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Astrocytes, the most heterogeneous glial cells in the central nervous system (CNS),
execute a multitude of homeostatic functions and contribute to memory formation.
Consolidation of synaptic and systemic memory is a prolonged process and hours
are required to form long-term memory. In the past, neurons or their parts have been
considered to be the exclusive cellular sites of these processes, however, it has now
become evident that astrocytes provide an important and essential contribution to
memory formation. Astrocytes participate in the morphological remodeling associated
with synaptic plasticity, an energy-demanding process that requires mobilization of
glycogen, which, in the CNS, is almost exclusively stored in astrocytes. Synaptic
remodeling also involves bidirectional astroglial-neuronal communication supported
by astroglial receptors and release of gliosignaling molecules. Astroglia exhibit
cytoplasmic excitability that engages second messengers, such as Ca2+, for phasic, and
cyclic adenosine monophosphate (cAMP), for tonic signal coordination with neuronal
processes. The detection of signals by astrocytes and the release of gliosignaling
molecules, in particular by vesicle-based mechanisms, occurs with a significant delay
after stimulation, orders of magnitude longer than that present in stimulus–secretion
coupling in neurons. These particular arrangements position astrocytes as integrators
ideally tuned to support time-dependent memory formation.
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MEMORY FORMATION RESULTS IN ANATOMICAL CHANGES

Memory is the process of retention and reconstruction of learned (acquired) knowledge.
Studies performed in the early 1960s on patients who underwent bilateral medial temporal
lobe surgery, recognized the hippocampus as a fundamental region for memory formation
(Scoville and Milner, 1957). Subsequently, two distinct memory systems, declarative (explicit)
memory for facts and events, for people, places, and objects (‘‘knowing that’’) and non-
declarative (implicit) memory, the memory for perceptual and motor skills (‘‘knowing
how’’), have been defined (Dudai and Morris, 2013). Both systems rely on similar, if not
identical, mechanisms associated with reinforcement of synaptic transmission, which involve
morphological changes at the synapse that outlast memory stabilization (Attardo et al., 2015).
This morphology-based mechanism was considered by Cajal (1894), who linked ‘‘cerebral
gymnastics’’ (Box 1) with morphological alterations of dendrites and terminals of neurons.
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BOX 1 | Cerebral gymnastics and memory formation

“Cerebral gymnastics are not capable of improving the organization of the brain by increasing the number of cells, because it is known that the nerve cells after
the embryonic period have lost the property of proliferation; but it can be admitted as very probable that mental exercise leads to a greater development of the
dendritic apparatus and of the system of axonal collaterals in the most utilized cerebral regions. In this way, associations already established among certain groups
of cells would be notably reinforced by means of the multiplication of the small terminal branches of the dendritic appendages and axonal collaterals; but, in addition,
completely new intercellular connections could be established thanks to the new formation of [axonal] collaterals and dendrites.”
The Cronian Lecture: La fine structure des centres nerveux. Proceedings of the Royal Society of London 55: 444–468, 1984. Translated by DeFelipe J, Jones, E. G.
(1988). Cajal on the Cerebral Cortex. New York, NY: Oxford University Press. p. 87.

Contemporary views assume that memory formation,
although it is an outcome of a myriad of interactive processes,
occurs in the form of molecular events at the level of an
individual synaptic connection, which is termed synaptic
plasticity. These synaptic changes integrate through multiple
synaptic connections involving larger neuronal networks, and
are finally expressed at the behavioral level (Kandel et al., 2014).

MEMORY FORMATION AND ASTROCYTE
MORPHOLOGY

Micro-anatomical changes that are part of memory formation are
not exclusively related to neurons and their parts, but involve
non-neuronal cells, which in many areas of the human brain
exceed the number of neurons (Azevedo et al., 2009). These
non-neuronal cells include astrocytes, an abundant and arguably
the most heterogeneous glial cell type in the central nervous
system (CNS). It is generally acknowledged that astroglia actively
participate in information processing via cytosolic calcium
signals (Verkhratsky et al., 1998; Rusakov et al., 2011).

A single astrocyte is intimately associated with many neurons
and with their synaptic contacts. A single rat cortical astrocyte
enwraps 4–8 neuronal bodies and 300–600 dendrites (Halassa
et al., 2007), and astrocytes are in contact with synapses. In the rat
hippocampus, an individual astrocyte can cover (by perisynaptic
processes) up to 140,000 synapses (Bushong et al., 2002). Human
hippocampal astrocytes are substantially larger and a single
human astrocyte may be associated with ∼2 million synapses
(Oberheim et al., 2006). Abundant morphological interactions
of astrocytic processes with neurons are not restricted to the
hippocampus, being a widespread property of CNS tissue.

Close morphological apposition allows astrocytes to receive
signals from the synaptic cleft and feedback by releasing their
own signaling molecules. Release of many of these molecules
occurs through a secretory pathway that uses cytoplasmic
vesicles, which store chemical messengers. On stimulation,
the vesicle membrane fuses with the plasmalemma, a process
termed regulated exocytosis. The role of secretory vesicles
in astrocytes was proposed in 1910 when Nageotte (1910)
suggested, based on his microscopic observations, that glial cells
(astroglia in particular) act as secretory elements in the CNS.
This hypothesis has been confirmed experimentally in the last
two decades by identifying vesicular release of gliosignaling
molecules, which are often termed gliotransmitters (Vesce et al.,
1999; Haydon, 2001; Parpura and Zorec, 2010; Zorec et al.,
2012). Although there is some skepticism that this mechanism
exists in astroglia (Fujita et al., 2014; Sloan and Barres, 2014),

bidirectional astrocyte-neuron signaling is well accepted, and it
is generally recognized that vesicle-based mechanisms participate
in the heterocellular signaling that occurs at a morphofunctional
unit known as the tripartite synapse (Araque et al., 1999;
Perea et al., 2009). This bidirectional communication is part
of the wider gliocrine system (Vardjan and Zorec, 2015),
which reflects the secretory role of astrocytes, which release
an extensive number of gliosignaling molecules (Verkhratsky
et al., in press). These molecules are largely not involved in
synaptic processes but rather regulate various brain functions
through ‘‘volume’’ transmission (Vardjan and Zorec, 2015; Zorec
et al., 2015). Astroglia-derived signaling molecules are secreted
into the extracellular space and are transported throughout the
tissue parenchyma to distant places in the CNS, likely taking
advantage of the glymphatic convective system (Thrane et al.,
2014).

During implicit memory consolidation of Pavlovian threat
conditioning, astrocytic processes retract from synapses in the
lateral amygdala, allowing these synapses to enlarge, suggesting
that contact with astroglial processes opposes synapse growth
during memory consolidation (Ostroff et al., 2014). In other
words, if astrocytic processes enwrap synapses and the latter need
to expand during memory formation, astrocytes may hinder this
remodeling, demonstrating how astrocytic structural plasticity
enables morphological remodeling of synapses associated with
memory formation. Under physiological conditions, including
reproduction, sensory stimulation, and learning, astrocytes
display a remarkable structural plasticity. Distal astrocytic
processes can undergo morphological changes in a matter of
minutes, thus modifying the geometry and diffusion properties of
the extracellular space and relationships with adjacent neuronal
elements, especially with synapses. This type of astroglial
plasticity has important functional consequences because it
modifies extracellular ionic homeostasis and neurotransmission,
thus ultimately modulating neuronal function at the cellular
and system levels (Oliet and Piet, 2004; Theodosis et al.,
2008). The mechanisms responsible for morphological changes
in astrocytes are not known, but these may likely involve
adrenergic receptors and generation of second messenger cAMP
(Vardjan et al., 2014), which are discussed in the following
section.

ASTROCYTE MORPHOLOGY, cAMP AND
METABOLISM

Astrocytes are capable of a remarkable morphological plasticity.
Astroglial cells in vitro have a flattened polygonal appearance,

Frontiers in Integrative Neuroscience | www.frontiersin.org 2 November 2015 | Volume 9 | Article 56

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Neuroscience/archive


Zorec et al. Astroglia integrates memory formation

however stimulation of the β-adrenergic cAMP-dependent
signaling cascade results in rapid morphological remodeling
with astrocytes assuming a stellate morphology with numerous
processes (Shain et al., 1987; Bicknell et al., 1989; Hatton
et al., 1991; Shao et al., 1994; Won and Oh, 2000; Gharami
and Das, 2004; Vardjan et al., 2014). This remodeling occurs
within the time frame of memory consolidation (minutes to
hours) and involves cytoskeletal reorganization, including
the restructuring of actin filaments, microtubules, and
intermediate filaments (Goldman and Abramson, 1990;
Safavi-Abbasi et al., 2001). An example of this adrenergic
receptor/cAMP-mediated morphological remodeling of
astrocytes is shown in Figure 1 (Vardjan et al., 2014).
Similar morphological plasticity may take place in vivo in
long-term memory formation because noradrenaline (NA),
derived from projections of neurons located in the locus
ceruleus (LC), operates as a neuromodulator in Hebbian
learning (Johansen et al., 2014). Under similar training
conditions, changes in astrocytic shape have indeed been
observed (Ostroff et al., 2014). Moreover, the existence
of structural-functional changes of the astrocyte-neuron
interactions during memory processes have been detected
(Lavialle et al., 2011; Bernardinelli et al., 2014; Perez-Alvarez
et al., 2014).

Tight association between the synaptic membranes and
astrocytes is considered essential for homeostatic control of the
synaptic cleft, including rapid removal of the neurotransmitter

FIGURE 1 | (A) Morphological changes in astrocytes (stellation) induced by
the β-adrenergic receptor (β-AR) agonist isoprenaline (Iso), which increases
cAMP. Green fluorescing astrocytes transfected with the cAMP nanosensor
Epac1-camps (top) and their corresponding differential interference contrast
images (bottom) before (left) and after 1 µM β-AR agonist isoprenaline (Iso).
Note the thinning and elongation of processes indicating astrocyte stellation.
Scale bar represents 20 µm. Astrocytes were cultured from rat cortex.
Modified from Vardjan et al. (2014) with permission. (B) Time course of
cytosolic levels of cAMP. Noradrenaline (NA) persistently increases intracellular
cAMP levels in astrocytes. Representative time courses of the Epac1-camps
(i.e., a Förster resonance energy transfer (FRET)-based cAMP nanosensor)
from three cells after the addition of 1 µM NA. Changes in FRET are
expressed as percentages relative to the initial values. (C) Time course of
cytosolic levels of Ca2+. The application of fingolimod (FTY720) evokes
prolonged transient increases (oscillations). Superimposed time-resolved
fluorescence intensity obtained in five cells treated with FTY720 (white bar).
The thin dotted line indicates the zero fluorescence level (F0). Modified from
Vardjan and Zorec (2015) with permission.

glutamate (Bergles and Jahr, 1997) and potassium from the
extracellular space (Orkand et al., 1966; Verkhratsky and
Nedergaard, 2014). Thus, retraction of astrocytic membrane
from the synapse during memory formation (Ostroff et al., 2014)
may facilitate the spillover of neurotransmitter and thus affect
synaptic transmission (Rusakov and Kullmann, 1998). At the
same time, memory formation is associated with morphological
growth of synaptic elements together with enhanced protein
synthesis and rearrangement of receptor proteins, all of which
increase the energy consumption (Harris et al., 2012).

How energy substrates, needed for adenosine triphosphate
(ATP) synthesis, are delivered to synapses where synaptic
plasticity takes place is still an open question. A simple
assumption would be that pyruvate is provided to the
mitochondria by glycolysis within the neuron. However, the
morphology of astrocytes, with extensive end feet plastering
blood vessels, is well suited to take up glucose from blood and
distribute either glucose itself, or pyruvate or lactate derived from
glucose, to astrocytic processes surrounding synapses, possibly
by diffusion through gap junctions integrating astroglial syncytia
(Rouach et al., 2008). In support of this mechanism, diffusion
of glucose within astrocytes is relatively rapid (Kreft et al.,
2013) and may well support glucose delivery via interconnected
astrocytes in situ. Although synapses are the main energy
consumers in the brain, glycogen, the only CNS energy storage
system, is present mainly, if not exclusively, in astrocytes.
Memory consolidation in young chickens requires glycogenolysis
(Gibbs et al., 2006; Hertz and Gibbs, 2009). The successful
consolidation of memory from short-term to long-term memory
requires neuronal NA release (Gibbs et al., 2010). Therefore,
it appears that NA, released from neurons, such as those
from locus coeruleus, initiates astrocytic morphological changes
and activates astroglial energy metabolism. Thus, NA may be
considered as an integrator of the metabolism, morphology
and function of astrocytes. In the adult operational (i.e.,
awake) brain, NA is the main signaling molecule that triggers
astroglial Ca2+ signaling (Ding et al., 2013), which represents
the universal form of glial excitability (Verkhratsky et al.,
1998).

ASTROCYTES AS HUBS FOR THE
NETWORK RESET SYSTEM

The LC is the primary source of NA in the CNS. It is
localized in the brainstem and projects widely, and is thus
able to synchronously activate neural networks in several brain
regions. This may be regarded as a functional ‘‘reset’’ for
many brain networks (Bouret and Sara, 2005; Sara, 2015).
Axons of LC neurons project to the spinal cord, the brain
stem, the cerebellum, the hypothalamus, the thalamic relay
nuclei, the amygdala, the basal telencephalon, and the cortex,
although some cortical areas receive more abundant innervation
(Chandler et al., 2014). In all these structures, synchronous
activation of LC projections (Bouret and Sara, 2005) leads to
coherent and synchronized electrical activity, possibly reflected
by gamma waves on an electroencephalogram (Sara, 2015). LC
innervation mediates arousal and the sleep–wake cycle, attention
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and memory, behavioral flexibility, behavioral inhibition and
stress, cognitive control, emotions, neuroplasticity, posture, and
balance (Benarroch, 2009). The effects of NA are mediated
through α- and β-adrenergic receptors (α/βARs) which are
expressed in neurons, microglia, and astrocytes. The ARs were
among the first receptors to be causally linked to astroglial
Ca2+ signaling (Salm and McCarthy, 1989; Kirischuk et al.,
1996). Increases in astroglial Ca2+ were observed in vivo
after stimulation of the LC in anesthetized animals (Bekar
et al., 2008). In awake animals, stimulation of LC neurons
triggered (by activation of α-ARs) widespread astroglial Ca2+

signals, which appeared in almost all astrocytes in the field
of study (Ding et al., 2013). This synchronous response
may represent the means by which neural networks are
coordinated. Simultaneously, through activation of β-ARs, the
cAMP-dependent pathways are activated; this in turn instigates
rapid degradation of glycogen, which serves as the main energy
reserve in the brain (Prebil et al., 2011; Kreft et al., 2012) and
initiates morphological plasticity of astrocytes (Vardjan et al.,
2014).

VESICULAR RELEASE OF GLIOSIGNALING
MOLECULES

By having secretory vesicles clustered close to the plasma
membrane, which is a hallmark of the active zone of the
presynaptic terminal, the delay between the incoming stimulus
and secretion is minimized, being as short as 100 µs (Sabatini and
Regehr, 1999). At the same time, vesicle-based release of chemical
messengers can exhibit much longer delays in stimulus–secretion
coupling. In astrocytes, the mechanism prolonging the time
between the arrival of the stimulus and the release of transmitters
has been naturally selected, because the maximal speed of
regulated exocytosis in astroglia appears much slower than
that in neurons (Guček et al., 2012; Neher, 2012; Zorec et al.,
2015). Regulated exocytosis also plays a role in many forms
of cell-to-cell communication besides release of transmitters,
being for example critical for the delivery of transporters, ion
channels and antigen presenting molecules to the cell surface
(Guček et al., 2012). Vesicular trafficking and release, which
have evolved ∼3 billion years ago in arhaea (Spang et al.,
2015), is fundamental for signaling and communication within
the relatively large eukaryotic cell volume. Communication
within large cells could no longer be supported by diffusion-
based processes, which provide effective and rapid transport of
molecules within the submicron range. Hence the development
of subcellular organelles, such as secretory vesicles, presented
a solution for the ‘‘signaling problem’’ in the relatively large
volume of eukaryotic cells, to which astrocytes belong (Guček
et al., 2012).

An ideal approach to monitor the rate-limiting processes
of regulated exocytosis in astrocytes at the cellular level is to
measure changes in the plasma membrane area, which reflects
the fusion of vesicles with the plasma membrane. This can be
monitored by measuring membrane capacitance (Cm), which is
linearly related to the membrane area (Neher and Marty, 1982).
This technique was used in cultured astrocytes (Kreft et al., 2004)

to test the hypothesis that an increase in [Ca2+]i, after photolysis
of caged Ca2+ (Neher and Zucker, 1993), elicits an increase
in the whole-cell Cm. A half-maximal increase in Cm of these
astrocytes was attained at ∼27 µM [Ca2+]i, which is similar to
the Ca2+-dependency of regulated exocytosis in various types of
neurons, recorded by a similar technique (Heidelberger et al.,
1994; Bollmann et al., 2000; Kreft et al., 2003a). In contrast to
neurons, however, a rather small, within 100 nM, increase in
[Ca2+]i from the resting level was sufficient to induce glutamate
release from astrocytes, as detected by glutamatergic effects on
nearby neurons, used as sniffer cells (Parpura and Haydon, 2000).
A similar high-affinity Ca2+ sensing mechanism for vesicular
release was reported in pituitary endocrine cells (Kreft et al.,
2003b). At present, astrocytes appear to be the slowest secretors
of all the excitable mammalian cells investigated thus far. The
kinetics of Cm increase is at least two orders of magnitude slower
than the kinetics of regulated exocytosis recorded by a similar
technique in neurons (Kreft et al., 2004; Neher, 2012). The Ca2+-
dependent increases in Cm were sensitive to tetanus toxin (which
cleaves synaptobrevin 2 and cellubrevin), indicating a soluble
N-ethyl maleimide-sensitive fusion protein attachment protein
receptor and Soluble NSF Attachment Protein Receptor (SNAP)-
based vesicular mechanism (Kreft et al., 2004).

Why is regulated exocytosis in astrocytes so slow? One
reason is the distinct slow kinetics of molecular mechanisms
regulating the vesicle membrane–plasmalemma merger. The
number of SNARE molecules per vesicle, which is relatively
low in astrocytes (Singh et al., 2014), may also contribute
to the slow kinetics of regulated exocytosis. Slow delivery of
vesicles to the plasma membrane fusion sites may also play a
significant role. The vesicle dynamics is an amazingly elaborate
system, regulated by increases in [Ca2+]i (Potokar et al., 2013;
Vardjan et al., 2015). For example, the complexity of vesicle
traffic regulation in astrocytes is characterized by two typical,
yet opposing, properties of vesicles that contain peptides, such
as atrial natriuretic peptide, and/or ATP, and those that carry
amino acids, such as glutamate and D-serine, and are labeled by
the glutamate transporter VGLUT1 (Potokar et al., 2005, 2013;
Vardjan et al., 2012; Vardjan and Zorec, 2015). Glutamatergic
vesicles speed up with an increase in [Ca2+]i (Stenovec, 2007),
whereas the same increase in [Ca2+]i slows down peptidergic
vesicles and endolysosomes (Potokar et al., 2010).

Glutamatergic and peptidergic vesicles have the capacity to
recycle. The mobility of recycling peptidergic vesicles was studied
in cultured astrocytes (Potokar et al., 2008) and in intact brain
slices (Potokar et al., 2009). At rest, peptidergic vesicles moved
faster and more directionally than after the exposure of astrocytes
to ionomycin to increase [Ca2+]i (Potokar et al., 2008). The
effect of increased [Ca2+]i was dramatic; the movement of
vesicles was almost halted, with only a jitter associated with
random diffusional movement remaining. At least some of the
peptidergic vesicles carry ATP and a similar attenuation was
observed in their mobility when astrocytes were stimulated
(Pangrsic et al., 2007).

What is the physiologic significance of differential mobility
of vesicles carrying specific cargo, for example, classic chemical
transmitter vs. neuromodulators or neuropeptides? An increase
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or decrease in vesicle mobility may affect the efficiency of vesicle
merger with the plasma membrane and the subsequent cargo
discharge. It is possible that vesicles engaged in the dichotomous
regulation of vesicle traffic exhibit different vesicle sizes, which
may determine the nature of vesicle traffic and fusion with the
plasmalemma, as was reported for endocrine cells (Flašker et al.,
2013). Increased mobility of glutamatergic vesicles (which can
quickly refill using VGLUTs) may indicate that they could be
discharged at multiple loci at times of increased Ca2+ excitability,
resulting in more diffuse signaling as opposed to spatially precise
information transfer so characteristic of neuronal synaptic
transmission. This speculation seems to be aligned with the
ability of astrocytes to modulate synaptic transmission at a long
temporal domain and via broad extrasynaptic access sites to
neurons.

Impaired astrocytic vesicle traffic has been tentatively
associated with intellectual deficiency (ID). Symptoms of ID
appear early in life and the disease affects about 2% of the
population. Family studies have demonstrated a relatively large
number of X chromosome-linked forms of ID (XLID) with an
incidence of about 0.9–1.4 in 1000 males (Turner, 1996). One of
the first genes found to be mutated in patients with XLID is GDP
dissociation inhibitor 1 (GDI 1; D’Adamo et al., 1998), which
encodes for guanine nucleotide dissociation inhibitor (αGDI),
a protein physiologically involved in regulating GDP-bound
RAB proteins. The identification of GDI1 association with ID
suggested that vesicular traffic in neural cells is an important
pathway for the development of cognitive functions (D’Adamo
et al., 2002; Bianchi et al., 2009). Although the importance
of αGDI in neuronal function has been demonstrated, it is
unclear whether its role in glia vesicle trafficking contributes to
the disease. The αGDI protein regulates the function of RAB
GTPases, such as RAB 4 and RAB 5, which have been shown to

regulate vesicle dynamics in astrocytes (Potokar et al., 2012), and
it is likely that impaired vesicle traffic in astrocytes contributes
to ID, which is linked to impaired cognitive processes involving
memory formation.

CONCLUSION

Astroglial cells control homeostasis in the CNS to support many
processes including memory formation. Astrocytes contribute
to memory as signaling hubs and as structures that alter
their morphology and recruit energy resources for memory
consolidation. Excitation–secretion coupling in astrocytes is
loose and this may be of particular importance to support the
slowness of the overall memory-related structural dynamics in
the CNS.
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(2013). Astrocytic vesicle mobility in health and disease. Int. J. Mol. Sci. 14,
11238–11258. doi: 10.3390/ijms140611238

Prebil, M., Vardjan, N., Jensen, J., Zorec, R., and Kreft, M. (2011). Dynamic
monitoring of cytosolic glucose in single astrocytes. Glia 59, 903–913. doi: 10.
1002/glia.21161

Rouach, N., Koulakoff, A., Abudara, V., Willecke, K., and Giaume, C. (2008).
Astroglial metabolic networks sustain hippocampal synaptic transmission.
Science 322, 1551–1555. doi: 10.1126/science.1164022

Rusakov, D. A., and Kullmann, D. M. (1998). Extrasynaptic glutamate diffusion in
the hippocampus: ultrastructural constraints, uptake and receptor activation.
J. Neurosci. 18, 3158–3170.

Rusakov, D. A., Zheng, K., and Henneberger, C. (2011). Astrocytes as regulators of
synaptic function: a quest for the Ca2+ master key. Neuroscientist 17, 513–523.
doi: 10.1177/1073858410387304

Sabatini, B. L., and Regehr, W. G. (1999). Timing of synaptic transmission. Annu.
Rev. Physiol. 61, 521–542.

Safavi-Abbasi, S., Wolff, J. R., and Missler, M. (2001). Rapid morphological
changes in astrocytes are accompanied by redistribution but not by quantitative
changes of cytoskeletal proteins. Glia 36, 102–115. doi: 10.1002/glia.
1099

Salm, A. K., and McCarthy, K. D. (1989). Expression of beta-adrenergic receptors
by astrocytes isolated from adult rat cortex. Glia 2, 346–352. doi: 10.1002/glia.
440020507

Sara, S. J. (2015). Locus Coeruleus in time with the making of memories.
Curr. Opin. Neurobiol. 35, 87–94. doi: 10.1016/j.conb.2015.07.004

Scoville, W. B., and Milner, B. (1957). Loss of recent memory after bilateral
hippocampal lesions. J. Neurol. Neurosurg. Psychiatry. 20, 11–21.

Shain, W., Forman, D. S., Madelian, V., and Turner, J. N. (1987). Morphology
of astroglial cells is controlled by beta-adrenergic receptors. J. Cell Biol. 105,
2307–2314. doi: 10.1083/jcb.105.5.2307

Shao, Y., Enkvist, M. O., and McCarthy, K. D. (1994). Glutamate blocks astroglial
stellation: effect of glutamate uptake and volume changes.Glia 11, 1–10. doi: 10.
1002/glia.440110103
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