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Abstract: Genus Aspergillus represents a widely spread genus of fungi that is highly popular for
possessing potent medicinal potential comprising mainly antimicrobial, cytotoxic and antioxidant
properties. They are highly attributed to its richness by alkaloids, terpenes, steroids and polyke-
tons. This review aimed to comprehensively explore the diverse alkaloids isolated and identified
from different species of genus Aspergillus that were found to be associated with different marine
organisms regarding their chemistry and biology. Around 174 alkaloid metabolites were reported,
66 of which showed important biological activities with respect to the tested biological activities
mainly comprising antiviral, antibacterial, antifungal, cytotoxic, antioxidant and antifouling activities.
Besides, in silico studies on different microbial proteins comprising DNA-gyrase, topoisomerase IV,
dihydrofolate reductase, transcriptional regulator TcaR (protein), and aminoglycoside nucleotidyl
transferase were done for sixteen alkaloids that showed anti-infective potential for better mecha-
nistic interpretation of their probable mode of action. The inhibitory potential of compounds vs.
Angiotensin-Converting Enzyme 2 (ACE2) as an important therapeutic target combating COVID-19
infection and its complication was also examined using molecular docking. Fumigatoside E showed
the best fitting within the active sites of all the examined proteins. Thus, Aspergillus species isolated
from marine organisms could afford bioactive entities combating infectious diseases.

Keywords: alkaloids; antimicrobial activity; Aspergillus; molecular modelling

1. Introduction

Recently, marine-derived fungi have gained significant attention as promising thera-
peutic approaches for the treatment of a wide array of human ailments and as successful
tools for drug discovery [1]. This is mainly attributed to their richness by a diverse array of
secondary metabolites comprising terpenoids, alkaloids, peptides, lactones and steroids.
These promising activities are represented by antiviral, antibacterial, anti-inflammatory
and anticancer activity [2]. The significant diversity in physical and chemical structure
of the environment where the marine-derived fungi grow has greatly reflected by the
vast structural and functional variation in their produced secondary metabolites and their
biological activities [3]. Meanwhile, marine-derived fungal metabolites displayed a promis-
ing physico-chemical behavior and oral-bioavailability, constituting a safer therapeutic
alternative when compared to synthetic molecules that are considerably important in the
process of pharmaceutical dosage form formulation [4,5]. Moreover, many alkaloids were
previously isolated from marine fungi and showed a vast array of biological activities [6–9].

Genus Aspegillus represents a widely spread genus of fungi that are highly popular of
possessing a potent medicinal potential comprising mainly antimicrobial, cytotoxic and
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antioxidant activities that are highly attributed to its richness by alkaloids, terpenes, steroid
and polyketons. These secondary metabolites reflect the considerable importance of genus
Aspergillus both in the scientific and pharmaceutical industries levels [10].

Thus, this review aimed to comprehensively explore the diverse alkaloids isolated and
identified from different species of genus Aspergillus that were found to be associated with
different marine organisms regarding their chemistry and biology. Classification was done
on the basis of alphabetical arrangement of species. Around 174 alkaloid metabolites were
reported, 66 of which showed important biological activities mainly comprising antiviral,
antibacterial, antifungal, cytotoxic, antioxidant and antifouling activities. In addition, data
illustrating the bioactive alkaloids obtained from previously mentioned fungal strains,
their sources and biological properties are compiled in Table 1 for better representation of
the collected data. A pie chart illustrating the different biological activities for the bioactive
alkaloids of genus Aspergillus was also provided. Besides, in silico studies on different
microbial proteins were done for sixteen alkaloids that showed anti-infective potential
for better mechanistic interpretation of their probable mode of action. In addition, the
inhibitory potential of these compounds vs. Angiotensin-Converting Enzyme 2 (ACE2) as
an important therapeutic target combating COVID-19 infection and its complication was
also examined using molecular docking to it can act as a guide for researchers who wish to
continue exploring the anti-infectious potential of alkaloid derived from genus Aspergillus.

2. Diverse Alkaloids Isolated and Identified from Different Species of Genus
Aspergillus and Their Biology in Alphabetical Arrangement of Species
2.1. A. carneus

Aspergillus species are highly popular due to the presence of a wide variety of alkaloids
belonging to diverse classes. Prenylated indole and quinazolinone alkaloids were isolated
from A. carneus, a marine associated Aspergillus species, while the former is represented by
carneamides A-C (1–3); however, the latter is represented by carnequinazolines A-C (4–6).
Unfortunately, none of the isolated compounds revealed any antimicrobial or cytotoxic
activities (Figure 1) [11].
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2.2. A. flavus

In depth phytochemical investigation of A. flavus resulted in the isolation of two
alkaloids of diketopiperazine class; namely, ditryptophenaline (7) and 3[(1H-indol-3-yl)
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methyl]-6-benzylpiperazine-2,5-dione (8). Their structures were unambiguously elucidated
via accurate analysis of their spectroscopic data (Figure 1) [12].

2.3. A. fumigatus

Regarding A. fumigatus, it revealed the presence of plethora of alkaloids (Figures 2 and 3) which
are represented by fumitremorgin C (9), fumiquinazoline C (10), verruculogen (11), spirotrypro-
statin F (12), spirotryprostatin A (13), 12,13-dihydroxyfumitremorgin C (14), tryptoquivaline F (15),
6-bisdethiobis(methylthio)gliotoxin (16), 6-methoxyspirotryprostatin B (17). Compounds (9–13)
effectively stimulate the growth of buckwheat seedlings at very low concentration estimated by
10–16 µM [13], however compounds (16–17) potentiate the growth of seedling roots of Zea mays in
an effective manner [14]. Besides, fumiquinazoline A (18), fumiquinazoline C (10), fumiquinazoline
F (19), fumiquinazoline G (20), pseurotin A (21), as well as tryptoquivaline J (22), were isolated
from the same Aspergillus species. All the isolated six alkaloid metabolites showed a substantial
inhibitory activity on tsFT210 cells proliferation; however, fumiquinazoline C and pseurotin A
effectively inhibited BEL-7402, A-549, P388 and HL60 proliferation [15]. Furthermore, costaclavine
(23), fumgaclavine A (24) and C (25), which were isolated from A. fumigatus together with two new
alkaloids of indole type 2-(3,3-dimethylprop-1-ene)-costaclavine (26) and 2-(3,3-dimethylprop-1-ene)-
epicostaclavine (27) revealed mild cytotoxic effect vs. P388, mouse leukemia cancer cells [16]. Mean-
while, new alkaloids isolated from A. fumigatus displayed a potent antimicrobial activity in which
fumigatoside E (28) showed antifungal activity vs. Fusarium oxysporum with MIC equals 1.56µg/mL.
Besides, fumigatoside F (29) showed a considerable activity against A. baumanii with MIC equals
6.25 µg/ mL. In addition, fumiquinazoline C (10), fumiquinazoline G (20) and epi-aszonalenin A
(30) showed moderate potential against A. baumanii, two S. aureus strains, K. pneumonia, Fusarium
oxysporum cucumerinu and momordicae with MIC ranging from 1.5 to 25 µg/mL, in which strep-
tomycin was used as a positive antibacterial standard drug and nystatin as a positive antifungal
standard drug. Meanwhile, fumiquinazoline G showed the greatest activity with MICs equal to
1.56 and 0.78 µg/mL, against the Staphylococcus aureus strains [17]. Moreover, another study carried
on A. fumigatus revealed that some of its alkaloids showed a notable in-vitro antiproliferative effect
such as pseurotin A (41), 14-norpseurotin A (31), pseurotin A1 (32), FD-838 (33) however other
alkaloids as 14-hydroxyterezine D (34), demethoxyfumitremorgin C (35) and terezine D (36) were
also isolated [18].
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2.4. A. nidulans

Furthermore, four new alkaloids of quinazolinone type which are aniquinazolines A-D
(37–40) were isolated from A. nidulans, which was associated with the leaves of Rhizophora
stylosa, marine plant. Compounds (37–40) revealed a significant lethal effect on brine
shrimp displaying LD50 of 1.27, 2.11, 4.95 and 3.42 µM, in a respective manner which is
superior to the positive control colchicine. However, none of these compounds exhibited
any antibacterial activity vs. Escherichia coli and S. aureus or any cytotoxic effect on HL-60,
BEL-7402, K562 and MDA-MB-231 cancer cells (Figure 4) [19].

2.5. A. ochraceus

A. ochraceus is also a rich source of alkaloids of benzodiazepine type such as 2-
hydroxycircumdatin C (41) and 2,3-dihydro-7-methoxy-1Hpyrrolo[2,1-c][1,4] benzodi-
azepine -5,11(10H,11aH)-dione (42) that are considered to be new naturally occurring
alkaloids in addition to known compounds as circumdatin C (43), circumdatin D (44),
circumdatin F (45), selerotiamide (46) and notoamide B (47). 2-Hydroxycircumdatin C
showed a potent antioxidant power as evidenced by its IC50 that is estimated by 9.9 µM
in DPPH radical scavenging assay showing a superior activity comparable to butylated
hydroxytoluene, a familiar synthetic positive control with IC50 = 88.2 µM. However, cir-
cumdatin C and D displayed mild antioxidant activity with IC50 value more than 100 µM in
the same assay. None of compounds (41–47) revealed any antibacterial potential against S.
aureus or E. coli or antifungal effect vs. A. niger [20]. Concerning A. ostianus, two heptacyclic
alkaloidal compounds of stephacidin class were isolated from its culture medium namely
notoamide F (48) and 21-hydroxystephacidin (49) (Figure 4) [21].
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2.6. A. oryzae

Meanwhile, a series of oxindole alkaloids represented by speradines C-H (50–55) were
isolated from A. oryzae, which showed a mild cytotoxic effect on HeLa cell line (Figure 4) [22,23].

2.7. A. puniceus

Furthermore, A. puniceus is a good source of new alkaloids from which eight new
diketopiperazine-type alkaloids were isolated from the extract of its culture broth. Four
of these new diketopiperazine alkaloids contain oxepin moiety however the other four
contain quinazolinone moiety. The formers are represented by oxepinamides H-K (56–59);
meanwhile, the latters were represented by puniceloids A-D (60–63) (Figure 4). Noteworthy
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to highlight that all the new eight isolated compounds revealed a potent transcriptional
stimulation of liver X receptor α displaying EC50 ranging between 1.7 and 50 µM with
puniceloids C and D showed the highest agonist behavior [24].

2.8. A. sulphureus

Additionally, the coculture of A. sulphureus and Isaria feline resulted in the isolation of
five new alkaloids which are of prenylated indole class, 10-O-ethylnotoamide R (64), 17-O-
ethylnotoamide M (65), 17-hydroxynotoamide D (66), 10-O-ethylsclerotiamide (67), and 10-
O-acetylsclerotiamide (68) (Figure 5). It was found that 17-O-ethylnotoamide M effectively
prohibits the colonization of 22Rv1, human prostate cancer cells, at a concentration of 10
µM which is considered as a non-toxic concentration [25].
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2.9. A. sydowii

A. sydowii was subjected to an intense phytochemical investigation that led to the
isolation of many indole alkaloids, fumiquinazoline D and E (69–70) and cyclotryprostatin
B (71) in addition to 12,13- dihydroxyfumitremorgin C (14), fumiquinazoline A (18), fu-
miquinazoline F (19) and fumiquinazoline G (20) (Figure 5). These compounds were tested
for their antifouling activity via assessing their inhibitory effect on the settlement of B.
neritina larvae, at a concentration of 25 µg/mL, fumiquinazoline D, fumiquinazoline G and
cyclotryprostatins B showed significant antifouling activity [8].

Besides, fumiquinazoline B (72), fumiquinazoline C (10), fumitremorgin B (73), cy-
clotryprostatin E (74) and [4-(2-methoxyphenyl)-1-piperazinyl][(1methyl-1H-indol-3-yl)]-
methanone (75) were also isolated from A. sydowii. Compound (10) revealed cytotoxic activ-
ity against P388, HL60, A549, FT210 and BEL-7402 with IC50 ranging between 1 × 10−5 and
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1 × 10−4 mol/L-1 [26,27]. Additionally, 18-oxotryprostatin A (96), 6-methoxyspirotryprostatin
B (17) and 14-hydroxyterezine D (77) were also isolated from A. sydowii in which 6-
methoxyspirotryprostatin B showed mild cytotoxic activity against HL-60 cells displaying
IC50 of 9.71 µM [28].

2.10. A. tamari and A. terreus

A. tamari, a marine derived fungal strain, also yielded a new alkaloid possessing
oxindole pentacylcic skeleton termed speradine A (78) [29] meanwhile A. terreus culture
extract afforded a new alkaloid which is terremide C (79) (Figure 5) [30].

2.11. A. versicolor

A. versicolor is highly popular by the presence of a large number of alkaloids (Figure 6), which
are represented by asperversiamides A-H (80–87), which are indole alkaloids characterized by the
presence of a linear fused prenyl groups and cottoquinazoline A (88) [7,31]. Asperversiamide G
(86) displayed a significant anti-inflammatory potential evidenced by the pronounced inhibition
of iNOS with IC50 value of 5.39 µM [7]. Additionally, ten new alkaloids of diketopiperazine class
were isolated from A. versicolor, pyranamides A-D (89–92), secopyranamide C (93), protuboxepin
F-J (94–98) in addition to previously isolated compounds which were protuboxepin C (99) and
protuboxepin E (100). Protuboxepin G and E displayed mild cytotoxic activity vs. 786-O, OS-
RC-2 and ACHN [9]. Further investigation of the coral derived fungus, A. versicolor, resulted
in the exploration of six new alkaloids in the polycyclic form, which are versiquinazolines L-Q
(101–106). Versiquinazolines P and Q displayed potent prohibition of thioredoxin reductase
(TrxR) revealing IC50 of 13.6 and 12.2 µM, respectively being superior in activity relative to
curcumin, the positive control, with IC50 of 25 µM accompanied by weak cytotoxic effect. This
consequently, provides an evidence on the potential use of both compounds in the control of
microenvironment of tumor progression and metastasis [32]. In addition, versicoloid A and
B (107–108), 3,6-O-dimethylviridicatin (109) and 3-O-methylviridicatol (110) were also isolated
from A. versicolor, in which versicoloid A and B displayed a potent anti-fungal activity with MIC
of 1.6 µg/mL against Colletotrichum acutatum approaching cycloheximide, the positive control
drug, that showed MIC of 6.4 µg/mL. [33].

2.12. A. westerdijkiae

Concerning A. westerdijkiae, circumdatins K and L (111, 112), two new alkaloids of ben-
zodiazepine type, 5-chlorosclerotiamide (113) and 10-epi-sclerotiamide (114), which are two
new indole alkaloids carrying a prenyl moiety in addition to known alkaloid compounds
which are circumdatin G (115), sclerotiamide (116), notoamide C (117), notoamide I (118)
and circumdatin F (45) (Figure 7). However, none of the A. westerdijkiae isolated compounds
showed cytotoxic effect vs. MCF-7, HL-60, A549 or K562 displaying IC50 greater than 10
µM. However, sclerotiamide showed a lethal effect on brine shrimps computed by 68% at
5 µg/mL [34].
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2.13. Miscellaneous Aspergillus Species

Besides, a plethora of alkaloid compounds were isolated from miscellaneous As-
pergillus species such as fumiquinazoline S (119), fumiquinazolines F (29) and L (120),
isochaetominines A-C (121–123), 14-epi-isochaetominine C (124) (Figure 8). All these
compounds revealed a mild inhibitory effect on Na(+)/K(+)-ATPase [35]. Additionally,
asperginine (125), an alkaloid with a rare skeleton, and misszrtine A (126), an indole alka-
loid with novel skeleton, possess phenylpropanoic amide arm attached to N-isopentenyl
tryptophan methyl ester were isolated from two different Aspergillus species. The cytotoxic
activity of the former was evaluated using MTT assay against human HCT116 and PC3
(prostate cancer cells) but it revealed no activity against the previously mentioned cell
lines [36]. However the latter was assessed for its cytotoxic activity on HL60 and LNCaP
and revealed a promising activity with IC50 value of 3.1 and 4.9 µM, respectively owing to
the presence of indole nitrogen [37].

Besides, asperindoles A-D (127–130), new jndole alkaloids possessing diterpene struc-
ture, were also isolated from Aspergillus species. Asperindoles C and D possess a 2-
hydroxyisobutyric acid moiety; however, asperindole A revealed a potent cytotoxic activity
on both hormone therapy-resistant and sensitive PC-3 (Human prostate cancer cells)
in addition to 22Rv1 cancer cells (human prostate carcinoma epithelial cell line) at low
concentrations calculated in micromolar [38]. Golmaenone (131), new alkaloid with dike-
topiperazine skeleton, and neoechinulin A (132) were also isolated from Aspergillus species
(Figure 8). Both compounds revealed a potent antioxidant activity evidenced by their IC50
values which are 20 and 24 µM, respectively in 1,1-diphenyl-2- picrylhydrazyl radical scav-
enging activity assay comparable to that of ascorbic acid (IC50 = 20 µM). Their antioxidant
behaviour was further consolidated by their high UV-A (320–390 nm) protecting capability
with ED50 values equal to 90 and 170 µM, respectively exceeding that of oxybenzone, the
most popular consumed sunscreen (ED50 = 350 µM) [39]. Additionally, a series of preny-
lated indole alkaloids, notoamide A (133), notoamide B (47), notoamide C (117), notoamide
E (134), notoamide F (68), notoamides G and H (135–136), notoamide I (118), notoamide
J-R (137–145) were isolated from mussel-associated Aspergillus species. Notoamides A-C
revealed a notable cytotoxic effect vs. cancer cells meanwhile notoamide I revealed a
weak cytotoxic effect against HeLa cells with IC50 = 21 µg/mL. Additionally, notoamide A
revealed a potent lethal effect on brine shrimps estimated by 63.0% at 5 µg/mL [40–42].
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Additionally, versicolamide B and notoamides L–N were isolated from a marine derived
Aspergillus species [41].
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Moreover, protuboxepins A and B (146–147) which possess oxepin moieties in addition
to protubonines A and B, two diketopiperazine-type alkaloids (148–149) and aspergicin
(150) were also isolated from Aspergillus species (Figure 9). Protubonines A exhibited a
weak inhibition on cancer cells [43]; however, aspergicin showed a potent antibacterial
activity against Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, Bacil-
lus proteus, Bacillus dysenteriae and Escherichia coli displaying MICs ranging from 15.62 to
62.50 µg/mL [44]. Additionally, two new prenylated indole alkaloids, 17-epi-notoamides
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Q and M (151–152) and stephacidin A (153) were also isolated from marine-associated
Aspergillus species (Figure 9). None of them showed any cytotoxic activity vs. human
promyelocytic leukemia HL-60 cell lines meanwhile only stephacidin A revealed antimicro-
bial vs. Staphylococcus epidermidis with MIC equals 14.5 µM [45]. Additionally, azonazine
(154), 7α,14- dihydroxy-6β-p-nitrobenzoylconfertifolin (155), 9α,14-dihydroxy-6β-p- ni-
trobenzoylcinnamolide (156), 5-(1H-indol-3-ylmethyl) imidazolidine- 2,4-dione (157) and
oxepinamide E (158) were also isolated from Aspergillus species. Compounds (155–156)
displayed a potent inhibition to influenza virus strains H1N1 and H3N2, with IC50 of 36.0
and 12.0 µM, respectively, for compound (155) and 7.4 and 4.3 µM, respectively, for the two
viruses for compound (156); meanwhile, compound (154) showed no activity [46,47]. Addi-
tionally, a new alkaloid, 3-((1-hydroxy-3-(2-methylbut-3-en-2-yl)- 2-oxoindolin-3yl)methyl)-
1-methyl-3,4- dihydrobenzo[e][1,4] diazepine-2,5-dione (159) in addition to a known one,
cytochalasin Z17 (160) were isolated from certain Aspergillus species. They revealed a potent
antimicrobial activity vs. a number of microbes with compound (159) exerted a selective
inhibition on Vibrio harveyi, V. natriegens, V. proteolyticus, V. carchariae showing MIC values
between 0.0001 and 1 µg/mL; meanwhile, compound (160) showed a significant inhibition
to Roseobacter litoralis showing MIC of 0.0001 µg/mL [48]. In addition, 12,13-dihydroxy fu-
mitremorgin C (161), fumitremorgin C (9) and bis(dethio)bis(methylthio)gliotoxin (16) were
isolated from certain Aspergillus species associated with the collected sediments existing in
the northeast coast of Brazil (Figure 9) [49].

Additionally, new alkaloids, acremolin B (162), oximoaspergillimide (163) in addition
to acremolin (164) were obtained as a result of the purification of the cultural extract of
marine derived Aspergillus species; however, none of the compounds showed cytotoxic or
antibacterial behavior [50,51]. Besides, new alkaloids, SF5280-415 (165), diketopiperazine
dimer, and a closely related compound (166) were obtained from a marine associated
Aspergillus species. Both compounds (165–166) revealed a potent inhibitory potential to
protein tyrosine phosphatase 1B in an assay done using p-nitrophenyl phosphate as a
substrate with IC50 values equal to 14.2 and 12.9 µM, for both compounds, respectively.
Thus, both compounds can serve as natural candidates in the management of obesity
as well as diabetes [52]. In an additional study carried on marine derived Aspergillus
species, its isolated compounds bisdethiobis(methylthio)-dehydrogliotoxin (167), gliotoxin
(168), 13-oxofumitremorgin B (169), fumitremorgin C (9), fumiquinazoline C (10), 12,13-
dihydroxy-fumitremorgin C (14), bisdethiobis-(methylthio)gliotoxin (16), fumiquinazoline
A (18), fumiquinazoline F (19), cyclotryprostatin B (71) and fumitremorgin B (73) were
assessed for their anti-tuberculosis potential, cytotoxicity and antibacterial. Gliotoxin and
12,13-dihydroxy-fumitremorgin C displayed a considerable inhibition to Mycobacterium
tuberculosis with MIC values less than 0.03 and 2.41 µM, respectively, In addition, gliotoxin
exhibited potent cytotoxic activity vs. the three cell lines, A549, K562 and Huh-7 cell
lines as evidenced by their IC50 values which are 0.015, 0.191 and 95.4 µM, respectively.
Gliotoxin also revealed antibacterial potential vs. Staphylococcus aureus, Escherichia coli
and Salmonella showing no antiviral or COX-2 inhibitory activity [53]. In another study
performed on the marine gorgonian Aspergillus, aspergillspins A-B, new alkaloids with β-
carboline moiety (170, 171) and aspergillspins C-E (172–174), new alkaloids with quinolone
structure were isolated and their antibacterial and cytotoxic activity were evaluated [54].
Besides, the hydroxypyrrolidine alkaloid preussin showed notable antibacterial activity [55]
and diketopiperazine alkaloid mactanamide showed antifungal activity [56] were also
isolated from genus Aspergillus. A pie chart illustrating the different biological activities for
the bioactive alkaloids of genus Aspergillus was illustrated in Figure 10. Besides, prenylated
indoles spirotryprostatins C–E and 13-oxoverruculogen and their cytotoxic effects upon a
panel of cancer cell lines where spirotryprostatin E showed the most potent cytotoxic effect
vs. MOLT-4, HL-60 and A-549 cells with IC50 ranging between 2.3–3.1µm [57].
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Table 1. Diverse alkaloids isolated from marine derived fungal strains and their biological activities.

Compound Genus Biological Activity References

Fumitremorgin C (9) A. fumigatus

• Notable antimicrobial activity against Staphylococcus
aureus, methicillin-resistant S. aureus, and
multidrug-resistant S. aureus [58]

Fumiquinazoline C (10) A. fumigatus

• Inhibition of BEL-7402, A-549, P388 and HL60
proliferation [15]

• Cytotoxic activity against P388, HL60, A549, FT210,
BEL-7402 [15]

• Substantial activity against bacterial and fungal strains
namely, A. baumanii, two S. aureus strains, K. pneumonia,
Fusarium oxysporum cucumerinu and momordicae [17]

12,13-Dihydroxy
fumitremorgin C (14)

A. fumigatus
• Potent inhibitory activity on Mycobacterium tuberculosis

[53]

• Notable antimicrobial activity against Staphylococcus
aureus, methicillin-resistant S. aureus, and
multidrug-resistant S. aureus [58]

Fumiquinazoline G (20) A. fumigatus

• Substantial activity against bacterial and fungal strains
namely, A. baumanii, two S. aureus strains, K. pneumonia,
Fusarium oxysporum cucumerinu and momordicae [17]

6- Bisdethiobis(methylthio)
gliotoxin (16)
6-Methoxyspirotryprostatin
B (17)

A. fumigatus
• Potentiation of the growth of seedling roots of Zea mays

[14]

• Mild cytotoxic activity against HL-60 cells [28]
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Table 1. Cont.

Compound Genus Biological Activity References

Fumiquinazoline F (19) A. fumigatus • Mild inhibitory effect on Na(+)/K(+) –ATPase [35]

Pseurotin A (21) A. fumigatus
• Inhibition of BEL-7402, A-549, P388 and HL60

proliferation [15]

Costaclavine (23) A. fumigatus
• Mild cytotoxic effect vs. P388 [16]Fumgaclavine A (24) A. fumigatus

Fumgaclavine C (25) A. fumigatus
2-(3,3-Dimethylprop-1-ene)-
costaclavine (26) A. fumigatus • Mild cytotoxic effect vs. P388 [16]
2-(3,3-Dimethylprop-1-ene)-
epicostaclavine (27) A. fumigatus

Fumigatoside E (28) A. fumigatus
• Significant antibacterial activity
• Antifungal potential against Fusarium oxysporum [17]

Fumigatoside F (29) A. fumigatus • Significant antimicrobial activity vs. A. baumanii [17]

epi-Aszonalenin A (30) A. fumigatus
• Substantial activity against bacterial and fungal strains

namely, A. baumanii, two S. aureus strains, K. pneumonia,
Fusarium oxysporum cucumerinu and momordicae

[17]

Aniquinazolines A-D (37–40) A. nidulans • Significant lethal effect on brine shrimp displaying LD50 [19]

2-Hydroxycircumdatin C (41) A. ochraceus
• Potent antioxidant power in DPPH radical scavenging

assay [20]

Circumdatin C (43) A. ochraceus

• Mild antioxidant power in DPPH radical scavenging
assay [20]

• Potent UV-A protective behavior [16]

Circumdatin D (44) A. ochraceus
• Mild antioxidant power in DPPH radical scavenging

assay [20]

Speradines C-H (50–55) A. oryzae • Mild cytotoxic effect on HeLa cell line [22,23]

Puniceloids C and D (62–63) A. puniceus • Potent transcriptional stimulation of liver X receptor [24]

17-O-Ethylnotoamide M (65) Aspergillus
• Prohibition of the colonization of 22Rv1 (human prostate

cancer cells) [25]

Fumiquinazoline D and
E (69–70) A. sydowii

• Significant antifouling activity by inhibiting the
settlement of B. neritina larvae [8]

Cyclotryprostatin B (71) A. sydowii
• Significant antifouling activity by inhibiting the

settlement of B. neritina larvae [8]



Int. J. Mol. Sci. 2021, 22, 1866 15 of 23

Table 1. Cont.

Compound Genus Biological Activity References

Asperversiamide G (86) A. versicolor
• Anti-inflammatory potential and pronounced inhibition

of Inos [7]

Protuboxepin G (95) and
E (100) A. versicolor

• Mild cytotoxic activity vs. 786-O, OS-RC-2 and ACHN
[9]

Versiquinazolines P (105) and
Q (106) A. versicolor

• Potent prohibition of thioredoxin reductase
• Weak cytotoxic effect [32]

Versicoloid A and B (107–108) A. versicolor
• Potent anti-fungal activity vs. Colletotrichum acutatum

[33]

Circumdatin G (115) A. westerdijkiae
• Potent UV-A protective behavior

[16]

Sclerotiamide (116) A. westerdijkiae
• Pronounced lethal effect on brine shrimps

[34]

Fumiquinazolines S (119) and
L (120) Aspergillus

• Mild inhibitory effect on Na(+)/K(+)-ATPase [35]Isochaetominines A-C
(121–123) Aspergillus

14-epi-Isochaetominine C (124) Aspergillus

Misszrtine A (126) Aspergillus
• Promising cytotoxic activity on HL60 and LNCaP

[37]

Asperindole A (127) Aspergillus

• Potent cytotoxic activity on both hormone
therapy-resistant and sensitive PC-3 as well as 22Rv1
cancer cells [38]

Golmaenone (131) Aspergillus
• Potent antioxidant activity in

1,1-diphenyl-2-picrylhydrazyl (DPPH) radical
scavenging activity assay

[39]

Neoechinulin A (132) Aspergillus • High UV-A (320-390 nm) protecting capability

• Notable inhibition on the barnacle larval settlement [59]

• Potent cytotoxic effect on HeLa cells by inducing
apoptosis [60]

Notoamide A (133) Aspergillus
• Notable cytotoxic effect
• Potent lethal effect on brine shrimps [40–42]

Notoamide B (47) Aspergillus • Notable cytotoxic effect

Notoamide C (117) Aspergillus

Aspergicin (150) Aspergillus
• Pronounced antimicrobial activity vs. Bacillus subtilis,

Staphylococcus aureus, Staphylococcus epidermidis, Bacillus
proteus, Bacillus dysenteriae and Escherichia coli

[44]

Stephacidin A (153) Aspergillus • Selective antibacterial activity against S. epidermidis [45]

7α,14- Dihydroxy-6β-p-
nitrobenzoylconfertifolin
(155)

Aspergillus • Effective inhibition on influenza virus strains H1N1 and
H3N2

[46,47]
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Table 1. Cont.

Compound Genus Biological Activity References

9α,14-Dihydroxy-6β-p-
nitrobenzoylcinnamolide
(156)

Aspergillus

3-((1-hydroxy-3-(2-methylbut-
3-en-2-yl)-2-oxoindolin-
3yl)methyl)-1-methyl-3,4-
dihydrobenzo[e][1,4]
diazepine-2,5-dione (159)

Aspergillus

• Promising antibacterial activity
• Selective inhibition on Vibrio harveyi, V. natriegens, V.

proteolyticus, V. carchariae [48]

Cytochalasin Z17(160) Aspergillus
• Promising antibacterial activity
• Potent inhibitory activity on Roseobacter litoralis [48]

SF5280-415 (165) Aspergillus • Potent inhibitory potential to protein tyrosine
phosphatase 1B [52]Compound (166) Aspergillus

Gliotoxin (168) Aspergillus

• Potent inhibitory activity on Mycobacterium tuberculosis
• Potent cytotoxic activity vs. A549, K562 and Huh-7
• Reasonable antibacterial activities against Staphylococcus

aureus, Escherichia coli and Salmonella
[53]

3. Interpretation of the Antimicrobial Activity of Bioactive Alkaloids Using in
Silico Studies

Many mechanisms explained the antimicrobial behavior of many anti-infective drugs
such as prevention of nucleic acid, protein and cell wall synthesis, inhibition of functional
cell membrane, as well as interfering with many metabolic processes [61–63]. Herein,
molecular modelling was performed on six proteins which were downloaded from the
protein data bank and are considered essential for growth, division, the survival of microbes
and in the development of resistance using C-docker protocol [64–66]. These proteins are
DNA-gyrase (PDB ID 4Z2D; 3.38 A◦) from Streptococcus pneumoniae; topoisomerase IV
(PDB ID 4Z3O; 3.44 A◦) from Streptococcus pneumoniae; dihydrofolate reductase (PDB ID
4KM2; 1.4 A◦) from Mycobacterium tuberculosis; β-lactamase (PDB ID 3NBL; 2.0 A◦) from
Mycobacterium tuberculosis; transcriptional regulator TcaR (protein) (PDB ID 4EJV; 2.9 A◦)
from Staphylococcus epidermidis and aminoglycoside nucleotidyl transferase (PDB ID 4WQL;
1.73 A◦) from Klebsiella pneumoniae.

Among all the examined compounds only fumigatoside E (28) showed the best fitting
within the active sites of all examined proteins as evidenced by its free binding energies
(∆G) that are equal to −14.18, −18.16, -5.02, −20.31, −10.84 and −17.59 Kcal/mol for DNA-
gyrase, topoisomerase IV, dihydrofolate reductase, β-lactamase, transcriptional regulator
TcaR and aminoglycoside nucleotidyl transferase, respectively. It showed in this aspect a
superior activity comparable to levofloxacin and moxifloxacin, the potent DNA-gyrase,
topoisomerase IV inhibitors, respectively with ∆G = −9.89 Kcal/mol for levofloxacin and
−10.19 Kcal/mol for moxifloxacin, respectively whereas aspergicin (150) showed slight
fitting. All of the other tested compounds showed unfavorable interaction within the
active sites of the examined proteins manifested by the positive values of their free binding
energies (∆G) (Table 2). The tight fitting of fumigatoside E can be interpreted by the virtue
of formation of many tight bonds and interactions within the active sites (Figure 11).
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Table 2. Free binding energies (∆G) in Kcal/mol of alkaloids isolated from Aspergillus and showed anti-infective potential using in silico studies on different microbial proteins.

Compound DNA-Gyrase Topoisomerase IV Dihydrofolate
Reductase β-Lactamase TcaR Protein Aminoglycoside

Nucleotidyl Transferase

Fumitremorgin C (9) 14.85 6.52 19.15 5.482 18.29 4.92
Fumiquinazoline C (10) 17.22 16.16 29.87 14.72 20.29 12.85
12,13-Dihydroxy
fumitremorgin C (14) 14.50 5.80 27.40 5.52 15.85 7.34

Fumiquinazoline G (20) 25.62 15.66 37.59 21.60 24.82 17.97
Fumigatoside E (28) −14.18 −18.16 −5.02 −20.31 −10.84 −17.59
Fumigatoside F (29) 0.39 −2.26 13.63 −11.27 6.69 −10.95
epi-Aszonalenin A (30) 27.73 29.20 43.62 29.47 32.30 21.33
Versicoloid A (107) FD FD FD FD FD FD
Versicoloid B (108) FD FD FD FD FD FD
Aspergicin (150) −5.17 −6.94 3.11 −13.86 −2.93 −11.36
Stephacidin A (153) FD FD FD FD FD FD
Compound (155) 26.78 21.69 39.44 20.29 26.05 12.16
Compound (156) 29.18 25.50 44.72 14.35 30.68 26.91
Compound (159) 7.06 6.062 18.01 −4.81 6.38 −6.04
Cytochalasin Z17 (160) 46.79 45.14 63.26 43.15 50.64 39.36
Gliotoxin (168) 31.20 25.31 36.13 26.00 33.46 25.67
Levofloxacin −9.89 ND ND ND ND ND
Moxifloxacin ND −10.19 ND ND ND ND
Trimethoprim ND ND −28.89 ND ND ND
Cefuroxime ND ND ND −61.80 ND ND
Chloramphenicol ND ND ND ND −29.02 ND
Kanamycin ND ND ND ND ND −73.94

ND: not done; FD: fail to dock.
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Within the active site of DNA-gyrase, fumigatoside E formed two conventional H-
bonds, a π–π bond, three π-alkyl bonds in addition to one C-H interaction and many Van
der Waals interactions (Figure 11A). Regarding topoisomerase IV, fumigatoside E forms
one conventional H-bond, three π–π bonds, two π-alkyl bonds in addition to many Van
der Waals interactions and π-cation interaction with the amino acid residues at the active
site (Figure 11B). Meanwhile, it forms five conventional H-bonds with Gly75, Ala76 and
Ala73, two π- sulphur and one alkyl interactions with Met72 in addition to many Van der
Waals interactions at dihydrofolate reductase active site (Figure 11C). Besides, fumigatoside
E forms two H-bonds with Lys87 and Asp255, two π-cation interactions with Arg187
and four π-alkyl bonds with Ile117 at β-lactamase active site (Figure 11D). Concerning
transcriptional regulator TcaR (protein), fumigatoside E forms two H-bonds with Gln 61
and His 42, and five π- alkyl bonds with Ala38, Ala24 and His42 and many Van der Waals
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interactions with the amino acid existing at the active site (Figure 11E). Three H-bonds with
Asp46, Asp86 and four π–π interactions with Tyr74, Tyr132 and Tyr134 are formed between
fumigatoside E and active site of aminoglycoside nucleotidyl transferase (Figure 11F). The
notable binding of fumigatoside E with DNA-gyrase and topoisomerase active sites IV
could greatly interpret its mode of antimicrobial via potent inhibition of both enzymes.

4. Probable SARS-CoV-2 Inhibitory Potential of Bioactive Antimicrobial Alkaloids
Using in Silico Studies

COVID-19 infection relies upon host cell factors as Angiotensin-Converting Enzyme 2
(ACE2). The entrance of coronaviruses within the host cell is accomplished by the effective
binding of the viral spike (S) proteins to cellular receptors that facilitate their cell entrance,
viral attachment to the surface of target cells with subsequent infection triggering. SARS-S
engages angiotensin-converting enzyme 2 (ACE2) as the entry receptor in which SARS-
S/ACE2 interface was previously elucidated at the atomic level, and the effectiveness to
bind with ACE2 was found to be a key determinant of SARS-CoV transmissibility. Thus the
prohibition of ACE2 catalytic pocket by bioactive entities could alters the conformation of
ACE2 in a manner that it could prohibit SARS-CoV-2 entrance within the host cells through
ACE2 [67,68]. Thus, molecular modelling was performed for the sixteen alkaloids that
previously displayed antimicrobial potential on Angiotensin-Converting Enzyme 2 (PDB
ID 1R4L; 3.00 A◦) which was downloaded from the protein data bank. Fumigatoside E
(28) showed the most fitting within the active sites of ACE2 followed by aspergicin (150)
displaying ∆G of −21.17 and −17.66 Kcal/mole, respectively (Table 3).

Table 3. Free binding energies (∆G) in Kcal/mole of alkaloids isolated from Aspergillus and showed
anti-infective potential using in silico studies on Angiotensin-Converting Enzyme 2 (ACE2).

Compound ∆G (Kcal/mole)

Fumitremorgin C (9) −2.86
Fumiquinazoline C (10) 9.25
12,13-Dihydroxy fumitremorgin C (14) −2.88
Fumiquinazoline G (20) 25.10
Fumigatoside E (28) −21.17
Fumigatoside F (29) −13.81
epi-Aszonalenin A (30) 24.62
Versicoloid A (107) −1.86
Versicoloid B (108) −2.66
Aspergicin (150) −17.66
Stephacidin A (153) −0.584
Compound (155) 18.13
Compound (156) 13.83
Compound (159) −1.58
Cytochalasin Z17 (160) 43.80
Gliotoxin (168) 20.28

Fumigatoside E (forms many tight interactions with the amino acid moieties at the
active pocket of ACE2 represented by one H-bond with Arg273, π–π bond with His 379,
three π-alkyl interactions with Pro346 and Phe274 in addition to the formation of two
π-cation interactions with Lys363 and Ar273 (Figure 12A). Meanwhile, aspergicin forms
one H-bond with Arg518, π–π bond with Phe 274, two π-alkyl interactions with His345
and Pro346, C-H bonds with Asn149 and Thr 371(Figure 12B).
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5. Conclusions

Around 174 alkaloid metabolites were reported from genus Aspergillus, 66 of which
showed important biological activities with respect to the tested biological activities mainly
comprising antiviral, antibacterial, antifungal, cytotoxic, antioxidant and antifouling ac-
tivities. Besides, in silico studies on different microbial proteins were done for sixteen
alkaloids that showed anti-infective potential for better mechanistic interpretation for their
probable mode of action. Fumigatoside E showed the best fitting within the active sites of
all examined proteins as evidenced by its free binding energies. Additionally, fumigatoside
E showed the most fitting within the active sites of ACE2 followed by aspergicin and thus
could serve as bioactive candidates for combating SARS-CoV-2 infection. Further studies
are to be conducted to examine the biological activities of the additional alkaloids that
displayed no activity meanwhile in vitro followed by in vivo studies are to be performed
to ascertain the results of molecular modelling.
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