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Development of anchialine cave 
habitats and karst subterranean 
estuaries since the last ice age
Peter J. van Hengstum   1,2, Jacque N. Cresswell3, Glenn A. Milne4 & Thomas M. Iliffe   3

Extinction models generally predict that coastal and neritic fauna benefit during sea-level rise 
(transgression), whereas sea-level retreat (regression) diminishes their suitable habitat area and 
promotes evolutionary bottlenecks. Sea-level change also impacts terrestrial island biogeography, but 
it remains a challenge to evidence how sea-level rise impacts aquatic island biogeography, especially 
in the subterranean realm. Karst subterranean estuaries (KSEs) occur globally on carbonate islands 
and platforms, and they are populated by globally-dispersed, ancient ecosystems (termed anchialine). 
Anchialine fauna currently exhibit a disjunct biogeography that cannot be completely explained by 
plate tectonic-imposed vicariance. Here we provide evidence that anchialine ecosystems can experience 
evolutionary bottlenecks caused by habitat reduction during transgression events. Marine-adapted 
anchialine fauna benefit from habitat expansion during transgressions, but fresh- and brackish-adapted 
fauna must emigrate, evolve to accommodate local habitat changes, or are regionally eliminated. 
Phanerozoic transgressions relative to long-term changes in subsidence and relief of regional lithology 
must be considered for explaining biogeography, evolution, local extirpation or complete extinction of 
anchialine fauna. Despite the omission of this entire category of environments and animals in climate 
change risk assessments, the results indicate that anchialine fauna on low-lying islands and platforms 
that depend upon meteoric groundwater are vulnerable to habitat changes caused by 21st century sea-
level rise.

Sea-level oscillations during the last 500 million years (Phanerozic Eon) have impacted marine and terrestrial 
island biogeography and evolution by modifying habitat availability and opportunities for organismal gene 
flow1–3. It is generally thought that sea-level regressions can reduce the areal extent of coastal and neritic habitats 
and can cause bottlenecks in the marine realm4–6, whereas terrestrial island fauna and flora benefit from habitat 
expansion during regressions7–10. There is an elevated risk of coastal zone defaunation during the Anthropocene 
from several human-caused factors like habitat degradation and urbanization11, but disentangling how modest 
rates of current sea-level rise threatens aquatic island fauna remains difficult to assess12,13.

Worldwide on carbonate islands and platforms, subsurface mixing of rain and marine water creates karst sub-
terranean estuaries (KSEs, Fig. 1). Hydrographically, subterranean estuaries are analogous to other coastal estu-
aries by having an upper meteoric water mass of varying salinity buoyed on a saline groundwater mass below14,15. 
These two groundwater bodies often destabilize in the subsurface to create mixing zones16–19, and their oceanic 
discharge impacts global biogeochemical cycles15,20. Only in the late 20th century did technical scuba diving pro-
cedures allow human exploration of KSEs through flooded caves, which lead to the discovery of their unique 
ecosystems, fauna, and habitats that are now prefaced with the adjective ‘anchialine’21. The fossil record22–24 and 
molecular phylogenetics25–27 suggests that anchialine fauna and ecosystems persisted through the Phanerozoic 
and predate angiosperms, and their evolutionary history and biogeochemical functioning can inform early 
Paleozoic marine ecosystems and invertebrate evolution28,29. Steep environmental gradients create diverse ben-
thic and pelagic sub-habitats in the subsurface from the ocean transecting inland (Fig. 1), such that aquatic 
coastal caves are often categorized as freshwater caves (meteoric water mass), anchialine caves (both water 
masses), or marine caves (saline water mass). Despite this segregation, some fauna have a modern distribution 

1Department of Marine Sciences, Texas A&M University at Galveston, Galveston, Texas, 77554, USA. 2Department 
of Oceanography, Texas A&M University, College Station, Texas, 77843, USA. 3Department of Marine Biology, Texas 
A&M University at Galveston, Galveston, Texas, 77554, USA. 4Department of Earth and Environmental Sciences, 
University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada. Correspondence and requests for materials should be 
addressed to P.J.v.H. (email: vanhenp@tamug.edu)

Received: 23 April 2019

Accepted: 24 July 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-48058-8
http://orcid.org/0000-0002-1125-2858
http://orcid.org/0000-0002-4342-5960
mailto:vanhenp@tamug.edu


2Scientific Reports |         (2019) 9:11907  | https://doi.org/10.1038/s41598-019-48058-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

and evolutionary history in both water masses (e.g., atyid shrimps30, Hadziidae amphipods)31,32. If these habitats 
are also linked through allogenic succession, then it is perhaps more appropriate to consider these sub-habitats as 
part of an anchialine habitat continuum (Fig. 1).

Pioneering cave ecologist Riedl first hypothesized that coastal cave habitats experienced allogenic succes-
sion from sea-level forced vertical migration of KSEs, which isolated subterranean aquatic fauna and promoted 
speciation through vicariance33. This process was subsequently termed the ‘regression model’34,35, which could 
be caused by either tectonic uplift or isostatic crustal adjustment, and was used to evaluate the disjunct biogeog-
raphy of continental and coastal subterranean fauna. However, significant barriers exist for developing physical 
data on developmental succession in anchialine habitats and KSEs, during either regressions or transgressions. 
Instrumental records (e.g., decadal scale) of hydrographic change in KSEs are unavailable, and speleothems (e.g., 
stalagmites) do not document environmental change when caves are flooded36,37. Soft-bodied endemic cave fauna 
have a poor fossil preservation, and picturesque clean cave galleries are created by either poor sedimentation in 
caves38, or subsurface currents blowing-out cave sediment. Thus far, available sediment records of environmental 
change in KSEs are either temporally-fragmented39,40, or only document the hydrographic history of an individual 
groundwater mass38,41,42. These knowledge gaps mean that 21st century marine ecosystem risk assessments have 
little evidence to support forecasting how sea-level rise will impact global subterranean aquatic island fauna.

Here we present the most complete record yet known of developmental succession in anchialine habitats from con-
comitant relative sea-level rise and vertical migration of a KSE since the last ice age. The highest quality sediment record 
yet found in an underwater cave in Bermuda documents the turnover of anchialine habitats, and their sub-habitats, in 
response to vertical migration of the KSE. Sea-level rise during the early Holocene first flooded cave passages with a 
meteoric lens, followed by a paleo mixing zone, and finally saline groundwater to create modern marine cave habitats 
in western Bermuda. Developmental succession of anchialine habitats during a transgression is now resolved, and more 
significantly, the results illuminate how sea-level rise can force subsurface aquatic island fauna to experience bottleneck 
events. It is highly likely that this process impacted the evolutionary history of global subsurface aquatic island fauna 
during the Phanerozoic. More problematically, 21st century island-based marine ecosystem risk assessments are incom-
plete if the impact of sea-level rise on anchialine ecosystems is not regionally evaluated.

Study Site
Bermuda is a ~35 million year old volcanic seamount in the North Atlantic Ocean capped by Quaternary-aged 
carbonates (limestone) that were deposited during sea-level highstands, interspaced by paleosols that accumu-
lated during the ice ages43. The limestone units are lithified wind-blown dunes of shallow marine carbonate parti-
cles44, which subsequently weathered into a mature karst landscape. Large caves in Bermuda were first dissolved 
by both rain and groundwater, which then experienced repetitive ceiling collapse events45–47. There is no location 
in Bermuda’s underwater caves where the volcanic-limestone contact is currently exposed.

Bermuda is an ideal location for this study because the flooded caves are an established biodiversity hot spot of 
endemic anchialine fauna, and the region has served as a model for understanding the evolutionary history of anchial-
ine fauna48. The ~30–80 m thick carbonate cap and its caves49,50 would have been dry during the last glacial maximum 
(~20,00 years ago) when local relative sea level and groundwater levels were ~120 m lower51. On the Bermuda carbonate 
platform, deglacial sea-level and groundwater-level rise first flooded topographic depressions to create freshwater lakes, 
which subsequently converted to marine carbonate lagoons with complete platform flooding52,53. Modern Bermudian 
flooded caves must have similarly developed by the upward displacement of the KSE, with endemic anchialine fauna 
migrating into newly created ecospace either from the volcanic lithology below or through oceanic dispersal from 
elsewhere48. Sediment has accumulated on Bermuda’s cave floors from minimal groundwater current velocities, and 
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Figure 1.  Conceptual model of a karst subterranean estuary and the anchialine habitat continuum created by 
subsurface groundwater variability. Western North Atlantic anchialine fauna (e.g., fish, shrimps, decapods, 
ostracodes, foraminifera, marine Porifera and Bryozoa) are positioned in their typical habitat in the karst 
subterranean estuary. Since most caves do not typically poses all potential sub-habitats, this model is based 
on observations from several localities, including. The Bahamas (★), Yucatan Peninsula in Mexico (●), and 
Bermuda (♦).
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most caves in western Bermuda are at the final stage of oceanic flooding with active modern groundwater-seawater 
circulation.

On the northeastern margin of Harrington Sound in Bermuda, the Palm Cave System occurs to a maximum depth 
in the subsurface of 23 m below modern sea level (mbsl). There is no halocline in Palm Cave because a meteoric lens 
does not develop on the narrow isthmus between Harrington Sound and Castle Harbour, so the passages are all flooded 
by oxygenated saline groundwater (Fig. 2). Despite the absence of a local meteoric lens, Palm Cave is part of the anchi-
aline habitat continuum, and can be colloquially referred to as a marine cave (Fig. 1). In summer 2015, the conditions 
of the saline groundwater mirrored the impact of strong summertime evaporative and radiative forcing on the adjacent 
Harrington Sound source water (pH of 7.8 ± 0.2, 28.5 ± 0.2 °C, 38.7 ± 0.4 psu, Fig. 2). Multiple physical openings from 
the coastal lagoon (i.e., Harrington Sound) and subaerial forest landscape (e.g., 32.34°, −64.71) allow terrestrial and 
marine organic matter to erode into the cave. Sediment push cores (n = 13) were collected using technical cave diving 
procedures (Fig. 2, Supplementary Table S1) from the deepest parts of the cave that preserve sediment accumulations, 
and areas with representative sedimentary units. Multiple cores sampled the stratigraphy to limestone bedrock (Fig. 3).

Sedimentaray Deposits and Habitats
The deposits from Palm Cave can be organized into four groups (paleosols, organic-rich deposits, iron-rich 
deposits, and carbonate deposits), and further subdivided into seven units (Fig. 3). These units correspond to 
hydrographic and environmental change in the cave from internal and external flooding of the Bermuda car-
bonate platform by concomitant groundwater and relative sea-level rise (Fig. 2). Limitations of the record include 
decreased sedimentation rates from ~8500 to ~7000 calibrated years before present (Cal yrs BP), and no one 
single location in the cave preserves a complete Holocene environmental history. However, the recovered depos-
its collectively provide the most detailed physical and biological picture yet known of Holocene environmental 
change in a KSE, and are described below from oldest to youngest.

Pre-Holocene vadose deposits.  The oldest deposits are pre-Holocene (>11,600 years ago) terra rosa paleosols, 
which occur at the base of cores (core 13), in areas with negligible Holocene sedimentation (core 8), and near terrestrial 
openings. These coarser-grained sediments have a deep red color (Supplementary Fig. S1, Table S2 and Fig. S2), and 
they contain no fossil material (Fig. 3). Mineralogically, they are primarily crandallite (mean 52.6%), kaolinite (mean 
16.5%), quartz (22.8%) and goethite (8.1%, Supplementary Table S4), which is similar to Bermudian Pleistocene-aged 
terra rosa paleosols54. African dust is an important contributor to Bermudian soils during Quaternary Ice Ages54, which 
helps create diagnostic terra rosa soils that are known to erode into Bermudian caves55. Similarly, paleosol eroded into 
Palm Cave prior to Holocene flooding.
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Figure 2.  Palm Cave System in Bermuda. (a) Digital elevation model of Bermuda93 in the North Atlantic Ocean 
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Freshwater habitats in a meteoric lens.  The preserved sedimentary and biological remains (e.g., fish 
bones, foraminifera, ostracodes) indicate that freshwater aquatic habitats were created in the Palm Cave from 
9750 ± 210 (core 14) to 8370 ± 30 (core 3) Cal yrs BP when a fresh to oligohaline meteoric lens first flooded 
the cave. The modern marine anchialine ecosystem in Palm Cave could not have colonized these conditions. In 
contrast, these early Holocene freshwater conditions would have been suitable to Bermuda’s olighaline-adapted 
anchialine amphipods like Pseudoniphargus carpalis and P. grandimanus56. In eastern passages, grey sapropel 
(mean 16% organic matter) with calcium-rich layers was accumulating by ~9750 Cal yrs BP (cores 14 and 2, 
Supplementary Table S3). The organic carbon was primarily terrestrial in origin, based on the stable carbon 
isotopic content of the bulk organic matter (δ13Corg: −24.1 ± 0.6‰) and relative amounts of organic carbon and 
nitrogen (C:N ratios: 17.2 ± 1.1). The only meiofauna preserved in the grey sapropel were the benthic ostracodes 
Darwinula stevensoni and Cypridopsis vidua, which occur in global freshwater habitats and Yucatan freshwater 
caves. At ~9620 Cal yrs BP, the deepest cave areas (e.g., cores 4, 10) began accumulating dark brown sapropel 
(mean 31% organic matter, −24.1 ± 0.9‰, 16.8 ± 1.1, n = 43), which pass upcore into a lighter-hued light brown 
sapropel by ~9230 Cal yrs BP (mean 24% organic matter, δ13Corg: −23.5 ± 0.9‰, C:N: 14.9 ± 1.1, n = 39). The 
timing of the transion between light and dark brown sapropel varied slightly between the core sites, and likely 
reflect site-specific process impacting sedimentation at these different parts of the cave41. Biologically, the sap-
ropel contains benthic foraminiferal assemblages that are dominated by Polyscammina iophalina, Entzia mac-
rescens, Tiphotrocha comprimata (Supplementary Figs S2, S3). At the base of some cores (core 10), Bolivina sp. 
was dominant at first, but the high sedimentation rate at this site indicates these assemblages rapidly transitioned 
to Entzia-dominated assemblages. In modern settings, these benthic foraminifera dominate subtidal anchialine 
habitats that are flooded by a low salinity (oligohaline) meteoric lens on the Yucatan Peninsula (Tiphotrocha, 
Entzia)42,57, and subtidal marine settings in Bermuda dominated by terrestrial organic carbon (Bolivina)58. 
Calcite rafts occurred intermittently in the organic-rich deposits, which only form near freshwater-air interfaces 
in caves40,59, and their occurrence indicates the continual cave passage flooding. Previous work indicates that the 
shoreline of an early Holocene inland brackish pond in Harrington Sound was very close to Palm Cave by ~9500 
years ago52, which likely provided a source of organic-rich sediment that was transported into the cave through 
a southern tunnel connecting Palm Cave to Harrington Sound (Fig. 2). Continual water-level rise in the cave or 
conduit collapse events likely decreased organic matter sedimentation at the core sites, as has been observed in 
Yucatan flooded caves38.

Mixing zone iron curtain deposits.  The Iron-rich carbonate deposits provide evidence for benthic habitats 
becoming flooded with saline groundwater, whereby upwelling anoxic saline groundwater was mixing with the 
overlying freshwater in a paleo mixing zone [base of cores 3, 15 and 9, and intercalated within cores 4,10, 11 and 
9 (Fig. 3)]. These deposits were not recovered from shallower sampling locales (Supplementary Table S1). Unlike 
the terra rosa paleosols, these iron-rich carbonate sediments have a distinctive orange-hue (Supplementary 
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Fig. S1), have a fine texture, and they contain rare marine benthic foraminifera adapted to low-oxic environments 
(i.e., Bolivina spp.). The dominant minerals present were carbonates (mean 45% calcite and aragonite), quartz 
(mean 27.6%), Fe-based minerals (mean 13.4% goethite, woodhouseite, and lepidocrocite), and less crandallite 
and kaolinite than the paleosol deposits (Supplementary Table S4). Organic carbon was dominated by marine 
sources (δ13Corg: −21.2 ± 2.9‰, CN: 13.3 ± 2.9, n = 22, Fig. 2). The meiofuna and mineralogy differentiates these 
sediments from known Fe-oxide deposits produced by microbialites in anoxic saline groundwater60. A Saharan 
dust origin is also not likely, given the contemporaneously flooded cave would have hampered wind-borne dust 
accumulation (Fig. 4), and African dust export to the western tropical North Atlantic was diminished from 
~11,000 to 5,000 years ago61.

Alternatively, these iron-rich deposits developed at the deepest elevations from the oxidative precipitation of 
Fe(II) in an ‘iron curtain’ at the sediment-water interface. On siliciclastic coastlines, the oxidative precipitation 
of dissolved Fe(II) from the mixing of seawater and groundwater generates a distinctive increase in iron oxide 
deposits in a subsurface zone62. This process is driven by pH gradients between the anoxic saline versus oxygen-
ated freshwater above63, and the iron curtain can spatially migrate in response to sea-level64 or rainfall65 changes. 
It is likely that anoxic saline groundwater was displaced upwards under sea-level forcing, and iron oxide precipi-
tated when anoxic water upwelled and mixed with an overlaying oxygenated water mass. The previously observed 
iron-oxide coatings on early Holocene calcite rafts in another Bermudian flooded cave likely formed through the 
same process40.

Oxygenated marine habitats in saline groundwater.   By ~7000 years ago, the entirety of Palm Cave 
became a fully-oxygenated marine aquatic habitat, based on radiocarbon dates from core 2 (6680 ± 280, and 
6600 ± 70 Cal yrs BP). This is demarcated by widespread carbonate deposition (fine-grained micrite and mixed 
carbonate), and the appearance of marine pelycopods (e.g., Barbatia domingensis), bryozoans (Cheilostomata), 
coral (Coenocyathus goreaui), brachiopods and marine ostracodes. The marine foraminifer Spirophthalmidium 
emaciatum also colonizes Palm Cave, which lives in marine caves in Bermuda and Cozumel with oxygenated 
saline groundwater66 (Supplementary Figs S2, S3). White- to brownish-hued micrite deposits often transition into 
mixed carbonate facies (e.g., cores 14, 2, 15) towards the top of cores, but the timing is site specific (e.g., core 12: 
~2690 Cal yrs BP vs. core 15: ~3610 Cal yrs BP). The spatial and temporal variability of carbonate sedimentary 
units is perhaps related to conduit-specific physical or hydrodynamic processes (e.g., diffuse- vs. conduit-driven 
saline groundwater circulation). The carbonate deposits contained the highest proportion of marine organic 
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matter based on the C:N and δ13Corg values (micrite: δ13Corg −20.4 ± 1.9‰; C:N 11.7 ± 2.0‰, n = 40, mixed car-
bonate facies: δ13Corg −19.4 ± 1.2‰; C:N 10.3 ± 1.2, n = 38). Occasionally, clasts of the terra rosa paleosol become 
eroded and re-worked into the carbonate deposits (cores 13 and 14). These deposits indicate that conditions in 
Palm Cave were finally suitable for colonization by the soft-bodied marine anchialine fauna, such as Parhippolyte 
sterreri and Procaris chacei sp.

Sea-Level Forcing of Successional Development
There is striking congruency between when aquatic ecosystems were emplaced in Palm Cave, subaerial indica-
tors of sea-level change from the Bermuda carbonate platform, evidence for carbonate banktop oceanographic 
changes, and numerical models of relative sea-level rise (Fig. 4). Terrestrial and freshwater peat deposits recovered 
in contact with the carbonate platform from Bermuda provide maximum sea-level indicators (Fig. 4), which con-
strain glacioisotatic processes and past sea levels67. In contrast, cave sedimentary deposits are minimum sea-level 
indicators because groundwater must have achieved this elevation for aquatic habitats develop58. The sedimentary 
and meiofaunal remains in contact with the limestone indicates a meteoric lens flooded Palm Cave by 9750 ± 210 
Cal yrs BP at core 14 (21.6 ± 0.3 mbsl), 9620 ± 80 Cal yrs BP at core 10 (22.5 ± 0.3 mbsl), and 9670 ± 120 Cal yrs 
BP at core 15 (22.7 ± 0.3 mbsl). A comparison with output from the ICE-5G model is within uncertainties of early 
Holocene minimum (cave-based) and maximum (terrestrial peat) sea-level indicators (Fig. 4, L201668 Model). 
From previous work in Green Bay Cave in Bermuda, there was a delayed onset in sedimentation to first document 
aquatic conditions at ~7,900 Cal yrs BP40. However, the estimated time for drowning of the ceiling in Green Bay 
Cave is very close to the anticipated position of relative sea level (Fig. 4, L201668 Model). By 7,000 years ago, both 
Harrington Sound52 and North Lagoon69 transitioned into marine carbonate lagoons from continual inundation 
of the Bermuda carbonate platform by Holocene sea-level rise. This allowed tidal exchange of seawater between 
the saline groundwater and adjacent marine carbonate lagoons, which initiated oxygenated saline groundwater 
habitats in Palm Cave. These results indicate that relative sea-level change is a principle driver of successional 
development of anchialine habitats through initial installation of anchialine habitats by from sea-level forced 
vertical migration of groundwater. Thereafter, sea-level forced changes to banktop oceanographic-groundwater 
circulation regimes secondarily modified Bermuda’s anchialine habitats into their current environmental state.

Global Implications
The successional development of anchialine habitats caused by sea-level rise has multiple implications for the 
biogeography, evolutionary history, and ecosystem functioning across the anchialine habitat continuum. Today, 
anchialine fauna include taxa that are adapted to habitats and environmental conditions created by specific 
groundwater masses in the KSE, in addition to taxa that have an evolutionary history in both water masses. For 
example, Bahamian remipedes remain in their ancestral marine-based habitat, whereas others like the Yucatan 
decapod Creaseria morleyi have become adapted to the low salinity habitat created by the meteoric lens. On geo-
logic timescales, anchialine fauna and ecosystems must vertically migrate upwards (or downwards) with sea-level 
rise (or fall) with groundwater masses in the KSE to remain within their suitable ecological tolerance ranges. The 
sedimentary record from Palm Cave indicates that the available anchialine habitat in northeastern Bermuda asso-
ciated with a meteoric lens (freshwater to brackish salinity) decreased with Holocene sea-level rise. This was coin-
cident with regional reduction in the Holocene aerial extent of Bermuda, and ultimate potential for a meteoric 
lens to form in the antecedent limestone. The possibility of suitable aquatic habitat is first established by the sea 
level boundary condition, and thereafter, the subsurface hydrography is modified by other known secondary 
factors, such as changes in coastal circulation70, conduit morphology and connectivity to adjacent marine and 
terrestrial environments38,40, or changing rainfall71–73.

On Phanerozoic timescales, transgressions cause bottlenecks to anchialine habitats and fauna dependent 
upon a meteoric lens, if carbonate platform areal extent and island relief are considered (Fig. 5). The earlier 
regression model first proposed by Riedl33,35 hypothesized how the draining of epicontinental seas on geologic 
timescales first promoted subsurface habitat colonization. However, the regression model did not evaluate or 
describe how sea-level oscillations can continuously drive adaptation, community evolution, and potential for 
regional extinctions. During the Quaternary alone, smaller carbonate platforms and islands were repetitively and 
completely flooded by sea level during interstadials from the ~100,000-year climate cycle74. As such, meteoric 
lenses contracted, fragmented, and potentially disappeared (e.g., Bermuda, or Cay Sal Bank in The Bahamas). 
The sediment and preserved meiofauna in Palm Cave clearly documents habitat reduction associated with a con-
tracting meteoric lens in northwestern Bermuda from sea-level rise during the most recent deglaciation. There is 
little evidence to suggest that this process has not persisted through geologic time, or would have not impacted 
carbonate platforms elsewhere. This means that fauna and ecosystems in the anchialine habitat continuum that 
depend upon a meteoric lens must have faced recurrent habitat fragmentation and bottleneck events coincident 
with sea-level rise linked to the ~100,000-year climate cycle during the Quaternary74. Indeed, recently discovered 
anchialine food web dynamics and habitats that depend on terrestrial dissolved organic carbon and meteoric 
lenses could not exist on low-relief carbonate islands and platforms during transgressions17. The mechanism for 
carbon and energy transfer between anchialine fauna and ecosystems in saline groundwater devoid of meteoric 
lenses remains currently unknown. It is likely that global anchialine fauna in the meteoric lens of KSEs experi-
enced increased extinction rates during Pliocene (+6 above present) or late Paleocene (+75 m above present) 
transgressions51,75. Subsurface defaunation on different types of carbonate platforms from transgression-related 
extinction events requires further evaluation.

In contrast, carbonate platforms with higher elevation may have insulated the anchialine habitat continuum 
from transgression related bottlenecks during global ice volume, tectonic changes or isostatic changes (e.g., 
Yucatan Peninsula, Fig. 5). For example, the post-Pliocene migration and diversification history of Yucatan fresh-
water copepods Microcyclops and Diacyclops have benefited from the continuous presence of a meteoric lens 
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on the Yucatan Peninsula during the Quaternary, and associated lack of regional bottlenecking during sea-level 
highstands76. Anchialine fauna in the saline groundwater mass of a KSE may actually benefit from habitat expan-
sion during banktop inundation coincident with Quaternary interstadials, potentially favoring increased genetic 
exchange or speciation through the mixing-isolation-mixing mechanism77.

Looking forward, worldwide fauna in the anchialine habitat continuum remain omitted from 21st century 
marine ecosystem risk assessments78. The threat of habitat loss related to subsurface contaminants is now appar-
ent79, along with potential impacts from increasing coastal sea surface temperatures80,81. However, recent ground-
water modeling work indicates that <1 m of sea-level rise can reduce meteoric lens volumes by over 50%, and 
thus available area of brackish and freshwater ecological niches in the anchialine habitat continuum, when inher-
ited topography and platform flooding are collectively considered82. The results presented here indicate that the 
effects of sea-level rise on the anchialine habitat continuum must also be regionally evaluated. It is likely that 
anchialine fauna on low-lying carbonate platforms and islands are the most vulnerable to potential bottlenecking 
during 21st century sea-level rise.

Methods
After collection (Supplementary Fig. S1 and Table S1), cores were transported back to the laboratory to be split 
lengthwise for x-radiography, photography, textural and micropaleontological analysis (Supplementary Fig. S2). 
Cores were sub-sampled at 1-cm intervals downcore for analysis of sedimentary bulk organic matter content 
using a standard Loss-on-Ignition procedure, whereby the mass lost during combustion at 550 °C for 4.5 hrs is 
expressed as a weight percent83. The textural variability in the coarse sedimentation deposition (e.g., coarse frac-
tion) was quantified in contiguous 1-cm intervals downcore on separate sediment sub-samples using a Sieve-first 
Loss-on-Ignition procedure84. Contiguous 1-cm sediment sub-samples, with a standardized initial volume of 
2.5 cm3, were first wet sieved over a 63-μm mesh, dried for 12 hours in an oven at 80 °C and weighed to deter-
mine the original sediment mass. Samples were the ignited for 4.5 hours at 550 °C in a muffle furnace to remove 
organic matter from the sediment samples to concentrate the remaining mineral residue (Fig. 5), and re-weighed 
to determine remaining mineral mass after combustion. The variability in coarse sediment was then expressed 
as mass per unit volume (D>63 um mg cm−3). Core 4 (n = 26) and core 10 (n = 23) were quantitatively analyzed 
for preserved subfossil benthic foraminiferal assemblages. Downcore sediment subsamples (2.5 cm3, 0.5 cm core 
width) were sieved over a 63 μm mesh, and wet-picked onto micropaleontological slides for taxonomic identifi-
cation and assemblage analysis with Q-mode cluster analysis (Supplementary Fig. S4). The qualitative (presence 
vs. absence) preservation of meiofauna (e.g., ostracodes, foraminifera) and macrofauna (e.g., bivalves, gastropods, 
Supplementary Fig. S3 and Table S2) in all cores was assess by wet sieving bulk sediment over a 63 μm mesh at 3 
to 5 cm downcore, with representative individuals imaged with a Hitachi desktop scanning electron microscope 
(Supplementary Fig. S4). To further understand the provenance of accumulating bulk organic matter, sediment 
samples (n = 215) from selected cores (3, 6, 10, 14, 15) were analyzed for the stable carbon isotopic value (δ13Corg) 
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Figure 5.  Sea-level change over the last million years impacts anchialine habitat availability. Eustatic sea-level 
change based on global ice-volume changes94, the relative time spent below the modern sea level position, and 
the time spent at different eustatic sea level elevations spanning the last million years. This is compared to a 
single transgression event on three idealized carbonate platforms with different topographic relief and vertical 
migration of their karst subterranean estuaries, which in turn causes bottlenecking (expansion) of the meteoric 
lens (saline groundwater) anchialine habitats.
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and C:N ratio of bulk organic matter. Samples were first treated with a 10% HCl digestion to remove carbonates, 
followed by geochemical measurements in a Costech 200 Elemental Analyzer connected to Thermo-Electron 
Delta V Advantage Isotope Ratio Mass Spectrometer. Final δ13Corg values are reported in per mil notation (‰) 
relative to the standard Vienna Pee Dee Belemnite (VPDB) for carbon (expressed as parts per mil, ‰), with 
analytical precision on δ13Corg better than ± 0.2‰ (1σ) and ± 0.1 on C:N. Age control is provided by radiocarbon 
dating (n = 51, Supplementary Table S3) on a combination of bulk organic matter from the organic-dominated 
facies, terrestrial plant macrofossils (when available), and marine bivalves. Twenty-seven samples were processed 
by accelerator mass spectrometry radiocarbon, with twenty-six dated using the Continuous Flow AMS (CFAMS) 
method. All radiocarbon dates were calibrated to sidereal years before 1950 AD (Cal Yrs BP1950) using IntCAL1385 
(Supplementary Table S3). Samples from notably iron-rich carbonate and paleosols (cores 10 and 4) were subject 
to X-ray diffraction to determine dominant minerals (Table S4). Selected samples were analyzed on a Bruker-AXS 
D8 Advanced Bragg-Brentano X-ray powder diffractometer employing the standard XRD laboratory protocols. 
Final mineral determination was made by comparing the resultant diffractograms with the 2005 International 
Center for Diffraction Data material identification database to determine final mineralogy (Supplementary 
Table S4).

A new database of sea-level indicators from Bermuda was compiled from earlier work52,53,86–89 that is mostly 
derived from basal peat in contact with limestone (Supplementary Dataset). This database is currently unavailable 
in other databases of global sea-level indicators67. The radiocarbon-dated sedimentary deposit is these earlier 
works is often designated simply peat, without any differentiation between brackish and freshwater peat using 
preserved microfossils (i.e., defined indicative meaning). Nevertheless, much of the new database compiled here 
is derived from peat collected at the limestone contact52,89, and thus can still be conservatively used as maximum 
sea-level indicators (terrestrial limiting)67.

The model results (Fig. 4) were determined using the same glacial isostatic adjustment model as described 
elsewhere90, but using different inputs. These inputs are: (1) a reconstruction of changes in grounded ice distribu-
tion and (2) solid Earth viscosity structure. In one case (purple line in Fig. 4), the ice model used was ICE-5G with 
a viscosity model that provides good fits to a global distribution of various data types (VM29191,92, with a 90 km 
thick lithosphere). The other model estimate (orange line in Fig. 4) is also based on the ICE-5G ice history, but 
with the North American component replaced with output from a calibrated glaciological model (L2016, model 
#989468). The Earth viscosity model was one found to produce an optimal fit to a regional Holocene sea-level 
data base that includes the Atlantic and Gulf coasts of the US68. The main cause of the difference between the two 
curves are the higher Earth viscosity values found in L201668, which provides a modeled sea level curve that is 
most compatible with the Bermuda observations.
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