errors by block
882 The American Journal of Human Genetics 104, 879–895, May 2,
jackknifing the genome into 200 adjacent bins and computed a

distribution of enrichment values when leaving one bin out at a

time.7 This strategy is designed to prevent the genes of any one re-

gion of the genome from dominating the enrichment statistic.

Furthermore, we used a permutation strategy to establish a null

distribution. To this end, we randomly permuted the chi-square

associations in the cis-window of each gene 1,000 times, while

matching on 50 LD bins across the cis-window, and recomputed

the enrichment with each of the functional annotations. We esti-

mated enrichment significance based on how extreme our result

was compared to the permutation distributions.

Partitioning Heritability with S-LDSC

We apply S-LDSC7 (stratified linkage disequilibrium [LD] score

regression) (v.1.0.0), a method developed to partition polygenic

trait heritability by one or more functional annotations, to quan-

tify the contribution of IMPACT cell-state-specific regulatory an-

notations to 42 complex traits. We annotate common SNPs

(MAF R 0.05) with regulatory element probabilities based on

cell-state-specific IMPACT models. Then, we run S-LDSC once on

the annotated SNPs to compute population-specific LD scores

and again to quantify the complex trait heritability captured by

our IMPACT annotations. Here, the two statistics we use to eval-

uate how well our annotations capture causal variation are enrich-

ment and standardized effect size (t*).

If acj is the value of annotation c for SNP j, we assume the vari-

ance of the effect size of SNP j depends linearly on the contribu-

tion of each annotation c:

Var
�
bj

� ¼ X
c

acjtc

where tc is the per-SNP contribution from one unit of the annota-

tion ac to heritability. To estimate tc, S-LDSC estimates the mar-

ginal effect size of SNP j in the sample from the chi-square

GWAS statistic X2
j :

X2
j ¼ N bb2

j :

Considering the expectation of X2
j and following the derivation

from Gazal et al.,9

h
X2

j

i
¼ N

X
c

 
tc
X
k

acðkÞr2jk
!

þ 1;

E
h
X2

j

i
¼ N

X
c

tc lðj; cÞ þ 1;

where N is the sample size of the GWAS, lðj; cÞ is the LD score of

SNP j with respect to annotation c, and r2jk is the true, e.g., popula-

tion-wide, genetic correlation of SNPs j and k. We define enrich-

ment of an annotation as the proportion of heritability explained

by the annotation divided by the average value of the annotation

across the M common (MAF R 0.05) SNPs. Enrichment may be

computed for binary or probabilistic annotations according to

the equation below, where h2
g ðcÞ is the h2 explained by SNPs in

annotation c:

Enrichment ¼
h2
g ðcÞ

.
h2
gP

j
ac ðjÞ
M

¼
P

jacðjÞbtc.P
j

P
cacðjÞbtcP

j
ac ðjÞ
M

:

Since tc is not comparable between annotations or traits, t�c
9 is

defined as the per-annotation standardized effect size, or the pro-

portionate change in per-SNP h2 associated with a one standard
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deviation increase in the value of the annotation. t�c is a function

of the standard deviation of the annotation c, sd(c), the trait-spe-

cific SNP-heritability estimated by LDSC, h2
g , and the total number

of reference common SNPs used to compute h2
g , M ¼ 5,961,159 in

Europeans (EUR) and 5,469,053 in East Asians (EAS):

t�c ¼ sdðcÞtc
h2
g

.
M

:

t* captures theuniquecontributionofanannotationtocapturingh2

in the S-LDSC model, conditional on other provided annotations.

Specifically, a t* of 0 means that the annotation does not change

per-SNPh2,a stronglynegative t*means thatmembership to thecat-

egorical annotation decreases per-SNP h2, and a strongly positive t*

means thatmembership to theannotation increasesper-SNPh2.The

significance of t* is computed based on a test of how different from

0 the t* is. We emphasize that enrichment does not quantify effects

that are unique to a given annotation,whereas t* does.Whencondi-

tionally comparing two annotations, say A and B, in a joint S-LDSC

model, both annotations may have similar enrichments if they are

highly correlated. However, the t* for the annotation with greater

true causal variantmembershipwill be larger andmore significantly

positive. Previousworkhas reported that the threshold for impactful

values of jt*j is approximately 0.24.9

Each S-LDSC analysis conditions IMPACT annotations on 69

baseline annotations, a subset of the 75 annotations referred to

as the baseline-LD model;9 we removed 6 annotations including

T cell enhancers, since IMPACT T cell-state annotations are likely

correlated. The 69 annotations consist of 53 cell-type-nonspecific

annotations,7 which include histone marks and open chromatin,

10 MAF bins, and 6 LD-related annotations9 to assess whether

functional enrichment is cell type specific and to control for the

effect of MAF and LD architecture. Consistent inclusion of MAF-

and LD-associated annotations in the baseline model is the stan-

dard recommended practice of using S-LDSC.

Fine-Mapped RA Posterior Probability Enrichment in IMPACT Regions

For each of 20 chosen RA-associated loci,18 we computed the

enrichment of posterior probabilities in the top 1% of cell-state-

specific IMPACT regulatory elements. For each RA-associated

locus l, we define

enrichment ¼
PMl

i PcðiÞPMl

j
1
Ml

;

where PcðiÞ is the posterior causal probability of SNP i, such that i

belongs to the top 1% of the cell-state-specific IMPACT annota-

tion c and Ml is the number of SNPs in locus l for which we

previously computed a posterior probability.18 The denominator

represents the null hypothesis that each SNP in a locus is equally

causal. We computed the average of these enrichment values over

the 20 RA-associated loci. We assessed significance based on com-

parison to 10,000 permutation distributions, designed by

computing an average enrichment value over these 20 loci, in

which random posterior probabilities (of the same quantity Ml)

were selected.
Data
Genome-wide Annotation Data

We obtained publicly available genome-wide epigenomic annota-

tions including ATAC-seq, DNase-seq, FAIRE-seq, HiChIP, poly-

merase and elongation factor ChIP-seq, and histone modification

ChIP-seq assayed in hematopoietic, adrenal, brain, cardiovascular,
The Ame
gastrointestinal, skeletal, and other cell types for the GRCh37

(hg19) assembly (Table S1). Sequence annotations, downloaded

from UCSC, include Phastcons conservation, exons, introns, in-

tergenic regions, 30 UTR (untranslated region), 50 UTR, promoter-

TSS (transcription start site), TTS (transcription termination site),

and CpG islands. For benchmarking IMPACT against MocapG,19

MocapS,19 and Virtual ChIP-seq,20 we additionally acquired corre-

sponding cell-type-specific open chromatin and gene expression

where applicable (Table S3). For models trained on Pol II ChIP-

seq, we removed Pol II and elongation factor ChIP-seq feature

tracks from the feature library before running IMPACT.

TF ChIP-Seq Data

Wedeterminedgenome-wideTFoccupancy frompublicly available

ChIP-seq (Table S4) of 13 key regulators (T-BET,21,22 GATA3,23

STAT3,24 FOXP3,25 STAT5,25 IRF5,26 IRF1,27 CEBPB,28 PAX5,29

REST,5 RXRA,5 HNF4A,30 TCF7L25) assayed in primary cell states

which they have been observed to regulate: Th1, Th2, Th17, Treg

cells,macrophages,monocytes,monocytes, B cells, fetal brain cells,

brain cells, liver cells, and pancreatic cells, respectively. We addi-

tionally acquired ChIP-seq of RNA polymerase II in peripheral

blood/lymphocytes, fibroblasts, stomach, liver, left ventricle heart,

sigmoidcolon, pancreas, andCD4þTcells.5,22,31 AllChIP-seqpeaks

were called by macs32 (v.1.4.2 20120305) (all p < 1e�5).

cis-eQTL Data

We acquired SNP-level summary statistics from three indepen-

dent studies. First, we obtained data from 3,754 peripheral blood

samples33 in which 7,025 unique genes had measurements. As

some genes were represented by several array probes, we retained

only summary statistics on one probe, selected randomly, per

gene. Second, we obtained data from GTEx V7 (Web Resources)

in the following six cell types with the number of samples listed

in parentheses: transformed fibroblasts (300), stomach (237),

liver (153), left ventricle of heart (272), sigmoid colon (203),

and pancreas (220). On average across these cell types, approxi-

mately 22,000 genes had measurements in the GTEx data. Third,

we obtained eQTL data from CD4þ T cells in East Asian individ-

uals (N ¼ 103) with expression measurements for 20,107

genes.34 For each gene, we truncated the genome-wide summary

statistics to a cis window of 1 Mb upstream and downstream of

the gene TSS.

Genome-wide Association Data Used in S-LDSC Analyses

We collected RA GWAS summary statistics35 for 38,242 European

individuals, combined case and control subjects, and 22,515 East

Asian individuals, comprised of 4,873 RA-affected case subjects

and 17,642 control subjects.36 We estimated total genome-wide

polygenic RA h2 to be about 18% for EUR and 21% for EAS.

We further collected 41 other complex trait summary statis-

tics.9,37,38 Reference SNPs, used to estimate European LD scores,

were the set of 9,997,231 SNPs with minor allele count greater

than or equal to five in a set of 659 European samples from phase

3 of 1000 Genomes Projects.39 The regression coefficients were

estimated using 1,125,060 HapMap3 SNPs and heritability was

partitioned for the 5,961,159 reference SNPs with MAF R 0.05.

Reference SNPs, used to estimate East Asian LD scores, were the

set of 8,768,561 SNPs with minor allele count greater than or

equal to five in a set of 105 East Asian samples from phase 3 of

1000 Genomes Projects.39 The regression coefficients were esti-

mated using 1,026,051 HapMap3 SNPs and heritability was parti-

tioned for the 5,469,053 reference SNPs with MAF R 0.05.

Frequency and weight files (1000G EUR phase3, 1000G EAS

phase3) are publicly available and may be found in the Web

Resources.
rican Journal of Human Genetics 104, 879–895, May 2, 2019 883
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Figure 2. IMPACT Outperforms State-of-the-Art TF Binding Prediction Methods
(A) IMPACT outperforms MocapG, MocapS, and Virtual ChIP-seq in predicting cell-state-specific TF binding across 8 TFs, illustrated by
AUPRCs on the same training and testing data across 50 trials, with the exception of the MocapS model for FOXP3.
(B) Prediction of Pol II binding in 6 cell types reveals that IMPACT outperforms Virtual ChIP-seq.
Fine-Mapped RA Causal Variation

Previous work from our group aimed to define the most likely

causal RA variant for each locus harboring a genome-wide signifi-

cant variant,18 identified by a GWAS of 11,475 European RA-

affected case subjects and 15,870 control subjects.40 To this end,

causal posterior probabilities were computed with the approxi-

mate Bayesian factor (ABF), assuming one causal variant per locus.

The posteriors were defined as:

Pi ¼ ABFiPn
k¼ 0ABFk

;

where i is the ith variant and n is the total number of variants in the

locus. As such, the ABF over all variants in a locus sum to 1.
Results

IMPACT Accurately Predicts Transcription Factor

Binding

The IMPACT model assumes that cell-state-specific TF

binding sites and related regulation may be characterized

by a quantitative epigenomic signature. If this is true,

IMPACT might predict cell-state-specific genome-wide TF

occupancy with high accuracy, which has proven to be a

challenging task (see ENCODE-DREAM challenge in Web

Resources), leading to a diverse set of TF binding prediction
884 The American Journal of Human Genetics 104, 879–895, May 2,
strategies.19,20,41,42 To test this model assumption, we used

IMPACT to predict regulatory elements based on experi-

mental binding identified via ChIP-seq of eight tested TFs

assayed in eight different cell states: T-BET, GATA3,

STAT3, FOXP3, REST, HNF4A, TCF7L2, and RNA polymer-

ase (Pol) II in CD4þ Th1 (T helper 1), CD4þ Th2, CD4þ

Th17, CD4þ Treg (T regulatory), fetal brain, liver, pancre-

atic, and lymphocytic cells, respectively5,21–25,30 (see Mate-

rial and Methods). We observe that IMPACT predicts TF

occupancy with high accuracy across eight tested TFs.

The average area under the precision-recall curve (AUPRC)

over 50 random sampling trials is 0.81 (SE 0.07), computed

via 10-fold cross validation on 80% of data, with AUPRC

evaluated on the withheld 20% (Figure 2A). We addition-

ally evaluate IMPACT using Matthew’s correlation coeffi-

cient (MCC), mean MCC 0.70 (SE 0.08), and show full

precision-recall curves (Figure S5). Next, we compared

IMPACT TF binding prediction performance to several

recent state-of-the-art methods MocapG,19 MocapS,19

and Virtual ChIP-seq.20 Briefly, MocapG is an unsupervised

TF binding prediction method that models ‘‘cut counts’’

from cell-type-specific open chromatin (DNase-seq) with

negative binomial distributions. MocapS is a supervised

sparse logistic regression approach that predicts TF binding

using cell-type-specific DNase-seq cut count modeling
2019



from MocapG, TF footprint scores from the same DNase-

seq data, conservation scores, GC content, CpG island in-

formation, sequence mappability scores, and distance to

nearest TSS. Virtual ChIP-seq is a multi-layer perception

that predicts TF binding, which similarly uses con-

servation, cell-type-specific DNase-seq, but also leverages

cell-type-specific gene expression from RNA-seq and TF-

specific ChIP-seq data over a range of cell types and cell

lines. While benchmarking, each method had access to

the same training and testing data to ensure fair compari-

son. We observe that on average, across the eight tested

TFs, IMPACT outperforms all three methods: AUPRC

IMPACT > MocapG (all p < 1.5e�16, Student’s t test;

0.23 average increase in AUPRC), IMPACT > MocapS (all

p < 5.4e�30, except for FOXP3 [p ¼ 0.15]; 0.24 average

increase in AUPRC), IMPACT > Virtual ChIP-seq (all

p < 8.5e�98; 0.62 average increase in AUPRC)

(Figure 2A). We note that using Virtual ChIP-seq we were

only able to predict binding for GATA3, REST, and Pol II

due to data limitations. In light of this, we predicted Pol

II binding in six additional cell types: sigmoid colon, fibro-

blast, left ventricle heart, liver, pancreas, and stomach. We

observed that on average, IMPACT outperforms Virtual

ChIP-seq according to the AUPRC (all p < 4.9e�38, Stu-

dent’s t test; 0.48 average increase in AUPRC) (Figure 2B).

We additionally used MCC as a metric to compare TF bind-

ing prediction performance, in which IMPACT also

on average outperforms the competing methods (all

p < 2.0e�39 for MocapG, 0.30 average increase in MCC;

all p < 1.2e�22 for MocapS, 0.29 average increase in

MCC; all p < 1.2e�77 for Virtual ChIP-seq, 0.49 average

increase in MCC), with the following exceptions:

MCC FOXP3 IMPACT < MocapG (p < 4.3e�18), MocapS

(p < 3.9e�19) (Figure S6).

Genome-wide IMPACT Regulatory Annotations

For each of the eight tested TFs, we created genome-wide

IMPACT regulatory annotations. Focusing on the four

CD4þ T cell-state IMPACT annotations, we illustrate that

IMPACT regulatory element probabilities vary dynamically

within TF ChIP-seq peaks near canonical CD4þ T cell-state

genes. This reflects the high-resolution information that is

gained by integrating hundreds of epigenomic and

sequence annotations (Figures 3A and S7). Furthermore,

we observe that the most heavily weighted features from

the logistic regression, indicating TF binding, include

cell-state-specific open chromatin and activating histone

modifications, as expected (Figure 3B). When training on

entire ChIP-seq peaks rather than motif sites within peaks,

top weighted features generally have less relevant cell-state

specificity (Figure S8), possibly due to high correlation of

ChIP-seq signal between CD4þ T cell states. For example,

most regulatory elements across CD4þ T cell states may

be near similar target genes. While the motif site regions

used to train each model are TF specific, independent,

and non-overlapping, we still observe relatively high corre-

lations between CD4þ T cell-state IMPACT annotations
The Ame
compared to the epigenomic annotations used to train

the models (Figure S9).

The IMPACT epigenomic feature library contains 515

features across many cell and assay types but the impor-

tance of annotation categories is not immediately clear.

To this end, we systematically removed categories of anno-

tations and retrained TF/cell-state models (Figure S10).

First, we observed that TF binding predictive performance

significantly decreases upon removal of cell-type-specific

features for four of seven TFs (all p < 8.1e�4, Student’s

t test). For the three TFs with no significant decrease in per-

formance, this result suggests that presence of annotations

from biologically similar cell states may be sufficient to

train a high-performing IMPACTmodel, without requiring

annotations specifically assayed in the target cell state. Sec-

ond, using just histone modification tracks resulted

in significantly decreased performance on average (all

p < 6.3e�06), while using just open chromatin tracks led

to decreased performance for five of seven tested TFs (all

p < 2.1e�05) and did not significantly affect the

performance for STAT3 and FOXP3. Third, we observed

significantly lower performance when restricting to cell-

type-specific H3K4me1 (all p < 2.0e�13), except for

STAT3 where we observe significantly higher performance

(p < 2.5e�44), suggesting that using cell-type-specific fea-

tures only are generally less informative than a diversity of

cell types and assay types. Fourth, we observed that using

only cell-type-specific open chromatin results in signifi-

cantly lower performance for T-BET, TCF7L2, and HNF4A

(all p< 4.9e�17), while, for GATA3 and REST, performance

improved (both p < 4.5e�3); no comparison could be

made for STAT3 or FOXP3 because there were no Th17 or

Treg open chromatin annotations to begin with. From

this, we learn that integration of diverse cell types and as-

says generally leads to improved predictive performance.

In the case of GATA3, STAT3, and REST, where the use of

only cell-type-specific annotations resulted in improved

performance over the canonical IMPACT model, such

models may overfit to training data and misrepresent

true TF binding patterns genome-wide. Therefore, further

assessment is necessary, specifically involving training

and testing across multiple datasets from the same cell

type, which was not possible in this study due to scarcity

of primary cell TF ChIP-seq data.

Improved Enrichment of Gene Expression Causal

Variation

We developed IMPACT to model regulation specific to a

functional cell state, the most general of which may be

active cellular transcription. Expression quantitative trait

loci (eQTLs) are genetic variations that modulate transcrip-

tion.43 Most cis-eQTLs map to TSS and promoter annota-

tions, and more rarely to the 50 UTR.44 We hypothesized

that an IMPACT annotation tracking active transcription,

trained on RNA polymerase (Pol) II binding sites, would

capture cis-eQTL causal variation better than the most

strongly enriched canonical eQTL-related annotations.
rican Journal of Human Genetics 104, 879–895, May 2, 2019 885
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Figure 3. IMPACT Genome-wide Regulatory Tracks
(A) Cell-state-specific regulatory element IMPACT predictions for canonical target genes of T-BET, GATA3, STAT3, and FOXP3.
(B) Highly weighted features of Th1, Th2, Th17, and Treg IMPACT annotations.
We obtained SNP-level summary statistics from three

independent sources: first, from a large and previously pub-

lished eQTL analysis on 3,754 peripheral blood samples;33

second, from GTEx V7 across 6 tissue types (average sample

size ¼ 231), i.e., transformed fibroblasts, stomach, liver, left

ventricle heart, sigmoid colon, and pancreas; and third,

from a CD4þ Tcell eQTL analysis on 103 East Asian individ-

uals.34We then used IMPACT to annotate SNPs tested in the

eQTL analysis with RNA Pol II specific regulatory element

probabilities, separately for each tissue or cell type. In this

analysis, we were limited by the availability of Pol II ChIP-

seq, for which there is an abundance of tissue-specific data

but rarely more specific cell-type-level data. While tissues

may contain many different cell types, we expect IMPACT

to learn an epigenomic signature as general or as specific as

the trainingdataprovided. For the peripheral blood IMPACT

annotation, we combined sites of Pol II binding in both

T cells and B cells, the predominant cell populations of pe-

ripheral blood, and trained a single IMPACT model. Next,

we computed a genome-wide enrichment (see Material and

Methods) of chi-square cis-eQTL association statistics, aver-

aged over all genes with at least one significant eQTL, across
886 The American Journal of Human Genetics 104, 879–895, May 2,
Pol II IMPACT, Pol II ChIP-seq, and several sequenced-based

annotations, such as TSS windows, promoters, and en-

hancers. We observed that on average Pol II IMPACT across

all cell types was more enriched for chi-square association

than the Pol II ChIP-seq used for training (paired t test

p < 7.7e�4, 7.3% average increase in enrichment). To

compute this, we thresholded each Pol II ChIP-seq dataset

by peak score, considering 11 uniformly spaced cutoffs,

ranging from highest-scoring ChIP-seq peaks to lowest-

scoring, while still significant, peaks. To directly compare

with IMPACT, we appropriately thresholded each Pol II

IMPACT annotation by matching on size, e.g., the genome-

wide proportion of SNPs annotated (Figure S11). We also

computed enrichment for IMPACT at five other annotation

size thresholds (0.5%, 1%, 2.5%, 5%, and 10%), which re-

sulted in larger enrichments than achievable by any thresh-

olding of the ChIP-seq data. Furthermore, we observe that

Pol II IMPACT captures more chi-square association than

sequenced-based functional annotations (Student’s t test

p < 4.8e�4) with the highest performing IMPACT annota-

tions providing a 25% average increase in enrichment over

the sequenced-based annotations (Figure 4). For each of
2019
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Figure 4. Pol II IMPACT Captures cis-eQTL Causal Variation Better than Sequence-Based Annotations across Eight Cell and Tissue
Types
Enrichment of cis-eQTL chi-square association values with Pol II IMPACT annotations, created for peripheral blood (A), fibroblasts (B),
stomach (C), liver (D), left ventricle heart (E), sigmoid colon (F), pancreas (G), and CD4þ Tcells (H), highlighting top performing IMPACT
annotation compared to enrichments of sequence-based functional annotations. Values in parentheses after annotation name are the
average annotation value across all common variants, e.g., the effective size of the annotation. * denotes permutation p < 0.05, ** per-
mutation p < 0.01, *** permutation p < 0.001. Intervals at the top of each bar represent the 95% confidence interval of the enrichment
estimate.
the eight tissues or cell types tested, themost enriched Pol II

IMPACT annotation outperformed all sequenced-based

functional annotations. Specifically, in peripheral blood,

Pol II IMPACT introduced a 1.73 enrichment (permutation

p < 1e�3), corresponding to a 24% average increase in

enrichment compared to the tested sequence-based func-

tional annotations. Similarly, for transformed fibroblasts,

Pol II IMPACTintroduceda1.73enrichment (30%increase);

for stomach, a 1.53 enrichment (22% increase); for liver, a

1.53 enrichment (25% increase); for left ventricle heart, a

1.53 enrichment (22% increase); for sigmoid colon, a 1.53

enrichment (22% increase); for pancreas, a 1.53 enrichment

(18% increase); and for CD4þ T cells, a 1.83 enrichment

(41% increase).
The Ame
Improved Capture of Rheumatoid Arthritis Causal

Variation

We previously hypothesized that IMPACT annotations of

pathogenic cell states would more precisely capture poly-

genic trait h2, compared to regulatory annotations that

don’t resolve cell states. Testing this hypothesis requires a

polygenic trait with a well-studied disease-driving cell

type. Genetic studies of rheumatoid arthritis (RA), an auto-

immune disease that attacks synovial joint tissue leading

to permanent joint damage and disability,45 have sug-

gested a critical role by CD4þ T cells.7,8,11,12,46–50 However,

CD4þ T cells are extremely heterogeneous: naive CD4þ

T cells may differentiate into memory T cells, and then

into effector T cells including Th1, Th2, and Th17 and
rican Journal of Human Genetics 104, 879–895, May 2, 2019 887
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Figure 5. CD4þ T Cell-State IMPACT Annotations Are Strongly Enriched for RA Heritability
(A) Enrichment of RA h2 in CD4þ T IMPACT for EUR and EAS populations. Values below cell states are the average annotation value
across all common (MAF R 0.05) SNPs, e.g., the effective size of the annotation.
(B) Standardized annotation effect size (t*) of each annotation separately conditioned on annotations from the baseline-LD model.
For (A) and (B), ***p < 0.001.
(C) Proportion of total causal RA h2 explained by the top 5% of SNPs in each IMPACT annotation.
For all panels, intervals at the top of each bar represent the 95% confidence interval.
T regulatory cells, requiring the action of a limited number

of key transcription factors (TFs): T-BET or STAT4, GATA3

or STAT6, STAT3 or RORgt, FOXP3 or STAT5, respec-

tively.51 As these CD4þ T effector cell states contribute to

RA risk,7,11,49 we hypothesized that CD4þ T cell-state-spe-

cific IMPACT regulatory element annotations would better

capture RA h2 than annotations that generalize CD4þ

T cells and ignore the differential functionality of effector

cell states.

To this end, we built IMPACT annotations in four CD4þ

T cell states: Th1, Th2, Th17, and Treg. We then inte-

grated S-LDSC7 with publicly available European (EUR,

N ¼ 38,242)7,35 and East Asian (EAS, N ¼ 22,515)36 RA

GWAS summary statistics to partition the common SNP

h2 of RA. We use two metrics to evaluate how well our

IMPACT annotations capture RA h2: enrichment and per-

annotation standardized effect size, t* (see Material and

Methods). Briefly, enrichment is defined as the proportion

of h2 divided by the genome-wide proportion of SNPs in

the annotation, and t* is defined as the proportionate

change in per-SNP h2 associated with a one standard devi-

ation increase in the value of the annotation.9

We observe that each CD4þ T cell-state-specific IMPACT

annotation is significantly enriched with RA h2 in both

EUR and EAS populations (average enrichment ¼ 20.05,

all p < 1.9e�04, Figure 5A, Table S5). Furthermore, we

find that t* is significantly positive for all CD4þ T IMPACT

annotations separately conditioned on the cell-type-

nonspecific baseline-LD annotations (all p < 2.1e�03, Fig-

ures 5B and S12), supporting the CD4þ T cell-specific role

in RA. We then selected the top 5% of regulatory SNPs ac-

cording to each CD4þ T IMPACT annotation and find that

all the CD4þ T cell-state annotations explain a large propor-
888 The American Journal of Human Genetics 104, 879–895, May 2,
tion of RA h2, but the Treg annotation explains the greatest

proportion, capturing 85.7% (SE 19.4%, enrichment

p < 1.6e�5) of RA h2 meta-analyzed between both EUR

and EAS populations (Figure 5C). Furthermore, we observe

that the top 9.8% of CD4þ Treg IMPACT regulatory ele-

ments, consisting of all SNPs with a non-zero annotation

value, capture 97.3% (SE 18.2%, enrichment p < 7.6e�7)

of RA h2 in EUR. This powerful result is the most compre-

hensive explanation for RA h2, to our knowledge, to date.

We then assessed whether CD4þ T IMPACT annotations

offered improved enrichments of RA h2 compared to

canonical CD4þ T cell functional annotations, using

S-LDSC and EUR RA summary statistics (Figures 6A and

S13). Here, we highlight our comparison of the CD4þ

Treg IMPACT annotation to FOXP3 binding motif sites,

genome-wide FOXP3 ChIP-seq, the ‘‘Averaged Tracks’’

annotation, which assigns each SNP a value proportional

to the number of overlapping IMPACT epigenomic fea-

tures, the five largest t* CD4þ T cell-specific histone mark

annotations,7 the five largest t* CD4þ Tcell-specifically ex-

pressed gene sets,8 and CD4þ T cell super enhancers.52 We

observe that the CD4þ Treg IMPACT annotation (enrich-

ment ¼ 22.9, SE 4.8, p < 5.2e�08) is significantly more en-

riched (p < 0.05) for RA h2 than the FOXP3 motif

site annotation (enrichment not significantly different

from 0), the ‘‘Averaged Tracks’’ annotation (enrichment ¼
7.0, SE 1.4), all CD4þ T cell-specifically expressed gene sets

(average enrichment ¼ 2.9, SE 0.8), and CD4þ T cell super

enhancers (enrichment ¼ 8.1, SE 1.3). On the other hand,

the FOXP3 ChIP-seq annotation (enrichment ¼ 173.3, SE

58.3), which is used to train the CD4þ Treg IMPACTmodel,

is more strongly enriched (p < 0.05) for RA h2 than the

CD4þ Treg IMPACT annotation itself. We additionally
2019
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Figure 6. CD4þ Treg IMPACT Annotation Significantly Captures RA Heritability Conditional on Strongly Enriched CD4þ T Cell Reg-
ulatory Annotations
(A) RA h2 enrichment of the CD4þ Treg IMPACTannotation and compared T cell functional annotations. Values below cell states repre-
sent the effective size of the annotation. From left to right, we compare Treg IMPACT to genome-wide FOXP3 motif sites, FOXP3 ChIP-
seq, the ‘‘Averaged Tracks’’ annotation, which assigns each SNP a value proportional to the number of overlapping IMPACT epigenomic
features, the top five cell-type-specific histone modification annotations,7 in terms of independent t*, the top five cell-type-specifically
expressed gene sets (Web Resources),8 in terms of independent t*, and T cell super enhancers.52

(B) CD4þ Treg IMPACTannotation standardized effect size (t*, teal) conditional on other T cell-related functional annotations (coral). t*
for independent analyses are denoted by the top of each black bar, as a reference for the conditional analyses, denoted by the top of each
colored bar.
*p < 0.05, **p < 0.01, ***p < 0.001. For both panels, intervals at the top of each bar represent the 95% confidence interval.
created functional annotations representing the overlap of

TF ChIP-seq with TF motif sites, as such a combination

might improve the enrichment observed for TF ChIP-seq

alone. However, these annotations are very small (average

annotation size¼ 0.004% of SNPs) and resulted in non-sig-

nificant enrichments in the S-LDSC framework. Finally, we

observe that all compared CD4þ T cell histone mark anno-

tations are similarly enriched for RA h2, relative to the

CD4þ Treg IMPACT annotation (23.43 on average

compared to 22.93, respectively).We note that the average

RA h2 captured by these CD4þ T histone mark annota-

tions, ranging in size from 1% to 3% of SNPs, is 42.3%,

and the average RA h2 captured by these CD4þ T specif-

ically expressed gene set annotations, ranging in size

from 11% to 13% of SNPs, is 36.4%. In terms of total RA

h2 explained by a single annotation, these values pale in

comparison to the 85.7% of RA h2 captured by the top

5% of SNPs in the Treg IMPACT annotation.

Next, in order to quantify annotation-specific effects of

capturing RA h2, we computed the per-annotation stan-

dardized effect size, t*, of each annotation from the previ-

ous analysis, conditioned on baseline-LD annotations. We
The Ame
then separately conditioned each CD4þ T cell-state

IMPACT annotation jointly on the compared annotations

and baseline-LD annotations. Larger and more signifi-

cantly positive t* identifies the annotation that better

captures RA h2. We observe that the t* of both CD4þ

Treg and Th2 IMPACT annotations are larger and more

significantly positive (all Treg t* > 1.9, p < 5.0e�3; all

Th2 t* > 1.7, p < 0.01) than compared T cell annotations,

excluding H3K27ac in Th2 cells, illustrated by taller teal

bars than coral bars (Figures 6B and S13). Here, we specif-

ically highlight the CD4þ Treg IMPACT annotation;

although the FOXP3 ChIP-seq annotation was more

strongly enriched for RA h2 than CD4þ Treg IMPACT,

the t* of the IMPACT annotation is larger and more signif-

icantly positive. Overall, these results suggest that IMPACT

annotates areas of concentrated RA h2 that other T cell reg-

ulatory annotations do not.

IMPACT Annotation Effect Sizes across 42 Polygenic

Traits

We next applied our CD4þ T IMPACT annotations to 41

additional polygenic traits9,37,38 and observed consistently
rican Journal of Human Genetics 104, 879–895, May 2, 2019 889
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Figure 7. IMPACT Cell-State-Specific Regulatory Element Annotation Effect Sizes across 42 Polygenic Traits
(A) Signed log10 p values of t* for 42 traits across 13 cell-state-specific IMPACTannotations, capturing h2 in distinct sets of complex traits,
shown by significantly positive t*. Each IMPACT annotation is described by its target cell state and key TF used for training in
parentheses.
(B) Signed log10 p values of t* for 42 traits across annotations representing the TF ChIP-seq used to train the corresponding IMPACT
annotations. ChIP-seq annotations are described by the cell state in which the particular TF (in parentheses) was assayed.
Color shown only if p value of t* < 0.025 after multiple hypothesis correction.
significantly positive per-annotation standardized effect

sizes, t*, for immune-mediated traits, such as Crohn, ‘‘all

autoimmune disease,’’ respiratory ear/nose/throat, and

‘‘allergy and eczema’’ (mean t* ¼ 3.2; all p < 5.9e�4,

p < 1.9e�5, p < 3.6e�3, p < 1.7e�3, respectively), and

for several blood traits, eosinophil and white blood cell

counts (mean t* ¼ 2.5; all p < 1.6e�11, p < 0.02, respec-

tively), but not for non-immune-mediated traits

(Figure 7A, Table S6). We then created several different

cell-state-specific IMPACT annotations targeting h2 in a

range of traits, and we highlight a few examples. For a

liver IMPACT annotation, trained on HNF4A5 (hepatocyte

nuclear factor 4A), t* is positive for liver-associated

traits30,53 LDL and HDL (mean t* ¼ 2.0; p < 0.02,

p < 1.2e�3, respectively). For a macrophage IMPACT

annotation, trained on IRF5,26 t* is positive for some

immune-mediated and blood traits (mean t* ¼ 2.8, all

p < 8.2e�3) and intriguingly also for schizophrenia (t* ¼
0.9, p < 4.9e�5), supported by studies implicating a puta-

tive MHC association.54 Finally, for a CD4þ Treg IMPACT

annotation, trained on STAT5,25 an alternative key TF for

Treg cells, the values of t* across all traits resemble that

of FOXP3. This suggests that IMPACT is capturing RA poly-
890 The American Journal of Human Genetics 104, 879–895, May 2,
genic h2 by annotating loci important to Treg function,

rather than TF-specific loci. To ensure that IMPACT anno-

tations were an improvement over the original ChIP-seq

used to train each model, we compute t* across the same

42 traits for annotations created from the training TF

ChIP-seq data (Figure 7B). We observe fewer significant ef-

fect sizes, with the exception of stronger t* in the T-BET

ChIP-seq compared to the T-BET (Th1) IMPACT annota-

tion, first identified in the conditional analysis in

Figure S13. Overall, this suggests that IMPACT is a prom-

ising strategy to identify complex trait-associated regu-

latory elements across a range of cell states.

A Priori Functional Characterization of Variants

We next hypothesized that improved genomic annota-

tion provided by IMPACT might inform functional

variant fine-mapping. Using a GWAS of 11,475 European

RA-affected case subjects and 15,870 control subjects,40

an independent study from the European RA summary

statistics used in our h2 analyses, our group recently

fine-mapped a subset of 20 RA risk loci, each with a

manageable number of putatively causal variants, and

created 90% credible sets of these SNPs.18 We computed
2019
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Figure 8. IMPACT A Priori Identifies Variants with Measured Functionality
(A) Enrichment of posterior probabilities of putatively causal RA SNPs in the top 1% of SNPs with CD4þ Treg regulatory element prob-
abilities highlights the BACH2, ANKRD55, CTLA4/CD28, IRF5, and TNFAIP3 loci.
(B and C) IMPACT regulatory element probabilities (black) at putatively causal SNPs with experimentally validated differential enhancer
activity (bolded) and other 90% credible set SNPs (unbolded)18 at two RA-associated loci, CTLA4/CD28 and TNFAIP3.
the enrichment of fine-mapped causal probabilities

across these 20 loci in the top 1% of our CD4þ T cell-

state-specific IMPACT annotations (see Material and

Methods). We found that the Treg annotation is signifi-

cantly enriched (2.87, permutation p < 1.8e�02) while

other annotations are not (Table S7). The Treg IMPACT

annotation may thus be useful to prune putatively causal

RA variants. Furthermore, we observe uniquely high Treg

enrichment in the BACH2 and IRF5 loci (16.2 and 8.1,

respectively, Figure 8A), suggesting that putatively causal

SNPs in these loci may function in a Treg-specific

context.

In the same study, our group observed both differential

binding of CD4þ T nuclear extract via EMSA and differen-

tial enhancer activity via luciferase assays at two credible

set SNPs, narrowing down the list of putatively causal var-

iants in the CD28/CTLA4 and TNFAIP3 loci.18 We observed

that both variants with functional activity were located at

high probability IMPACT regulatory elements, suggesting

that IMPACT may be used to narrow down credible sets

to reduce the amount of experimental follow up. First, at

the CD28/CTLA4 locus, IMPACT predicts high probability

regulatory elements across the four CD4þ T cell states at

the functional SNP rs117701653 and lower probability reg-

ulatory elements at other credible set SNPs rs55686954 and

rs3087243 (Figure 8B). Second, at the TNFAIP3 locus, we

observe high probability regulatory elements at the func-

tional SNP rs35926684 and other credible set SNP

rs6927172 (Figure 8C) and do not predict regulatory ele-

ments at the other seven credible set SNPs. The CD4þ

Th1-specific regulatory element at rs35926684 suggests

that this SNP may alter gene regulation specifically in

Th1 cells and hence, we suggest any functional follow-up

be done in this cell state. Fewer than 11% of the credible

set SNPs in the other 18 fine-mapped loci have high

IMPACT cell-state-specific regulatory element probabilities

(Figures S14–S33).
The Ame
Discussion

In summary, we assume that cell-state-specific regulation

may be characterized by an epigenomic signature that

may be captured by the cell-state-specific binding sites of a

single key TF. To this end, we designed IMPACT to predict

cell-state-specific regulatory elements based on epigenomic

and sequence profiles of experimental cell-state-specific TF

binding by performing a logistic regression on 515 such fea-

tures. We specifically chose not to employ a deep learning

approach in order to retain interpretability of learned

annotation weights. Knowledge of which epigenomic or

sequence feature annotations are most informative for pre-

dicting transcriptional regulation, which varies among cell

states, can guide where experimental assay resources might

be invested to learn more about the regulome.

We demonstrated the versatility of IMPACT as a genome

annotation strategy with several compelling applications.

First, we observed that the robust epigenomic footprint

of TF binding sites allows for accurate binding prediction.

Furthermore, IMPACT outperformed three state-of-the-art

methods, MocapG, MocapS, and Virtual ChIP-seq, which

use a compendium of sequence-based, open chromatin,

and gene expression annotations to predict cell-state-spe-

cific TF binding. We believe that this increased predictive

power comes from the way in which IMPACT learns which

genomic annotations are correlated with TF binding,

without knowledge of the cell type or cell state of interest.

This is contrary to the compared methods where cell-type-

specific DNase-seq or ATAC-seq must be provided as a

reference. Moreover, IMPACT provides epigenomic anno-

tations from a wide variety of cell types and assay types

which provide complimentary information. We note that

we restrict binding prediction to motif sites for each TF

in a given cell type. Moreover, validation in a completely

independent ChIP-seq dataset was not possible due to

the scarcity of primary cell TF ChIP-seq data.
rican Journal of Human Genetics 104, 879–895, May 2, 2019 891



Second, using Pol II IMPACT annotations, for eight

tested tissue and cell types, we more precisely captured

causal variation of gene expression than by using Pol II

ChIP-seq and sequence-based annotations. Our results

argue that Pol II IMPACT regions better localize active pro-

moter and proximal regulatory regions driving eQTLs than

the compared canonical genomic annotations, which may

be less specific due to their larger sizes and restrictive bi-

nary characterization. This suggests that IMPACT may be

more effective at prioritizing causal SNP variation when

fine-mapping eQTLs. These results also argue that the bio-

logical basis of eQTLs are related to Pol II binding regions,

which is a refinement over previous observations that

eQTL causal variation is concentrated near and around

TSS and promoter regions.

Third, we more precisely captured causal variation of

complex traits. Our CD4þ T IMPACT annotations capture

more RA h2 than most canonical CD4þ T cell regulatory

annotations. Our findings further reinforce that IMPACT

annotations, as an aggregation of hundreds of regulatory

annotations, are more informative than single annota-

tions. This is exemplified by the finding that FOXP3

ChIP-seq is strongly enriched for RA h2; and, while this

annotation was used as training data for IMPACT, the

CD4þ Treg IMPACT annotation captured more RA h2,

evident by a larger, more significant annotation effect

size, t*, in the joint analysis. Furthermore, we showed

that CD4þ T cell IMPACT annotations explain similar pro-

portions of RA heritability in both European and East

Asian populations, suggesting that biological mechanisms

driving RA may have similar genetic and regulatory bases

in these two populations. We also demonstrated that our

approach is generalizable to other trait-driving cell types

by showing significantly positive t* of IMPACT annota-

tions for 21 of 42 tested complex traits. In particular,

CD4þ T IMPACT annotations also captured significant

h2 of autoimmune and immune-mediated traits, which

is expected given the central role of CD4þ T cells to the

immune system and perhaps shared genetic architecture

of these traits. We find that h2 of intuitively brain-related

traits such as schizophrenia, anorexia, and autism is not

captured by brain IMPACT annotations, perhaps suggest-

ing that more complex, cross-cell-type regulatory net-

works are core to the genetic risk of these traits. Rather,

brain IMPACT annotations capture h2 of traits such as

menarche age, smoking, and height. We note that we tar-

geted specific polygenic traits using a priori knowledge of

the cell states that were most likely to be driving causal

biology. To better refine or inform the choice of relevant

cell type, we recommend integrating IMPACT with previ-

ously published approaches, such as RolyPoly,55 which

prioritizes cell types with respect to a particular trait,

based on linking single-cell gene expression to GWAS

summary statistics. We note that S-LDSC analyses exclude

the major histocompatibility complex due to its

extremely high gene density and outlier LD structure,

which is thought to be the strongest contributor to RA
892 The American Journal of Human Genetics 104, 879–895, May 2,
disease h2.56 However, our work supports the notion

that there is an undeniably large amount of RA h2 located

outside of the MHC.

Lastly, we demonstrated that IMPACTmay identify func-

tional variants a priori and suggest the relevant cell-state

contexts in which these functional variants may act. We

note that disease-relevant IMPACT functional annotations

may be integrated with existing functional fine mapping

methods, like PAINTOR57 or CAVIARBF,58 to assign causal

posterior probabilities to variants.

We recognize several important limitations to our work.

First, we have not experimentally validated the activity of

any of our predicted regulatory elements. Second, pre-

dicted regulatory elements are limited to genomic regions

that have been epigenetically assayed. Third, IMPACT as

presented in this study is limited to cell states in which

ChIP-seq of a key TF has been performed. Furthermore,

some TFs are key regulators in more than one cell type

or cell state, which should not compromise the cell state

specificity of the learned IMPACT annotation. We note

that cell state specificity is not gained from the TF itself,

but from the unique binding patterns of the TF in a

modeled cell state. For example, the CD4þ T cell TFs, for

which we create IMPACT annotations, are also key regula-

tors in analogous cell states of ILCs (innate lymphoid

cells).59 Under the assumption that these key TFs regulate

different sets of genes in the analogous cell states, cell-

state-specific IMPACT annotations learned from, for

example, T-BET in CD4þ Th1s should be distinguishable

from an annotation learned for T-BET in ILC1s. Due to

the lack of functional data on ILCs, we were not able to

test this claim. However, as more cell-state and cell-type

data are generated, especially on more fine-resolution

cellular populations, better regulatory annotations may

be produced. Moreover, these new functional annotations

might nominate other or more precise cellular popula-

tions, compared to the ones considered in this study, for

explaining polygenic trait heritability and capturing

fine-mapped causal variation. While we highlight strong

enrichments of IMPACT models trained on CD4þ T cell

TFs, especially FOXP3, we acknowledge that it is certainly

possible that other cell types and factors play important

roles that we have not explored in this study. Fourth,

S-LDSC heritability analyses results may be sensitive to

the size of the annotation and we recommend enforcing

reasonably large annotation sizes, for example at least

0.1% of the genome (Figure S34). In light of these limita-

tions, IMPACT is an emerging strategy for identifying

trait-associated regulatory elements and generating hy-

potheses about the cell states in which variants may be

functional, motivating the need to develop therapeutics

that target specific disease-driving cell states.
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son, S., Karlberg, O., Rönnblom, L., Eloranta, M.-L., and Syvä-
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