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Abstract

Identifying the molecular underpinnings of the neural specializations that underlie human

cognitive and behavioral traits has long been of considerable interest. Much research on

human-specific changes in gene expression and epigenetic marks has focused on the pre-

frontal cortex, a brain structure distinguished by its role in executive functions. The cerebel-

lum shows expansion in great apes and is gaining increasing attention for its role in motor

skills and cognitive processing, including language. However, relatively few molecular stud-

ies of the cerebellum in a comparative evolutionary context have been conducted. Here, we

identify human-specific methylation in the lateral cerebellum relative to the dorsolateral pre-

frontal cortex, in a comparative study with chimpanzees (Pan troglodytes) and rhesus

macaques (Macaca mulatta). Specifically, we profiled genome-wide methylation levels in

the three species for each of the two brain structures and identified human-specific differen-

tially methylated genomic regions unique to each structure. We further identified which dif-

ferentially methylated regions (DMRs) overlap likely regulatory elements and determined

whether associated genes show corresponding species differences in gene expression. We

found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal

cortex, with differentially methylated regions overlapping genes involved in several condi-

tions or processes relevant to human neurobiology, including synaptic plasticity, lipid metab-

olism, neuroinflammation and neurodegeneration, and neurodevelopment, including

developmental disorders. Moreover, our results show some overlap with those of previous

studies focused on the neocortex, indicating that such results may be common to multiple

brain structures. These findings further our understanding of the cerebellum in human brain

evolution.
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Author summary

Humans are distinguished from other species by several aspects of cognition. While much

comparative evolutionary neuroscience has focused on the neocortex, increasing recognition

of the cerebellum’s role in cognition and motor processing has inspired considerable new

research. Comparative molecular studies, however, generally continue to focus on the neocor-

tex. We sought to characterize potential genetic regulatory traits distinguishing the human

cerebellum by undertaking genome-wide epigenetic profiling of the lateral cerebellum, and

compared this to the prefrontal cortex of humans, chimpanzees, and rhesus macaque mon-

keys. We found that humans showed greater differential CpG methylation–an epigenetic

modification of DNA that can reflect past or present gene expression–in the cerebellum than

the prefrontal cortex, highlighting the importance of this structure in human brain evolution.

Humans also specifically show methylation differences at genes involved in neurodevelop-

ment, neuroinflammation, synaptic plasticity, and lipid metabolism. These differences are rel-

evant for understanding processes specific to humans, such as extensive plasticity, as well as

pronounced and prevalent neurodegenerative conditions associated with aging.

Introduction

Humans’ remarkable cognitive abilities–enabling language use, complex technology, and cul-

tural behavior—are hallmarks of our species. The neurobiological underpinning of these traits

originate in large part from developmentally established species-specific spatial and temporal

patterns of gene regulation in the brain [1–6]. One important gene regulatory mechanism crit-

ical to establishing species-typical and cell type-specific transcriptional profiles is CpG methyl-

ation. This epigenetic mark involves the addition of a methyl chemical group by

methyltransferase enzymes to cytosine DNA bases occurring next to guanine bases, or CpG

sites, and can affect gene expression by influencing transcription factor binding and chromatin

organization [7]. Methylation across the genome can be considered to represent the footprint

of developmentally configured, cell type-specific gene regulatory settings [8]. Consistent spe-

cies differences in methylation may thus reflect evolved developmental differences.

As such, methylation, along with gene expression, has been studied in a comparative evolution-

ary context in an effort to identify clues to the molecular basis of human-specific traits. Indeed,

differential methylation among closely related primate species has been identified in several tis-

sues, including kidney, liver, blood, and bone [9–12]. Comparing brain methylation patterns

among humans and other primates to reveal species differences in developmental programming

and plasticity is thus of considerable interest in the search for what sets human cognition apart.

Although nonhuman primates share the same brain structures as humans, some structures have

taken on new roles that enable human-specific cognitive abilities and behaviors, which may be

reflected in changes in relative size, microstructure, or connectivity [13]. For example, the ques-

tion of whether humans have a relatively enlarged prefrontal cortex, a region that plays a role in

language and abstract thought, has been the subject of much study, and the connectivity and neu-

rotransmitter innervation of this structure appears to be distinct in humans [13,14].

Such changes in our lineage presumably have molecular bases and previous studies have

found differential methylation between humans and chimpanzees in the prefrontal cortex

associated with genes involved in developmental processes, psychiatric conditions, and neuro-

degeneration [15,16], as well as genes implicated in brain size [17] and regulation of the lan-

guage-associated gene FOXP2 [18]. Together, these findings affirm the potential relevance of

methylation in brain tissue for understanding human neurobiology and evolution.
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We build on this evidence by comparing genome-wide methylation in humans, chimpan-

zees (Pan troglodytes), and rhesus macaques (Macaca mulatta) in the dorsolateral prefrontal

cortex (DLPFC), as well as the lateral cerebellum (Fig 1). The DLPFC is a specialized part of

the prefrontal cortex involved in executive functions, which are important for working mem-

ory, attention, cognitive flexibility, and planning (for review, see [19]). It is also heavily inter-

connected with language areas of the cortex and striatum in humans [20]. Moreover, the

human DLPFC is distinguished from other primates by patterns of cell type composition and

distribution, as well as neurochemistry [21,22]. The DLPFC is also especially affected in autism

spectrum disorder and schizophrenia [19]. The DLPFC has long been a focus of comparative

evolutionary studies, including molecular analyses.

In contrast, the cerebellum has received comparatively little attention in human evolution-

ary neuroscience until fairly recently. Long recognized for its role in motor control, later dis-

coveries of its role in non-motor function, including cognitive processes like language [23,24],

spurred a surge of research on the cerebellum [25,26]. Intriguingly, comparative work has

revealed that the lateral cerebellum is particularly enlarged in humans and other great apes

[27–29], and its claim to the majority of the brain’s neurons [30] has furthered interest in the

cerebellum’s role in human evolution. Indeed, it is increasingly recognized that the cerebellum

likely plays a role in the fine motor skills necessary for speech and the precision and control

underlying many cultural behaviors distinguishing humans [26]. Additionally, it is involved in

cognitive processing of language [31,32] and executive function, with the cerebellum poten-

tially allowing for a kind of supervised machine learning on spatiotemporal data input to build

cognitive models and automate complex behaviors [25].

Nevertheless, comparative molecular studies have continued to focus predominately on the

neocortex. In the current study, we thus sought to characterize epigenetic differences among

humans and other species in the cerebellum to gain insights into potential human distinc-

tiveness, as well as provide context to comparative studies of the neocortex. We specifically

investigated the lateral cerebellum, given its enlargement in hominoids and extensive intercon-

nection with the association areas of the neocortex [29].

Here, we examined species differences in methylation in the DLPFC and lateral cerebellum

using a fairly large sample size of rare nonhuman primate samples and a large number

(> 160,000) of CpG sites across the genome. Specifically, we identified human-specific differ-

entially methylated genomic regions specific to each brain structure, employing a three-way

comparison to identify whether differences between humans and chimpanzees occurred along

the chimpanzee or human branch. We also determined whether species-specific patterns of

methylation are unique to each brain structure or show overlap among structures or with

blood, a non-neural tissue. We were especially interested in differentially methylated regions

(DMRs) associated with genes and covering likely regulatory elements (e.g., near gene tran-

scription start sites). We further determined whether genes associated with such regulatory-

associated DMRs (regDMRs) showed species differences in gene expression.

Results

Differential methylation analysis

We analyzed DLPFC and cerebellum samples from seven human, eight chimpanzee, and

seven rhesus macaque adults free of neuropathology (Methods; Fig 1A and S1 Table). We

extracted DNA from 0.03–0.1 grams of tissue using the Qiagen DNeasy Blood and Tissue kit

(Qiagen, Hilden, Germany), brought DNAs to a standard concentration (~70 ng/μl), and pro-

filed genome-wide methylation levels from bisulfite-converted DNA by microarray (Illumina

Infinium EPIC Methylation BeadChip; “EPIC array” hereafter). We retained only CpG sites
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expected to be efficiently captured across all three species in downstream analysis and used

surrogate variable analysis to account for cell type heterogeneity (Methods). We identified

human and chimpanzee-specific differentially methylated regions (DMRs) comprised of at

least five CpGs, including at least three that showed an absolute difference in the proportion of

methylation of at least 0.15 from the other two species. We identified several significant

human- and chimpanzee-specific DMRs in each of the two brain structures (Table 1). Both

species showed a greater number of DMRs in the cerebellum than in the DLPFC (human:

DLPFC = 28, cerebellum = 64; chimpanzee: DLPFC = 5, cerebellum: 40). Many human- and

brain structure-specific DMRs overlapped genes involved in processes and conditions of

potential relevance to aspects of human-specific neurobiology, such as neurodevelopment,

including neurodevelopmental disorders (Figs 2 and 3).

Brain structure specificity and regulatory element association

Some (~7%) of the DMRs identified were evident in both brain structures (e.g., S1 Fig). We

also compared our DMR dataset with a dataset of chimpanzee-human DMRs in blood. Of the

Fig 1. Species relationships, brain structures, and sample clustering. A = Phylogenetic tree of species included in this study from TimeTree.org [113], B = brain

structures included in this study depicted on a chimpanzee brain illustration modified from [114], C and D = hierarchical clustering of samples from the

dorsolateral prefrontal cortex (C) and cerebellum (D) based on genome-wide methylation after filtering and normalizing using correlations between samples as

distance. DLPFC = dorsolateral prefrontal cortex.

https://doi.org/10.1371/journal.pgen.1009506.g001

PLOS GENETICS Comparative epigenetics of the cerebellum

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009506 May 6, 2021 4 / 23

https://doi.org/10.1371/journal.pgen.1009506.g001
https://doi.org/10.1371/journal.pgen.1009506


Table 1. Human and chimpanzee brain region-specific regDMRs.

Brain

structure

Species Gene Gene name Hyper or

hypo�

D
LP

FC

Human PAQR4 KREMEN2 progestin and adipoQ receptor family member 4 kringle containing

transmembrane protein 2

hyper

MYLK myosin light chain kinase hypo

ADAM30 ADAM metallopeptidase domain 3 mix

MLST8 MTOR associated protein, LST8 homolog hypo

TMEM177 transmembrane protein 177 hyper

TRIM65 tripartite motif containing 65 hyper

C10orf71 & C10orf71-AS1 chromosome 10 open reading frame 71 hyper

FAM193A family with sequence similarity 193 member A hypo

SLC13A4 solute carrier family 13 member 4 hyper

Chimp-

anzee

LRCH1 leucine rich repeats and calponin homology domain containing 1 hyper

CUGBP1 CUGBP Elav-like family member 1 hyper

C
er
eb
el
lu
m

Human GP5 glycoprotein V platelet hyper

CHAD ACSF2 chondroadherin acyl-CoA synthetase family member 2 hypo

SEPP1 selenoprotein P hyper

DLEU7 deleted in lymphocytic leukemia 7 hyper

HRH1 histamine receptor H1 hyper

PARVG parvin gamma hypo

TRAF3IP2 TRAF3 interacting protein 2 hypo

SH3BGR SH3 domain binding glutamate rich protein hyper

FAM83A family with sequence similarity 83 member A hypo

ANKS1B ankyrin repeat and sterile alpha motif domain containing 1B hypo

DLGAP1 & DLGAP1-AS1/
FLJ35776

DLG associated protein 1 hypo

PLCH1 phospholipase C eta 1 hypo

FAM198B golgi associated kinase 1B hypo

TRAF3IP2 TRAF3 interacting protein 2 hypo

STK33 serine/threonine kinase 33 hypo

CCDC8 coiled-coil domain containing 8 hypo

GSTO2 glutathione S-transferase omega 2 hypo

CRIP3 cysteine rich protein 3 mix

CPNE6 copine 6 hypo

PHACTR1 phosphatase and actin regulator 1 hypo

FUT4 fucosyltransferase 4 hypo

MEDAG mesenteric estrogen dependent adipogenesis mix

MIR192 & MIR194-2 microRNA 192

microRNA 194–2

hypo

MIR1182 & FAM89A microRNA 1182 family with sequence similarity 89 member A hyper

DNAH10 dynein axonemal heavy chain 10 hyper

SDR42E1 short chain dehydrogenase/reductase family 42E, member 1 hyper

LOC101928322 CELF2 divergent transcript hypo

DMPK DM1 protein kinase hyper

Chimp-

anzee

CCDC140 CCDC140 long non-coding RNA hyper

CCDC102A coiled-coil domain containing 102A hyper

LINGO3 leucine rich repeat and Ig domain containing 3 hypo

ZNF608 Zinc finger protein 68 hyper

MYO18A myosin XVIIIA hypo

(Continued)
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DLPFC DMRs, ~27% were also identified in blood, and, of the cerebellum DMRs, ~7% were

also called as DMRs in blood. Five DMRs were shared across both brain structures and blood

(e.g., S2 Fig). Overall, correspondence across tissues was high, with average global DLPFC and

cerebellum methylation showing a correlation of 0.91–0.92 in all three species, DLPFC and

blood methylation showing a correlation of 0.90–0.91 in humans and chimpanzees, and cere-

bellum and blood showing a correlation of ~0.82 in humans and chimpanzees, the two species

represented in the blood dataset.

We next determined whether DMRs were associated with potential regulatory regions

(Methods). In the DLPFC, nine human-specific and two chimpanzee-specific DMRs unique to

the DLPFC were regulatory-associated DMRs (regDMRs; i.e., covering potential regulatory

elements; see Methods; S2 Table and Figs 2 and 3). In the cerebellum, we identified 28 such

regDMRs that were human-specific, which is over three times as many as in the DLPFC, and

23 that were chimpanzee-specific (Tables 1 and S2).

Correspondence with gene expression and previous studies

We also identified whether genes associated with species-specific regDMRs showed species-

specific differential gene expression using a previously published RNA-seq dataset including

humans, chimpanzees, and rhesus macaques (Methods). We identified 281 genes that showed

human-specific expression in the DLPFC and 487 that showed human-specific expression in

the cerebellum. We also identified 231 genes that showed chimpanzee-specific expression in

the DLPFC and 339 that showed chimpanzee-specific expression in the cerebellum. In the

DLPFC, seven genes associated with human-specific, DLPFC-specific regDMRs were repre-

sented in the gene expression dataset. None showed differential gene expression in humans.

Two genes associated with chimpanzee-specific, DLPFC-specific regDMRs were represented

Table 1. (Continued)

Brain

structure

Species Gene Gene name Hyper or

hypo�

CDK15 cyclin dependent kinase 15 hypo

TRIM66 tripartite motif containing 66 hyper

SLC43A3 solute carrier family 43 member 3 hypo

ADAM32 ADAM metallopeptidase domain 32 hypo

SYTL1 synaptotagmin like 1 hyper

TCF21 transcription factor 21 hyper

BNC1 basonuclin 1 hyper

RNPEPL1 arginyl aminopeptidase like 1 hypo

APPL2 adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 2 hyper

GYPC glycophorin C (Gerbich blood group) hyper

DRD2 dopamine receptor D2 hypo

NODAL nodal growth differentiation factor hyper

ST3GAL1 ST3 beta-galactoside alpha-2,3-sialyltransferase 1 hyper

LRRC8D leucine rich repeat containing 8 VRAC subunit D hyper

TWIST2 twist family bHLH transcription factor 2 hyper

AVEN & CHRM5 apoptosis and caspase activation inhibitor cholinergic receptor muscarinic 5 hypo

LPL lipoprotein lipase hypo

KCNE3 potassium voltage-gated channel subfamily E regulatory subunit 3 hyper

�Hypermethylated or hypomethylated

https://doi.org/10.1371/journal.pgen.1009506.t001
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in the gene expression dataset and neither was associated with differential gene expression. In

contrast, in the cerebellum, five (CHAD, STK33, CCDC8, CPNE6, SDR42E1) of the 24 genes

associated with human-specific, cerebellum-specific regDMRs that were represented in the

gene expression dataset showed significant human-specific differential expression (Fig 4 and

S2 Table), which represents more than would be expected by chance (Fisher’s exact test;

p = 0.004). Four of these genes show the canonical inverse relationship between methylation

and gene expression, with three (CHAD, STK33, CPNE6) showing hypomethylation and upre-

gulation (Fig 4) and one (SDR42E1) showing hypermethylation and downregulation. The fifth

gene (CCDC8) unexpectedly shows the opposite pattern with hypermethylation and upregula-

tion. Eighteen genes associated with chimpanzee-specific, cerebellum-specific regDMRs were

Fig 2. DLPFC-specific human regDMRs associated with ADAM30 and FAM193A. A = ADAM30, B = FAM193A.

Lines are loess smoothed methylation values for each species across the DMR and each point represents raw methylation

values for each individual at each CpG site within the DMR ranges. TSS200 = within 200 bp of a transcription start site

and TSS1500 within 1500 bp of a transcription start site. Chromosomal coordinates are in base pairs and refer to human

genome build hg19.

https://doi.org/10.1371/journal.pgen.1009506.g002

PLOS GENETICS Comparative epigenetics of the cerebellum

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009506 May 6, 2021 7 / 23

https://doi.org/10.1371/journal.pgen.1009506.g002
https://doi.org/10.1371/journal.pgen.1009506


represented in the gene expression data and two (SYTL1 and NODAL) showed significant,

chimpanzee-specific differential gene expression (S3 Fig and S2 Table). This degree of overlap

is not more than what would be expected by chance (Fisher’s exact test; p = 0.12). Both show

inverse methylation and gene expression with SYTL1 exhibiting hypomethylation and upregu-

lation and NODAL hypermethylation and downregulation. Macaques, however, show no

expression of NODAL, despite showing lower methylation than chimpanzees.

We also assessed whether genes showing uniquely human gene expression in the cerebel-

lum shared the gene ontology (GO) term “chemical synaptic transmission” (GO:0007268) that

annotated some of our cerebellar regDMR genes (S3 and S4 Tables). We found that 19 genes

showing uniquely human gene expression are annotated with this GO term (S3 Table). How-

ever, this does not represent statistical enrichment (Fisher’s exact test, p = 0.2763).

Finally, we assessed whether global methylation levels in our dataset showed correspon-

dence with a previously published WGBS dataset for chimpanzees and humans. We found that

average methylation levels across sites were highly correlated between our dataset and the

WGBS dataset at overlapping CpGs (chimpanzees: Pearson’s R = 0.91; humans: Pearson’s

R = 0.90).

Discussion

Our results showing divergence in methylation of the cerebellum comparable to that in the

DLPFC is notable giving a long-standing focus on the prefrontal cortex in comparative neuro-

science. Moreover, we identified a greater number of human-specific regDMRs in the

Fig 3. Cerebellum-specific human regDMRs associated with PLCH1, ANKS1B, DLGAP1, and PHACTR1. A = PLCH1, B = ANKS1B, C = DLGAP1, D =

PHACTR1. Lines are loess smoothed methylation values for each species across the DMR and each point represents raw methylation values for each individual at each

CpG site within the DMR ranges. TSS200 = within 200 bp of a transcription start site and TSS1500 within 1500 bp of a transcription start site. Chromosomal

coordinates are in base pairs and refer to human genome build hg19.

https://doi.org/10.1371/journal.pgen.1009506.g003
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cerebellum than the DLPFC, and some of these cerebellar human-specific regDMRs were asso-

ciated with genes that also showed uniquely human gene expression in the cerebellum, which

was not the case for the DLPFC. Our finding affirms the importance of the study of the

Fig 4. Cerebellum-specific human regDMRs and gene expression levels for CHAD, CPNE6, and STK33. A = CHAD
methylation, B = CHAD gene expression, C = CPNE6 methylation, D = CPNE6 gene expression, E = STK33 methylation, and

F = STK33 gene expression. Lines are loess smoothed methylation values for each species across the DMR and each point

represents raw methylation values for each individual at each CpG site within the DMR ranges. TSS200 = within 200 bp of a

transcription start site and TSS1500 within 1500 bp of a transcription start site. Chromosomal coordinates are in base pairs

and refer to human genome build hg19.

https://doi.org/10.1371/journal.pgen.1009506.g004
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cerebellum in human brain evolution. This finding is consistent with recent analyses of gene

expression across many brain structures [33] and the observed disproportionate expansion of

the cerebellum in humans [27], as well as in line with increasing recognition of the cere-

bellum’s potential importance in human-specific cognitive and behavioral traits, including lan-

guage, speech production, and spatiotemporal processing [25–28,31,32].

Of the five human-specific differentially methylated regions associated with corresponding

human-specific gene expression, several are not well characterized or do not have known roles

in the brain. CPNE6 (copine 6; Fig 4C and 4D), however, plays a role in synaptic plasticity and

learning and, notably, was previously found to show prolonged developmental expression in

the human cortex relative to nonhuman primates [34,35].

Several other human-specific regDMRs overlapped genes involved in neurodevelopment

(FAM198B, PHACTR1, and DIP2C in the cerebellum) and neurodevelopmental disorders,

including autism spectrum disorder (ANKS1B, DIP2C, and DLGAP1 in the cerebellum) and

schizophrenia (FAM193A in the DLPFC and ANKS1B, DLGAP1, and DLEU7 in the cerebel-

lum; Figs 2B and 3B and 3C) [36–43]. These results are consistent with previous studies

[15,16] and may reflect species differences in development, as well as potentially greater

human vulnerability to neuropsychiatric disorders [44–46].

Several genes overlapped by human-specific regDMRs are also implicated in neuroinflam-

mation and neurodegeneration, including ADAM30, GSTO2, PRSS50, MYOZ3, and ANKS1B
(Figs 2A and 3B) [47–51]. For example, one of the DLPFC regDMRs spans regulatory elements

associated with ADAM30 (ADAM metallopeptidase domain 30; Fig 2A), a gene that plays a

role in processing amyloid precursor protein and appears to be downregulated in Alzheimer’s

disease [50]. A cerebellum-specific regDMR overlaps regulatory elements associated with

ANKS1B (ankyrin repeat and sterile alpha motif domain containing 1B; Fig 3B), which is

enriched at synapses in the cerebellum and binds amyloid precursor protein, decreasing amy-

loid beta protein production [38,48]. Humans may be specifically susceptible to dementia and

neurodegeneration with age. Nonhuman primates show cognitive declines [52–55], age-

related brain structural changes [56,57], and some degenerative pathology [58–60]. However,

these phenotypes are generally considered to be mild compared to the severe degenerative

pathology observed in humans [59,61,62]. Greater neurodegeneration in humans is thought to

reflect a possible increase in oxidative stress and inflammation resulting from heightened

energy metabolism over an extended lifespan [59,63,64].

Notably, a number of the genes associated with regDMRs (CPNE6, DLGAP1, EGFLAM, and

ANKS1B) and implicated in neuropathology play roles in synaptic plasticity with several func-

tioning as postsynaptic scaffold components [34,36,48,65]. Dysfunction in synaptic transmis-

sion and plasticity during development and adulthood may be a common risk in

neurodevelopmental and degenerative disorders [48]. Greater and prolonged synaptic plasticity

in humans has been hypothesized to underlie human behavioral and cognitive flexibility

[64,66,67]. The cost of this increased, sophisticated cognitive dexterity may thus be another con-

tributor to increased susceptibility to neurodevelopmental and degenerative conditions [66].

Lipid metabolism is also important in the brain as lipids play critical roles in the structure

and function of nervous tissue. Notably, we identified a human-specific hypomethylated

regDMR in the cerebellum overlapping PLCH1 (Fig 3A), which encodes a phospholipase.

PLCH1 was previously found to show human-specific expression and to interact with lipids

comprising part of the human-specific brain lipidome profile [68], although we did not iden-

tify a human-specific pattern of expression of this gene in the present analysis. Human-specific

regDMRs were also associated with several noncoding RNA genes, including LOC101928322,

MIR192, and MIR1182. The important roles of noncoding RNAs in the brain are increasingly

gaining attention [69].
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Chimpanzee-specific DMRs (Tables 1 and S2) were also of interest. Chimpanzees exhibit a

cerebellum-specific DMR at DRD2 (S4 Fig), the gene encoding the dopamine receptor D2, one

of five receptors for the neurotransmitter dopamine [70]. The genetic modulation of dopami-

nergic pathways in intra- and interspecific variation in primate social behavior has garnered

considerable interest [71–73]; however, the significance of such variation in methylation in the

cerebellum requires further study.

Our data contained overall fewer CpGs than a comparative study of the prefrontal cortex in

primates using whole genome bisulfite sequencing (WGBS) [15] such that none of the geno-

mic ranges of DMRs identified in that study were represented in our data by enough CpGs (5)

to comprise a DMR. We nevertheless found the genomic ranges of the previous study’s

human-specific DMRs to be enriched for individual, human-specific differentially methylated

CpGs in our datasets for both brain structures (Fisher’s exact test, p< 0.001), with slightly

over half the CpGs present in each dataset falling within these ranges showing human-specific

methylation. This finding, along with generally strong correlation of methylation levels

between datasets across all overlapping CpGs, suggests that our study is broadly concordant

with this previous study using a sequencing-based approach. Notably, however, our cerebel-

lum dataset was as enriched for human-specific differentially methylated CpGs in these ranges

as was the DLPFC dataset and two genes that we found to show human-specific methylation

in the cerebellum (DIP2C and RBPMS) were previously associated with human-specific meth-

ylation in the prefrontal cortex [15]. These findings indicate that previously identified human-

specific DMRs might not be unique to the prefrontal cortex, or even the neocortex.

Thus, our results suggest that human-specific DMRs previously identified in a particular

brain structure may not actually be structure-specific and highlights the value of jointly com-

paring species and brain structure differences. This is consistent with our findings of substan-

tial (~27%) overlap in human-specific differential methylation between the two brain

structures, as well as less extensive, but still notable (~7%) overlap with differential methylation

we identified in blood, suggesting that not all differential methylation in the brain necessarily

reflects brain-specific regulatory differences. The correlations in global methylation between

blood and the DLPFC and cerebellum are highly similar to those previously reported [74], as is

the greater correspondence in methylation between blood and neocortex than blood and cere-

bellum [74,75] in global methylation, as well as DMRs. Overlapping differential methylation

with blood might reflect human-specific patterns established early in development in cell types

with a common developmental origin. Because there is blood present in the brain, some signal

from blood methylation may also be detected in our brain data. Humans, furthermore, may

show greater overlap among structures/tissues than chimpanzees because the array targets

human functional regions.

Overlapping differential methylation across brain structures might reflect neuron-specific,

species-specific patterns of methylation. Along these lines, some degree of divergence in differ-

ential methylation that we observed between brain structures might reflect differences in rela-

tive cell type composition. Although we have accounted for interindividual differences in cell

type composition within regions using a surrogate variable approach, we have not accounted

for cell type composition differences between regions. Notably, the cerebellum has a much

higher proportion of neurons than the cerebral cortex and the composition of neurons relative

to glia varies less among species with brain size [30]. Moreover, compared to the cerebral cor-

tex, there is a higher relative proportion of inhibitory interneurons in the neocortex than the

cerebellum [76]. As such, the cerebellum is generally more homogenous in cell composition

within and across species, and observed species differences in the cerebellum may reflect neu-

ron- or excitatory neuron-specific rather than region-specific differences. Single cell profiling

would address this question.

PLOS GENETICS Comparative epigenetics of the cerebellum

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009506 May 6, 2021 11 / 23

https://doi.org/10.1371/journal.pgen.1009506


The modest correspondence with gene expression in our analysis is consistent with the

results of previous analyses. Prior studies of species differences in methylation have uncovered

that methylation only explains a limited degree of variation in gene expression (e.g., 12–18%),

even when gene expression and methylation levels are measured in the same tissue samples

from the same individuals [11,15,77], which was not the case in our study. Rather, we lever-

aged a publicly available gene expression dataset matched for species and brain structure. It is

not entirely surprising that gene expression at a given moment only tracks methylation to a

limited degree given that methylation is only one of many regulatory mechanisms that influ-

ence gene expression and that variation in methylation and gene expression operate on differ-

ent temporal scales, with methylation being relatively stable and gene expression being

characterized by intermittent bursts of transcription, resulting in generally greater fluctuations

in gene expression levels than methylation levels [11,78,79]. Furthermore, predicting whether

methylation will lead to increased or decreased gene expression is complicated [79]. Although

heavy methylation near transcription start sites canonically represses gene expression, hypo-

methylated regions, considered “transcriptionally permissive,” can be associated with either

transcriptional activity or inactivity [80,81]. In addition, promoter methylation has now been

found to bind certain transcription factors [82], can also promote transcription when it occurs

at insulator binding sites [83], and can sometimes be overridden by gene body methylation

[79].

Moreover, methylation in adulthood may reflect vestiges of transcriptional states in devel-

opment rather than or in addition to present transcriptional states [84,85]. In particular, previ-

ous studies have demonstrated that methylation in adulthood at developmentally expressed

genes can provide a window into past gene expression in neurons [85], which is of interest in

itself, given challenges and limitations to assaying methylation directly during development in

humans and nonhuman primates, especially great apes. Thus, while we believe the species-

and brain structure-specific regDMRs in our analysis that exhibit corresponding changes in

gene expression are of great interest, we also think the regDMRs unassociated with differences

in adult gene expression warrant consideration and are nevertheless promising candidates for

further study, particularly given many of their associations with genes involved in

neurodevelopment.

Our study has a number of important limitations. First, our use of a microarray for humans

biases our results toward conserved and human functional regions. We are thus likely missing

divergent regions, such as enhancers specific to the other species. This may be why we

observed overall less chimpanzee-specific methylation and less overlap in chimpanzee-specific

methylation between brain structures. Also, we did not assay non-CpG methylation. Methyla-

tion at cytosines outside of CpG contexts has an important role in the brain [86]; species com-

parisons in non-CpG methylation are therefore an important part of the picture that is absent

from our current analysis. It is further impossible to distinguish presently between evolved dif-

ferences in developmental programs and species differences that may be environmental in ori-

gin. Indeed, given the known role of methylation in environmental programming [87] and the

protracted postnatal development of the brain [88], it is highly likely that growing up human

in our highly constructed environments contributes to some of the species differences we

observe, as it likely does to the unique cognitive traits we are interested in understanding. Both

evolved and environmentally or culturally induced differences are of interest for understand-

ing human cognitive uniqueness, but have different bases that are not readily teased apart.

Finally, heterogeneity in sample collection and processing could influence some of our find-

ings. Although the limited availability of human and nonhuman primate tissues is a challenge

that can result in suboptimal experimental variation like that in our study [77], the relative sta-

bility of methylation, for example, relative to RNA, under various storage conditions, or its
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“technical reliability” [79,89–92], makes it unlikely that batch effects resulting from differences

in storage conditions are a major issue.

In conclusion, we identified human-specific patterns of methylation in the cerebellum, in

addition to the DLPFC, which may reflect evolved and/or developmental neurobiological dif-

ferences relevant to human-specific traits, like language, tool use, and cultural behavior, in

these brain structures. Notably, we found greater human-specific differential methylation in

the cerebellum. This finding may be driven by strong signal from excitatory neurons, which

make up the bulk of cells in the cerebellum. Indeed, the cerebellum houses the majority of the

brain’s neurons and plays a role in many important cognitive, as well as motor, processes

[25,26,31,32]. Our results lend further weight to growing interest in cerebellar evolution, as

well as provide crucial comparative context for interpreting studies of differential methylation

in the cortex. In addition, we found that human-specific differential methylation overlapped

genes in pathways associated with neurodevelopment, which may reflect aspects of human-

specific developmental trajectories, and synaptic plasticity and lipid metabolism, which are

thought to be altered in humans [66,68]. These differences may hold clues to the molecular

underpinnings of human cognitive specializations. Moreover, some of these genes are also

implicated in neuropathology and thus may offer clues to human disease susceptibilities. Few

genes showing human-specific methylation patterns at putative regulatory elements showed

human-specific expression; nevertheless, these genes include some interesting candidates for

further study, such as CPNE6 (copine-6), which plays a role in learning and memory and

shows human-specific hypomethylation and upregulation in the cerebellum. Our results high-

light the value of tissue-specific species comparisons of methylation and are consistent with an

important role for the cerebellum in human brain evolution.

Methods

Ethics statement

Brain specimens were obtained from the NIH NeuroBioBank, the National Chimpanzee Brain

Resource, the Southwest National Primate Research Center, and the California National Pri-

mate Research Center with the approval of The George Washington University Institutional

Animal Care and Use Committee (Protocol #A454). No living animals were used.

Study subjects

Specimens were collected postmortem from 22 individuals of three species (7 humans, 8 chim-

panzees, and 7 rhesus macaques) (Fig 1A and S1 Table) who died from causes unrelated to this

research. All human specimens were categorized as healthy controls. Brain specimens were

frozen after postmortem intervals (PMIs) of less than 24 hours, except in the case of one of the

human individuals (PMI: 26.7 hours). We selected a mix of relatively young and older adult

subjects from each species. We obtained the specimens from the NIH NeuroBioBank, the

National Chimpanzee Brain Resource, the Southwest National Primate Research Center, and

the California National Primate Research Center. Following necropsy, brain specimens were

coronally sectioned and slabs were stored at -80˚C. Both brain regions came from the same

individual, except in one case for humans, where the two regions came from different individ-

uals of a similar age but different sex.

Tissue dissection

The dorsolateral prefrontal cortex (DLPFC, corresponding to Brodmann’s area 46) and lateral

cerebellum (Crus I and Crus II; “cerebellum” hereafter) were dissected from frozen
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chimpanzee and macaque brain sections kept chilled on dry ice using published species-spe-

cific brain atlases [27,93,94] (Fig 1B). Dissected tissue was then transferred to RNALater

(Ambion, Austin, TX, USA) preservation buffer and stored at -20˚C in solution until DNA

extraction. Human samples from the structures of interest were requested from the NIH Neu-

roBioBank and anatomical dissections followed by snap-freezing and pulverization were car-

ried out by their staff. All tissue derived from the left hemisphere, except for in the case of two

of the chimpanzees for which only the right hemisphere was available.

DNA extraction and microarray analysis

DNA was extracted using the DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany). Prior

to extraction, RNALater was washed from macaque and chimpanzee samples with PBS buffer.

We quantified DNA extracts on a Nanodrop spectrophotometer (Thermo Fisher Scientific,

Waltham, MA, USA) and brought them to a concentration of ~70 ng/μl, either through dilu-

tion with PCR-grade water or concentration using Microcon-30kDa Centrifugal Filter Unit

columns (Millipore Sigma, Burlington, MA, USA). DNA was then bisulfite-converted and

genome-wide methylation levels were profiled by microarray (Illumina Infinium EPIC Meth-

ylation BeadChip; “EPIC array” hereafter) at the Yale Center for Genome Analysis. A mix of

species, ages, and sexes were profiled on each chip to avoid batch effects.

Data preprocessing

We first filtered the raw intensity data to remove probes with spectral intensities not signifi-

cantly different from background levels, that do not target CpG dinucleotides, that contain

known SNPs, that are on the sex chromosomes, and for which fewer than 3 beads were

counted for 5% or more of the samples with the ChAMP v2.18.3 [95] R package. We excluded

one macaque cerebellum sample due to a high proportion of probes that did not show spectral

intensities above background levels. We then normalized the data using Beta Mixture Quantile

dilation (BMIQ), which accounts for the two different probe types on the EPIC array [96].

Because the Illumina methylation microarrays are designed to target human sites, we limited

all analyses to CpG sites that should also be efficiently targeted in chimpanzees and rhesus

macaques. Specifically, we restricted the dataset to CpG sites targeted by probes that map to

the chimpanzee (panTro2.1.4) and rhesus macaque (Mmul8.0.1) genomes with 0–2 mismatch

[s], without any mismatches within 5 bp of the target CpG, and without known SNPs in the

target species following [12].

Brain tissue is a composite of multiple cell types. We used surrogate variable analysis, a

robust, reference-free approach that can account for cell type heterogeneity [80,97]. Specifically,

for both our DLPFC and cerebellum data separately, we first estimated the number of cell types

(k) in the data using a random matrix theory approach to identify the number of variance com-

ponents in the data above the number expected under a Gaussian Orthogonal Ensemble (GOE)

using the EstDimRMT function in R package isva v1.9 [98]. EstDimRMT returned an optimal k

of two variance components/cell types for each tissue. We then estimated two surrogate vari-

ables using a re-weighted least squares approach [99] with the sva function in the R package sva

v3.36.0 [100]. We used singular value decomposition to assess remaining batch effects [101] in

both the DLPFC and cerebellum datasets with the champ.SVD function in the ChAMP package

v2.18.3 [95] and found no significant variance associated with array or slide.

Differential methylation analysis

We identified differential methylation in two ways. We first identified differential methylation

between humans and the two nonhuman primates, chimpanzees and macaques, in a dataset of
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CpGs present in all three species. These datasets consisted of 165,398 and 165,740 probes for

the DLPFC and cerebellum, respectively. The sparsity of CpGs in the dataset including

macaques due to decreased sequence conservation with phylogenetic distance, however, limits

our power to discover stretches of differential methylation in all three species. We thus addi-

tionally took a second, two-step approach to identifying species-specific methylation patterns

in which we identified differential methylation between humans and chimpanzees only. After

filtering, 556,428 and 557,796 probes remained in our chimpanzee-human DLPFC and cere-

bellum datasets, respectively. We then used overlapping, sparser macaque data to polarize

these differences.

In both approaches, we first identified CpG sites showing differential methylation (differen-

tially methylated positions, or DMPs) among species in each brain structure using the lmFit

linear regression function in the limma v3.44.3 R package with eBayes coefficient shrinkage

[102]. We included the covariates of age class, sex, and hemisphere, as well as the two surrogate

variables to account for cell type heterogeneity (S1 Table). We considered DMPs significant at

a false discovery rate [103] of 5%. We further required that DMPs exhibit a mean beta differ-

ence between humans and nonhuman primates of at least 0.15.

We next identified differentially methylated regions (DMRs)—or contiguous stretches of

the genome enriched for differential methylation—among species using the DMRcate v2.2.3 R

package, which calls DMRs based on Gaussian kernal smoothed methylation levels across

stretches of the genome [104]. We required DMRs to contain at least five CpGs and that at

least three of these CpGs be DMPs, as determined in our previous analysis. For the human-

chimpanzee DMRs, we then determined whether human-chimpanzee differential methylation

was human- or chimpanzee-specific by polarizing our comparisons using the macaque data.

Specifically, we determined which human-chimpanzee DMRs overlapped at least three

macaque-human or macaque-chimpanzee DMPs identified following the procedure described

above and whether these DMPs represented at least 50% of the CpGs comprising the DMR or

covered at least 50% of the DMR’s length. The resulting DMRs were determined to be human-

or chimpanzee-specific DMRs.

Brain structure specificity and regulatory element association

We determined the degree to which DMRs in each structure were specific to that structure by

assessing the overlap between the two sets of brain structure DMRs, as well as their correspon-

dence with DMRs in blood, using a human and chimpanzee dataset. Blood methylation data

for chimpanzees comprised a dataset we previously generated for 87 chimpanzee blood sam-

ples from 73 individuals using the EPIC array [105]. Human blood methylation data generated

on the 450K array was downloaded for 274 individuals [106–108] from the Gene Expression

Omnibus online database (accessions: GSE40279, GSE87571, GSE56105). Only probes on

both the EPIC and 450K arrays that are expected to effectively target CpG sites also present in

our brain methylation dataset were retained in this analysis. The final dataset was comprised

of 129,003 probes. Data were quality filtered and normalized, surrogate variables estimated to

account for cell type heterogeneity, and DMPs and DMRs identified using the same procedure

as for the brain data. We then determined overlap between blood and brain DMRs, as well as

between the two brain structures. DMRs were considered to be overlapping if they shared

more than half of their constituent CpGs or half of their genomic range with a DMR in another

tissue. DMRs were considered to be structure- or tissue-specific if they did not show overlap

with a DMR in the other brain structure or blood.

We further determined which genomic elements DMRs spanned and which genes, if any,

they were associated with by annotating CpGs within DMRs using the Illumina EPIC array
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annotation in the ChAMP v2.18.3 R package [95]. We considered DMRs comprised by DNA

within 1500 bp of transcription start sites or covering untranslated regions or the first exon to

be potentially regulatory associated (regDMRs). DMRs covering gene bodies or in intergenic

regions were not considered to be regDMRs.

Correspondence with gene expression

We assessed correspondence with gene expression of human and chimpanzee brain structure-

specific regDMRs using previously published data for the two structures for the three species

[109] (http://evolution.psychencode.org/#). We downloaded count data and analyzed it using

the DESeq2 v1.22.2 R package [110]. We removed genes with fewer than ten counts and used

the DESeq function to correct for differences in count due to library size, estimate data disper-

sion, and fit a differential expression model for each pair of species. We then identified differ-

entially expressed genes in humans as genes that were significantly differentially expressed

(adjusted p-value < 0.05) and exhibited a log fold change of at least 1.5 in both the human-

chimpanzee and human-macaque comparison. We also identified genes that were differen-

tially expressed in chimpanzees using an equivalent procedure. We also examined whether

genes that show uniquely human expression patterns and are associated with human-specific

regDMRs fall in the same pathways. Specifically, we determined whether any genes annotated

with the biological process GO term “chemical synaptic transmission” (GO:0007268)–a term

that annotated two genes (DLGAP1, CPNE6) associated with human-specific regDMRs in the

cerebellum–showed uniquely human expression patterns in the cerebellum. We retrieved a list

of genes annotated with this term using the get_anno_genes function in the R package

GOfuncR v1.8.0 [111] and assessed whether these genes showed a uniquely human pattern of

expression.

Correspondence with previous studies

We assessed the overall correspondence of our DLPFC data with previously published prefron-

tal cortex WGBS data for humans and chimpanzees [16]. We calculated the mean methylation

level for each species at each CpG site in each dataset. The chimpanzee WGBS data was aligned

to the panTro2.0 genome build, so we used the liftover function in the R package rtracklayer

v1.48.0 [112] to identify the corresponding hg19 coordinates. We then assessed the correlation

between average methylation for each species in the two datasets across all sites overlapping

between the two datasets. We used to same approach to measure correspondence of the pre-

frontal cortex WGBS data with our cerebellum data to assess region specificity.

Supporting information

S1 Fig. Human-specific regDMRs in both brain structures. A = PRSS50 and B = EGFLAM.

Lines are loess smoothed methylation values for each species across the DMR and each point

represents raw methylation values for each individual at each CpG site within the DMR ranges.

TSS200 = within 200 bp of a transcription start site and TSS1500 within 1500 bp of a transcrip-

tion start site. Chromosomal coordinates are in base pairs and refer to human genome build

hg19.

(TIF)

S2 Fig. Human-specific cross-tissue regDMRs. A = C1orf65 and B = BMPER. Lines are loess

smoothed methylation values for each species across the DMR and each point represents raw

methylation values for each individual at each CpG site within the DMR ranges.

TSS200 = within 200 bp of a transcription start site and TSS1500 within 1500 bp of a
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transcription start site. Chromosomal coordinates are in base pairs and refer to human

genome build hg19.

(TIF)

S3 Fig. Cerebellum-specific chimpanzee regDMRs associated with STYL1 and STYL1 gene

expression. A = methylation, B = gene expression. Lines are loess smoothed methylation val-

ues for each species across the DMR and each point represents raw methylation values for

each individual at each CpG site within the DMR ranges. TSS200 = within 200 bp of a tran-

scription start site and TSS1500 within 1500 bp of a transcription start site. Chromosomal

coordinates are in base pairs and refer to human genome build hg19.

(TIF)

S4 Fig. Chimpanzee-specific DMR overlapping DRD2 in the cerebellum. Lines are loess

smoothed methylation values for each species across the DMR and each point represents raw

methylation values for each individual at each CpG site within the DMR ranges. Chromosomal

coordinates are in base pairs and refer to human genome build hg19.

(TIF)

S1 Table. Study subjects.

(XLSX)

S2 Table. Species and region-specific DMRs.

(XLSX)

S3 Table. Genes showing uniquely human expression in the cerebellum annotated with the

GO term chemical synaptic transmission.

(XLSX)

S4 Table. Human and chimpanzee brain region-specific regDMRs annotated with GO

terms.

(XLSX)

Acknowledgments

We thank Dr. Soojin Yi for providing processed WGBS data; Cheryl Stimpson for expert tech-

nical assistance; NIH NeuroBioBank for providing human tissue samples; National Chimpan-

zee Brain Resource, Southwest National Primate Research Center and California National

Primate Research Center for the rhesus macaque tissue samples; and Dr. Mary Ann Raghanti

for helpful discussion.

Author Contributions

Conceptualization: Elaine E. Guevara, Chet C. Sherwood.

Formal analysis: Elaine E. Guevara.

Funding acquisition: Elaine E. Guevara, William D. Hopkins, Brenda J. Bradley, Chet C.

Sherwood.

Investigation: Elaine E. Guevara, Chet C. Sherwood.

Resources: William D. Hopkins, Patrick R. Hof, John J. Ely, Chet C. Sherwood.

Supervision: William D. Hopkins, Brenda J. Bradley, Chet C. Sherwood.

Visualization: Elaine E. Guevara.

PLOS GENETICS Comparative epigenetics of the cerebellum

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009506 May 6, 2021 17 / 23

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009506.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009506.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009506.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009506.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009506.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009506.s008
https://doi.org/10.1371/journal.pgen.1009506


Writing – original draft: Elaine E. Guevara, Patrick R. Hof, Chet C. Sherwood.

Writing – review & editing: Elaine E. Guevara, William D. Hopkins, Patrick R. Hof, John J.

Ely, Brenda J. Bradley, Chet C. Sherwood.

References
1. Capra JA, Erwin GD, McKinsey G, Rubenstein JL, Pollard KS. Many human accelerated regions are

developmental enhancers. Philos Trans R Soc Lond B Biol Sci. 2013; 368: 20130025. https://doi.org/

10.1098/rstb.2013.0025 PMID: 24218637

2. Kanton S, Boyle MJ, He Z, Santel M, Weigert A, Sanchı́s-Calleja F, et al. Organoid single-cell genomic

atlas uncovers human-specific features of brain development. Nature. 2019; 574: 418–422. https://doi.

org/10.1038/s41586-019-1654-9 PMID: 31619793

3. King M-C, Wilson AC. Evolution at two levels in humans and chimpanzees. Science. 1975; 188: 107–

116. https://doi.org/10.1126/science.1090005 PMID: 1090005

4. Marchetto MC, Hrvoj-Mihic B, Kerman BE, Yu DX, Vadodaria KC, Linker SB, et al. Species-specific

maturation profiles of human, chimpanzee and bonobo neural cells. eLife. 2019; 8: e37527. https://doi.

org/10.7554/eLife.37527 PMID: 30730291

5. Mostajo-Radji MA, Schmitz MT, Montoya ST, Pollen AA. Reverse engineering human brain evolution

using organoid models. Brain Res. 2020; 1729: 146582. https://doi.org/10.1016/j.brainres.2019.

146582 PMID: 31809699

6. Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci.

2009; 10: 724–735. https://doi.org/10.1038/nrn2719 PMID: 19763105

7. Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. DNA methylation clocks in aging:

categories, causes, and consequences. Mol Cell. 2018; 71: 882–895. https://doi.org/10.1016/j.molcel.

2018.08.008 PMID: 30241605

8. Enard W, Fassbender A, Model F, Adorján P, Pääbo S, Olek A. Differences in DNA methylation pat-
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