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Abstract

Brain-derived neurotrophic factor (BDNF) plays an important role in neurogenesis and syn-

apse formation. The V66M is the most prevalent BDNF mutation in humans and impairs the

function and distribution of BDNF. This mutation is related to several psychiatric disorders.

The pro-region of BDNF, particularly position 66 and its adjacent residues, are determinant

for the intracellular sorting and activity-dependent secretion of BDNF. However, it has not

yet been fully elucidated. The present study aims to analyze the effects of the V66M muta-

tion on BDNF structure and function. Here, we applied nine algorithms, including SIFT and

PolyPhen-2, for functional and stability prediction of the V66M mutation. The complete theo-

retical model of BNDF was generated by Rosetta and validated by PROCHECK, RAM-

PAGE, ProSa, QMEAN and Verify-3D algorithms. Structural alignment was performed

using TM-align. Phylogenetic analysis was performed using the ConSurf server. Molecular

dynamics (MD) simulations were performed and analyzed using the GROMACS 2018.2

package. The V66M mutation was predicted as deleterious by PolyPhen-2 and SIFT in addi-

tion to being predicted as destabilizing by I-Mutant. According to SNPeffect, the V66M muta-

tion does not affect protein aggregation, amyloid propensity, and chaperone binding. The

complete theoretical structure of BDNF proved to be a reliable model. Phylogenetic analysis

indicated that the V66M mutation of BDNF occurs at a non-conserved position of the protein.

MD analyses indicated that the V66M mutation does not affect the BDNF flexibility and sur-

face-to-volume ratio, but affects the BDNF essential motions, hydrogen-bonding and sec-

ondary structure particularly at its pre and pro-domain, which are crucial for its activity and

distribution. Thus, considering that these parameters are determinant for protein interac-

tions and, consequently, protein function; the alterations observed throughout the MD analy-

ses may be related to the functional impairment of BDNF upon V66M mutation, as well as its

involvement in psychiatric disorders.
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Introduction

Psychiatric disorders are polygenic and multifactorial brain syndromes [1] characterized by

clinically significant behavioral, psychological or biological dysfunction [2]. Psychiatric disor-

ders are considered a major public health problem and are responsible for severe distress and

functional impairment in individuals with notorious consequences in those who have been

affected and their families and social and work environments [3]. Although the global burden

of psychiatric disorders is mainly assigned to the disability and not to the mortality of affected

individuals [4], mortality rates in psychiatric patients are much higher than those reported in

the general population [5,6]. It is estimated that more than 50% of the population in middle

and high-income countries will suffer from at least one psychiatric disorder throughout life. In

addition, the estimated cost of these diseases between 2011 and 2030 is thereby projected at US

$ 16.3 trillion dollars, which makes the economic cost of psychiatric disorders comparable to

that of cardiovascular diseases and higher than that of cancer, diabetes and chronic respiratory

diseases [3].

Although there is no consensus on the cause of psychiatric disorders [1,7], most studies sug-

gest they are caused by neurotransmitters deregulation, genetic abnormalities, and defects in

the structure or function of the brain [7]. In this context, non-synonymous mutations in the

BDNF gene are implicated in the development of psychiatric disorders because they affect the

function and distribution of brain-derived neurotrophic factor (BDNF), which is crucial for

central nervous system development, neurogenesis and neuronal plasticity [8].

BDNF is a 247-amino acid secretory protein encoded by the BDNF gene [9], which is

located on chromosome 11p14.1 [10]. BDNF is synthesized as a precursor protein, pre-pro-

BDNF, which is cleaved into pro-BDNF in the endoplasmic reticulum (ER). Pro-BDNF is

addressed and might be further cleaved into mature BDNF (m-BDNF) inside vesicles in the

trans-Golgi network. Both dimeric pro-BDNF or dimeric m-BDNF are secreted [8] through

activity-dependent exocytosis in excitable cells secreting granules or through constitutive release

in all cell types [11]. The secreted homodimers bind to their cognate receptor tropomyosin

kinase (Trk) and p75 neurotrophin receptor [12], inducing a series of intracellular signaling cas-

cades related to proliferation, maturation, and maintenance of the neuronal function [8,13].

The most frequent missense mutation of BDNF in humans occurs in the pro-region of the

protein [10] and comprises the substitution of a valine to a methionine at position 66 (V66M)

[13]. The pro-region of BDNF, particularly the position 66 and its adjacent residues, are deter-

minant for the intracellular sorting and activity-dependent secretion of this molecule [14]. The

V66M mutation is believed to impair protein function and distribution [14,15] by interrupting

folding, dimerization and intracellular trafficking of the protein [16], in addition to preventing

the release-dependent activation of BDNF [14]. This mutation is also associated with the devel-

opment of bipolar disorder, depression, obsessive-compulsive disorder, eating disorders,

schizophrenia [15], anxiety, addiction, and memory and learning disabilities [13]. The struc-

ture of the residues 136 to 244 of BDNF have been solved by X-ray crystallography (PDB ID:

1BND and 1B8M) [17]. However, there is no experimentally determined structure for the

V66M mutation and its adjacent residues [17].

Knowledge of three-dimensional structures is essential for understanding the mechanisms

by which proteins perform their functions [18] and how these mechanisms can be disrupted

by disease-associated mutations [19]. However, the determination of protein structures by

conventional methods, such as X-ray diffraction and nuclear magnetic resonance (NMR), is

expensive and time-consuming [20], increasing the imbalance between the amount of struc-

tures elucidated by experimental methods and the number of protein sequences [18] deter-

mined by rapid, massively parallel and low-cost sequencing methods [19]. In this scenario,
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computational (in silico) approaches, are efficient [20] and necessary to predict protein struc-

tures [18] and study disease-associated mutations [19] because they enable modeling of three-

dimensional structures and prediction of the effect of mutations on protein function based on

the amino acid sequence, in a cheaper, faster, and more accurate way when compared to exper-

imental methods [18,20].

In addition to contributing to the development of pathologies [21], missense mutations can

also influence the treatment regimen adopted. Understanding the effects of such mutations on

the structure and function of a protein is important for precision medicine and the develop-

ment of new drugs [22]. The characterization of biochemical and structural parameters consti-

tutes the main approach used to understand the functional effects of missense mutations [19].

Despite the central role of BDNF in psychiatric disorders development, little is known about

the structural and functional effects of its mutations.

In this work, we used the computational methodology previously described by our group

[20,23–25] to analyze the structural and functional effects of the V66M variant of BDNF,

which has been associated with several psychiatric disorders [13].

Materials and methods

Dataset

Sequences and information about BDNF and its natural variant V66M were retrieved from the

UniProt [9] (UniProt ID: P23560), OMIM (OMIN ID: 113505) [26] and PubMed [10] data-

bases. The BDNF crystallographic structure with the highest resolution on the Protein Data

Bank (PDB) database [17] (PDB ID: 1BND) was selected as the modeling template [27].

Functional and stability prediction analysis

The functional and stability effects of the V66M mutation were predicted using the following

algorithms: PhD-SNP [28], PMut [29], PolyPhen-2 [30], SIFT [31], SNAP [32], SNPS&GO

[33], VarMod [34], SNPeffect4.0 [22] and I-Mutant2.0 [35].

Structural modeling

Complete three-dimensional structures of BDNF were created using ab initio and comparative

modeling strategies. The algorithms HHpred [36], M4T [37], RaptorX [38] and SwissModel

[39] were used for comparative modeling, while Rosetta [40], I-Tasser [41] and Phyre2 [42]

algorithms were used for both ab initio and comparative modeling. The generated models

were structurally aligned to the BDNF crystallographic structure (PDB ID: 1BND) using the

TM-align server. The most accurate structure was selected based on the root-mean-square-

deviation (RMSD) < 2.0 Å and TM-score values closer to 1 [20].

Structure validation

The selected structure had its quality validated by PROCHECK [43], ProSa [44], Verify-3D

[45], RAMPAGE [46], and QMEAN [47] servers. We predicted the secondary structure of

BDNF using CONCORD [48]. To further validate the in silico modeled structure of BDNF, we

compared its secondary structure with the 1BND experimental fragment and with the CON-

CORD prediction [48].

Phylogenetic analysis

The ConSurf [49] server was used to calculate the evolutionary conservation degree of each

amino acid of BDNF. The following parameters were selected for phylogenetic analysis:
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homologous search algorithm: CSI-BLAST; number of iterations: 3; E-value cut-off: 0.0001;

protein database: UNIREF-90; number of reference sequences selected: 150; maximum

sequence identity: 95%; minimum identity for counterparts: 35%; alignment method: Bayes-

ian; calculation method: MAFFT-L-INS-i; and evolutionary substitution model: best model.

Molecular dynamics

Mutator Plugin1.3 [50], available in the Visual Molecular Dynamics (VMD) 4.5 software pack-

age [51], was used to induce the V66M substitution on the validated model of BDNF.

Molecular dynamics (MD) simulations of wild-type BDNF and its natural variant V66M

were performed in triplicates using the GROMACS 2018.2 package [52]. Amber99SB-ILDN

[53] was selected as the force field of the simulations. The structures were solvated using

TIP3P water in a dodecahedral box with the dimensions of 55.0 x 82.7 x 45.6 Å. The MD simu-

lation system was neutralized by adding 93 Na+ and 96 Cl− ions. The salt concentrations of

the system were set to 0.15 mol/l. The system was then minimized in 5000 steps using the stee-

pest descent method.

After system minimization, three other steps were conducted in the MD simulation: NVT

(constant number of particles, volume, and temperature), NPT (constant number of particles,

pressure, and temperature) and production. The NVT simulation was followed by the NPT

simulation at a temperature of 300 K and 1 atmosphere for a duration of 100 ps [20]. In these

simulations, all bonds were constrained in the protein to promote position restraint of this

group. The position-restrained NVT and NPT prompted water relaxation around the protein

and reduced system entropy. Parrinello-Rahman was selected as the barostat of the MD,

whereas v-rescale was selected as the thermostat. The barostat and thermostat relaxation lasted

100 ps each.

The production simulation was performed at 300 K for 200 ns for the wild-type BDNF and

its V66M variant. The LINCS (linear constraint solver) algorithm was applied to constrain

covalent bonds [54]. The electrostatic interactions were processed using the particle mesh

Ewald (PME) method [55]. A time step of 0.002 ps was selected for the simulations, and no

constant forces were applied. The MD trajectories were recorded every 10 ps [20].

Trajectory analysis

Root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), B-factor, radius of

gyration (Rg), solvent accessible surface area (SASA), and secondary structure were calculated sep-

arately for each triplicate trajectory, taking the initial structure of the production dynamics as the

reference, to investigate biochemical and structural changes of the native and mutant structures.

The following GROMACS distribution programs were applied to perform these analyses: gmx
rms, gmx rmsf, gmx gyrate, gmx sasa, and gmx do_dssp. The means and their respective confidence

interval (0.95) were calculated for each triplicate in the RMSD, Rg and SASA analyses using the

ggplot2 package in R software [56]. PCA analysis was carried out on all systems using the Bio3D

library implemented in R [57]. The full three independent MD simulations were concatenated,

and trajectory analyses were conducted for native and mutant structures systems. Rotational and

translational motions were removed before calculation of the covariance matrix by least-squares

superposition to the corresponding average structures. The 3N×3N covariance matrices of Cα
atomic positions (Cartesian coordinates) were then calculated for each state.

VMD software was used to calculate distances between atoms and determine hydrogen

bond formation using a geometrical criterion. A hit was computed when the distance between

two polar heavy atoms, with at least one hydrogen atom attached, was less than 3.5 Å using a

D-Ĥ-A angle cutoff of 30˚.
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Results

Functional and stability prediction analysis

PhD-SNP, PMut, PolyPhen-2, SIFT, SNAP, SNPS&GO, and Varmod were used to predict

putative deleterious or neutral effects of the V66M mutation on protein function [24]. The var-

iant V66M was predicted as deleterious by SIFT and PolyPhen-2, whereas it was predicted as

neutral by PhD-SNP, PMut, SNAP, SNPS&GO, and Varmod.

SNPeffect 4.0 is a four-algorithm method used for phenotyping human mutations [22]. The

algorithms WALTZ, TANGO, and LIMBO were used to predict the effects of the V66M mutation

on aggregation tendency (TANGO), amyloid propensity (WALTZ) and chaperone binding ten-

dency (LIMBO). The results indicated that the V66M mutation does not alter these characteristics.

FoldX, the fourth SNPeffect 4.0 algorithm, and I-Mutant2.0 algorithms were used to predict

the effects of V66M mutation on protein stability. According to FoldX, the V66M mutation

does not change protein stability (ddG = -0.04 kcal/mol), whereas for I-Mutant, the V66M

mutation decreases protein stability (ddG = -0.49 kcal/mol).

Structural modeling

The 1BND structure from the Protein DataBank was selected as template for the structural

alignment in TM-align because it has the same sequence coverage and better resolution [27]

(2.30 Å) than the only other BDNF structural fragment (1B8M, 2.75 Å) [17].

The generated models using HHpred [36], M4T [37], RaptorX [38], SwissModel [39],

Rosetta [40], I-Tasser [41] and Phyre2 [42] were structurally aligned to the 1BND crystallo-

graphic fragment of BDNF on the TM-align server. The alignment provides two distinct val-

ues: RMSD and TM-score, which are parameters used to evaluate structural similarity [58].

Accurate models present TM-scores approaching 1 and RMSD < 2.0 Å [20]. Table 1 shows

the RMSD and TM-Score values of the structural alignment.

The algorithms generated accurate models according to the RMSD and TM-scores pre-

sented in Table 1. HHPred and SwissModel structures presented the best scores, but these

structures were not considered for further analyses because these algorithms generated incom-

plete models of BDNF.

Amongst the complete generated BDNF structural models, the one provided by Rosetta

(Fig 1) presented similar structure to its template and RMSD of 1.04 Å and a TM-score of

0.94492 (Fig 2). Therefore, the Rosetta model was considered the most accurate and selected

for structural validation.

Structure validation

The Rosetta structure had its quality validated by PROCHECK [43], ProSa [44], Verify-3D

[45], RAMPAGE [46], and QMEAN [47] servers.

Table 1. Structural alignment of the generated models of BDNF and the 1BND fragment.

Modeling Algorithms RMSD (Å) TM-Score

HHPred 0.53 0.98489

I-Tasser 1.40 0.89691

M4T 1.21 0.93869

Phyre2 1.65 0.90354

RaptorX 1.21 0.93869

Rosetta 1.04 0.94492

SwissModel 1.05 0.95347

https://doi.org/10.1371/journal.pone.0215508.t001
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ProSa evaluates the quality of the submitted model by calculating its potential energy and

comparing the obtained score with those of the experimental structures deposited in PDB

[44]. According to ProSa, the in silico structure of BDNF presented a Z-score of -6.24, which is

comparable to that of NMR structures of the same size (Fig 3A).

QMEAN estimates the quality of the submitted model based on its physicochemical proper-

ties and then generates a value referring to the overall quality of the structure and set it against

the calculated QMEAN-scores of 9766 high-resolution experimental structures [47]. Accord-

ing to QMEAN, the in silico structure of BDNF presented a QMEAN-score of -1.13, which is

comparable to that of high-resolution experimental structures (Fig 3B).

Verify3D assesses the local quality of the submitted model based on its structure-sequence

compatibility to generate a compatibility value for each residue of the protein. High-quality

structures are expected to present more than 80% of their residues with a 3D-1D score equal to

or higher than 0.2 [45]. The in silico structure of BDNF presents 3D-1D scores of 0.2 or higher

(Fig 2C) in 80.57% of its residues, thus it is considered a high-quality model.

PROCHECK and RAMPAGE evaluate the stereochemical quality of the submitted models

based on its phi/psi angle arrangement and then generates Ramachandran plots in which the

Fig 1. In silico modeled structure of BDNF by Rosetta. Secondary structure representation of the in silico modeled structure of BDNF generated by

Rosetta. The α-helices are represented by pink ribbons, the β-strands are represented by blue arrows, and the coiled regions are represented in beige.

https://doi.org/10.1371/journal.pone.0215508.g001
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protein residues are placed on favored, allowed and not allowed regions. For PROCHECK and

RAMPAGE, high-quality models are expected to have more than 90% of their residues in the

most favored regions of PROCHECK’s Ramachandran plot and approximately 98% of their

residues in the favored regions of RAMPAGE’s Ramachandran plot [43,46]. The predicted

model of BDNF shows 90.8% of its residues in the most favored regions of PROCHECK’s

Ramachandran plot and 97.1 of its residues in the favored region of the RAMPAGE’s Rama-

chandran plot. Thus, it is considered a high-quality model (Fig 4).

Moreover, the secondary structure of human BDNF was predicted by CONCORD, a con-

sensus method that is based on seven secondary structure prediction methods: SSpro, DSC,

PROF, PROFphd, PSIPRED, Predator, and GorIV [48]. To further validate the in silico mod-

eled structure of BDNF, we compared its secondary structure with the 1BND experimental

fragment and with the CONCORD results. This comparison is shown in Fig 5, and indicates

that the theoretical model of BDNF also has a high accuracy regarding its secondary structure.

The ALINE software [59] was used to generate the secondary structure comparison scheme.

Fig 2. Structural alignment between the theoretical model of BDNF, generated by the Rosetta algorithm, and the experimental fragment of BDNF (PDB

ID: 1BND). Cartoon representation of BDNF modeled structure created by Rosetta (green) and the experimental fragment 1BND (blue). The α-helices are

represented by ribbons, while the β-strands are represented by arrows.

https://doi.org/10.1371/journal.pone.0215508.g002
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With the quality assessment and the confirmation of the secondary structure prediction,

the Rosetta’s model was considered a high-quality model. Thus, it was selected for the subse-

quent analyses.

Phylogenetic analysis

ConSurf is a bioinformatics tool that applies statistical inference methods, machine learning

and multiple sequence alignment to estimate the evolutionary conservation of amino acids in

a protein. ConSurf then attributes a conservation score to each residue based on the phyloge-

netic relationship between the protein and its homologous sequences. The conservation scores

are associated with a coloring scheme and projected on the protein’s surface [49].

The validated model of BDNF was submitted to ConSurf, which calculated the evolutionary

conservation score of each amino acid of BDNF (Fig 6).The position 66 of BDNF was classified

as variable and buried.

Fig 3. Validation of the in silico predicted model of BDNF by ProSa, QMEAN, and Verify3D. (A) Structure validation by ProSa, which shows the Z-score

of the predicted model of BDNF (black dot), when compared to a non-redundant set of crystallographic structures (light blue dots) and NMR structures (dark

blue dots). The in silico structure of BDNF presents an overall quality score comparable to that of NMR structures. (B) Structure validation by QMEAN, which

shows the QMEAN-score of the predicted model of BDNF (red star), when compared to a non-redundant set of high-resolution experimental structures (gray

and black dots). (C) Structure validation by Verify3D, which shows the 3D-1D score for each atom of the predicted model of BDNF. The graphic shows that

80.57% of the residues of the in silico structure of BDNF presented a compatibility score of 0.2 or higher, which indicates that the structure is a high-quality

model according to Verify3D.

https://doi.org/10.1371/journal.pone.0215508.g003
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Molecular dynamics

MD simulations compute the time-dependent motion of a molecular system based on con-

cepts of physics, chemistry and mathematics [60,61]. Thus, the MD approach can be used to

reproduce the real behavior of a protein in its environment and to calculate its trajectory over

time [20]. These simulations provide detailed information on changes in protein conformation

and fluctuations that can be used to assess biochemical and structural parameters, such as flexi-

bility and stability [60].

The impact of mutations on the structure and function of a protein can be examined using

MD simulations [62]. The complete theoretical models of wild-type BDNF and its V66M vari-

ant (Fig 7) were submitted to MD simulations on GROMACS. The simulations were per-

formed in triplicates and the obtained results were analyzed comparatively in order to

understand the effects of the V66M mutation on BDNF structure and function. The means

and their respective confidence intervals (0.95) were calculated for each triplicate in the

RMSD, Rg and SASA.

RMSD and RMSF are common measures of structural fluctuations [61,63]. For purposes of

MD, RMSD is defined as the root mean square deviation of the atoms of a structure at a given

instant of the simulation relative to its initial position in the MD trajectory [63]. RMSD is

therefore useful for analyzing the time-dependent motion of a given structure and for deter-

mining its spatial convergence throughout the simulation. A plateau of RMSD values indicates

that the structure fluctuates around a stable average conformation. Thus it makes sense to eval-

uate its local fluctuations [61,63].

Fig 4. Validation of the in silico predicted model of BDNF by PROCHECK and RAMPAGE. (A) PROCHECK’s Ramachandran plot shows that the in silico
structure of BDNF. Most residues (90.8%) are located in the most favored regions, while 8.8% are in additional allowed regions, and only 0.5% in disallowed

regions, configuring a high-quality model. (B) RAMPAGE’s Ramachandran plot of the in silico structure of BDNF. This structure is also considered as a high-

quality model because it shows 97.1% of its residues on favored regions, 2.0% on allowed regions, and 0.8% on not allowed regions.

https://doi.org/10.1371/journal.pone.0215508.g004
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Fig 5. Secondary structure comparison between the theoretical model of BDNF, the CONCORD prediction, and the 1BND experimental fragment. The

amino acid sequence of BDNF wild type is shown in the first line of the alignment, followed by the secondary structure of the 1BND fragment, the consensus

secondary structure prediction by CONCORD (ss pred), the CONCORD confidence score (c pred), and the secondary structure of the theoretical model of

BDNF. Red cylinders represent the α-helices, yellow cylinders represent the 3–10 helices, and blue arrows represent the β-strands.

https://doi.org/10.1371/journal.pone.0215508.g005
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We analyzed the time evolution of backbone RMSD values to monitor the overall stability

of each model during 200 ns MD in explicit solvent. Wild-type and V66M systems reached

equilibrium in approximately 50 ns and 100 ns, respectively, and presented a steady behavior

throughout the triplicates (Fig 8). Furthermore, the RMSD values of the V66M variant at the

plateau (0.62 ± 0.04 nm) are similar to those of the wild-type structure (0.55 ± 0.04 nm).

The RMSD values distribution only provides information about the overall structure [64].

Thus, RMSF analysis, which assesses the deviations of an atom or group of atoms from its aver-

age position in a given structure [63,64], is often applied to obtain local information. This anal-

ysis is therefore useful to describe local flexibility, thermal stability, and heterogeneity of

macromolecules [64] based on residue displacement during the MD simulation [20].

The comparison of the fluctuations between wild-type and V66M variant structures evi-

denced that the presence of the mutation resulted in no significant local flexibility alterations

(Fig 9).

Fig 6. Evolutionary conservation analysis of BDNF. The BDNF conservation profile is shown in three different angles. The amino acid residues are represented as

space-filling models and colored according to their conservation scores. The color coding bar shows the ConSurf conservation scores. The amino acid residues colored

in yellow did not receive conservation scores due to insufficient data. According to ConSurf, position 66 of BDNF is variable and buried. Highly conserved positions are

colored maroon, intermediately conserved residues are colored white and variable positions are colored turquoise.

https://doi.org/10.1371/journal.pone.0215508.g006

Fig 7. Complete theoretical models of wild-type BDNF and its variant V66M. Secondary structure representation of the in silico modeled structures of wild-

type BDNF and its variant V66M. The α-helices are represented by pink ribbons, the β-strands are represented by blue arrows, and the coiled regions are

represented in beige. Residues within 5 Å of val66 and met66 are shown in the sticks. Black lines represent hydrogen bonds. (A) Wild-type BDNF. (B) Variant

V66M.

https://doi.org/10.1371/journal.pone.0215508.g007
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Structural flexibility can also be assessed during an MD simulation by analyzing the B-fac-

tor, a measure of atomic displacement due to thermal vibrations [65]. B-factor, as well as

RMSF, reflects the fluctuation of an atom or a set of atoms around their average position

[64,66]. B-factor is therefore used in most methods of predicting protein flexibility [65] and

applied to predict protein flexibility [64].

An overview of structural mobility indicated that the flexibility of the wild-type and V66M

variant of BDNF are similar (Fig 10). B-factor analysis indicated that the V66M mutation does

not affect BDNF local flexibility.

The biological function of proteins is associated with their molecular motions. Therefore, a

thorough understanding of protein function requires the investigation of its static structures,

as well as its dynamics and molecular motions [67].

Protein dynamical mechanical properties are usually best characterized by analyzing its

phase space behavior [62]. PCA, also known as essential dynamics (ED), is a statistical tech-

nique that extracts the essential motions of a protein from a set of sampled conformations

using covariance or correlation matrices. Thus, PCA reduces the number of dimensions

needed to describe protein dynamics [68]. The protein fluctuations are confined within the

eigenvectors of the covariance matrix, which are also called principal components. Projections

Fig 8. Backbone RMSD of wild-type BDNF and its V66M variant. RMSD of the backbone atoms of wild-type BDNF (black) and its V66M variant (blue)

structures at 300 K are shown as a function of time. Mean (solid lines) and confidence interval (smooth lines) of the replicates are displayed.

https://doi.org/10.1371/journal.pone.0215508.g008
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of the protein trajectories on the eigenvectors thus describe their essential motions in phase

space [62].

The ED method can be used to study the influence of residue mutations on molecular

motions [67]. Therefore, we performed PCA on the snapshots obtained from the full MD tra-

jectories to identify statistically relevant motions (essential motions) [69] of wild-type BDNF

and its V66M variant in solution. The first two components (named PC1 and PC2) captured

the dominant motions, accounting for 59.24% and 50.67% of the overall variance in wild-type

BDNF and V66M variant, respectively. We compared the projections of the trajectories onto

the subspace spanned by the first two principal components (Fig 11), as well as analyzed the

RMSF contribution of each protein residue to the first two principal components (Fig 12).

Overall, the variant V66M exhibited altered essential mobility when compared to the wild-type

BDNF, especially at its N-terminus, suggesting that the V66M mutation could affect the BDNF

essential motions.

Rg is the mass-weighted root mean square distance of a group of atoms from their common

center of mass [62] and is used to describe the dimensions of proteins and other biopolymers

[64]. Rg analysis, therefore, generates comprehensive information on protein compactness

during an MD [70]. The overall dimensions of the wild-type and V66M variant systems pre-

sented an average Rg of 2.05 ± 0.04 nm and 2.05 ± 0.03 nm, respectively (Fig 13), suggesting

that the V66M mutation does not affect the BDNF compactness.

Fig 9. RMSF of wild-type BDNF and its V66M variant. RMSF of each residue of wild-type BDNF (black) and its V66M variant (blue) at 300 K are shown as

a line plot. The dashed red line shows residue 66.

https://doi.org/10.1371/journal.pone.0215508.g009
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Solvent accessible surface area (SASA) is defined as the exposed surface of a protein that

can be accessed by a solvent [71,72]. Thus, SASA analysis is useful to understand the protein’s

ability to interact with solvents [72] and other molecules. The accessible surface area of the

wild-type and V66M variant systems are similar, presenting an average SASA of 157.08 ± 4.82

nm2 and 156.25 ± 4.31 nm2, respectively (Fig 14). This analysis suggests that no significant var-

iations in SASA were observed during the simulations.

The function of most proteins is dependent on the interaction and recognition of other

molecules. In addition, much of the binding selectivity comes from the hydrogen-bonding for-

mation between a given protein and its molecular partner [73]. The secondary structure is also

a well-known factor for protein interactions [74,75], since this structural pattern may both

favor or disfavor interactions, such as hydrogen-bonding [73]. We then analyzed the pattern

of secondary structure (Fig 15), as well as the hydrogen-bonding formation of the residue 66

(Table 2) during the MD simulations for BDNF wild-type and its V66M variant [14].

The secondary structure analysis pointed to alterations in the pattern of secondary structure

of BDNF wild-type when compared to its V66M variant, especially at the first alpha-helix of

the protein, comprised between the residues 3 and 18. The second alpha-helix of BDNF, which

contains the position 66 and adjacent residues, presented little alterations when compared to

the wild type, particularly between 68 and 78 ns. It suggests that the V66M mutation could

affect the BDNF secondary structure especially at its first alpha-helix (BDNF pre-domain), but

also may affect the BDNF pro-domain (position 66 and adjacent residues) [76].

The hydrogen-bonding analysis (Table 2) indicated that the occupancy of the hydrogen

bonds formed during the simulations was different for the BDNF wild-type and its V66M vari-

ant, especially regarding the hydrogen bonds formed between val66-thr62 and met66-thr62.

The occupancy of the hydrogen bond formed between the main chains of val66-thr62 and

met66-thr62 is respectively 92.12% and 0%.

Fig 10. B-factor representation of wild-type BDNF and its V66M variant. The B-factor values of each residue of wild-type BDNF and its V66M variant

expressed in a coloring-thickness scheme. Higher B-factor values are represented as red and bulky structures, while lower B-factor values are represented as dark

blue and thin structures.

https://doi.org/10.1371/journal.pone.0215508.g010
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Discussion

BDNF plays a key role in the proliferation, maturation, and maintenance of neuronal function

[8,13]. The most frequent missense mutation of BDNF in humans, V66M [13], is believed to

impair protein function and distribution [14,15]. This mutation is associated with the develop-

ment of psychiatric disorders [13].

Fig 11. Principal component analysis (PCA) of wild-type BDNF and its variant V66M. The plots are showing the first two principal components (PC1 and

PC2) extracted from the essential dynamics. The trajectory frames for wild-type BDNF and its variant V66M were colored from blue to red according to time

evolution. (A) PCA plot of wild-type BDNF. The first two PCs account for 59.24% of the total structural variance. (B) PCA plot of variant V66M. The first two

PCs account for 50.67% of the total structural variance. (C) PCA comparison between wild-type BDNF (black) and its variant V66M (blue).

https://doi.org/10.1371/journal.pone.0215508.g011
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The pro-domain of BDNF, particularly the position 66 and its adjacent residues, are deter-

minant for the intracellular sorting and activity-dependent secretion of the molecule [14]. This

region also acts as a molecular chaperone to assisting the folding [77] of nascent BDNF, in

Fig 12. Visualization of the first two principal components on the structure of wild-type BDNF and its variant V66M. The RMSF contribution of each

protein residue to the first two principal components (PC1 and PC2) is displayed within their respective plot and projected on the corresponding structural

location. RMSF magnitude is represented by a coloring-thickness scheme, which scales from thin and blue (low fluctuations) to thick and red (large

fluctuations). The dashed red lines show residue 66. (A) RMSF contribution of wild-type to PC1. (B) RMSF contribution of variant V66M to PC1. (C) RMSF

contribution of wild type to PC2. (D) RMSF contribution of variant V66M to PC2.

https://doi.org/10.1371/journal.pone.0215508.g012
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addition to being directly involved in the proteolytic cleavage of pro-BDNF to mature-BDNF

[78].

The substitution of a Valine to a Methionine at the position 66 of BDNF occurs at its N-ter-

minal pro-region [77]. This substitution affects the intracellular sorting of BDNF [16] and

reduces the amount of the protein targeted to secretory granules [11]. This pathological condi-

tion impairs the activity-dependent secretion of BDNF [79], which is the main pathway

responsible for the protein release in neurons [80].

In addition to reducing BDNF secretion in neurons [77,80], the V66M mutation also

impacts BDNF expression levels [81,82]. Moreover, this mutation is believed to disrupt the

folding and dimerization of BDNF [16]. However, the V66M substitution does not affect the

efficiency of pro-BDNF processing and, consequently, the formation of mature-BDNF [79].

The pro-domain of BDNF does not appear to participate in the protein dimerization pro-

cess, since the formation of BDNF dimers depends on a cysteine knot structure linking the

mature domains of each protein monomer. Importantly, this connection is maintained even

after the cleavage of BDNF pro-domains [83]. However, the V66M mutation is thought to

impair BDNF dimerization [16].

Fig 13. Rg of wild-type BDNF and its V66M variant. Rg of the Cα atoms of wild-type BDNF (black) and its V66M variant (blue) at 300 K are shown as a function

of time. Mean (solid lines) and confidence interval (smooth lines) of the replicates are displayed.

https://doi.org/10.1371/journal.pone.0215508.g013
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The effects of deleterious mutations on proteins can be predicted in silico by computational

simulations [70]. We used the PhD-SNP [28], PMut[29], PolyPhen-2 [30], SIFT [31], SNAP

[32], SNPS&GO [33], VarMod [34], SNPeffect4.0 [22], and I-Mutant2.0 [35] algorithms to

predict the V66M effects on the BDNF function and stability.

The V66M variant of BDNF was predicted as deleterious by SIFT and PolyPhen-2, whereas

it was predicted as neutral by PhD-SNP, PMut, SNAP, SNPS&GO, and Varmod. This analysis

shows little concordance amongst the functional prediction algorithms used in detecting the

known deleterious potential of the V66M mutation [13,15], as only two out of the seven algo-

rithms were able to detect it. The available methods were trained in different data sets [84] and

present different strategies to predict the putative functional effects of mutations on proteins.

Considering that there is no gold-standard method, it is important to use more than one algo-

rithm to determine the deleterious potential of mutations [20,24]. The divergent results reaf-

firm the need of improving such methods.

The FoldX prediction indicated that the V66M mutation does not affect BDNF stability

(ddG = -0.04 kcal/mol), whereas the I-Mutant prediction indicated that the V66M mutation

decreases protein stability (ddG = -0.49 kcal/mol). The inconsistency between these results

may occur due to the different strategies that the FoldX and I-Mutant algorithms apply to

make predictions and classify mutations [35,85]. While FoldX evaluates free energy from the

Fig 14. SASA of wild-type BDNF and its V66M variant. SASA of wild-type BDNF (black) and its V66M variant (blue) are shown as a function of time. Mean

(solid lines) and confidence interval (smooth lines) of the replicates are displayed.

https://doi.org/10.1371/journal.pone.0215508.g014
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Fig 15. Secondary structure analysis of BDNF wild-type and its V66M variant. Time evolution of secondary structural elements during the MD simulations

of wild-type BDNF (A) and its V66M variant (B). Coils are represented in white, β-sheets are represented in red, β-bridges are represented in black, bends are

represented in green, turns are represented in yellow, α-helices are represented in blue, 5-helices are represented in purple and 3-helices are represented in

gray.

https://doi.org/10.1371/journal.pone.0215508.g015

Table 2. Hydrogen bond occupancy of the residue 66 during the MD simulations of BDNF wild-type and its V66M variant.

Wild-type BDNF V66M BDNF

Donor Acceptor Occupancy (%) Donor Acceptor Occupancy (%)

VAL66-Main-N THR62-Main-O 92.12 MET66-Main-N THR62-Main-O 0

VAL66-Side-CG2 THR62-Main-O 16.29 MET66-Side-CG THR62-Main-O 7.29

LEU70-Main-N VAL66-Main-O 24.25 LEU70-Main-N MET66-Main-O 10.16

GLU69-Main-N VAL66-Main-O 17.75 GLU69-Main-N MET66-Main-O 10.59

VAL66-Main-N PHE63-Main-O 17.95 MET66-Main-N PHE63-Main-O 32.96

Atom pairs with less than 5% occupancy are not shown in the table.

https://doi.org/10.1371/journal.pone.0215508.t002
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application of an empirical force field that was trained in the molecular interactions of engi-

neered proteins [85], I-Mutant applies Support Vector Machine methods to calculate free

energy based on experimentally determined structures [35]. Moreover, FoldX presented three

possible classifications for the mutation effects on protein stability: does not affect protein sta-

bility (ddG between 0.5 and -0.5 kcal/mol), decreases protein stability (ddG > 0.5) and

increases protein stability (ddG < -0.5) [22], whereas for I-Mutant, there are only two possible

classifications: decrease protein stability (ddG < 0) or increase protein stability (ddG > 0)

[35].

The SNPeffect prediction indicated that the V66M mutation does not affect the aggregation

tendency, amyloid propensity and chaperone binding tendency of BDNF.

The three-dimensional protein structure is essential for understanding the mechanisms by

which proteins perform their functions [18] and the mechanisms which disease-associated

mutations disrupt these functions [19]. In addition to experimental methods for determining

protein structures, such as x-ray crystallography and NMR, the structure of a protein can be

predicted using theoretical modeling [60]. However, considering that experimental methods

of determining protein structures are expensive and time consuming [20] and that massively

parallel and low-cost sequencing methods determine protein sequences at a much faster rate

[19], theoretical modeling is presented as an efficient [20] and necessary approach to solving

the protein structural gap [18] because it enables modeling of three-dimensional structures in

a cheaper, faster, and more accurate way [20].

There are two theoretical modeling methods that are worth mentioning: comparative and

ab initio modeling. Ab initio modeling predicts protein structures based on energy functions

and sequence information [86], whereas comparative modeling builds three-dimensional pro-

tein models using experimentally determined structures as the template [27]. Comparative

modeling is the most precise method of predicting protein structures, as it can generate models

with an accuracy that is similar to that of experimental protein models [60].

BDNF has had only part of its structure experimentally determined. The available crystallo-

graphic fragments of BDNF have no structure at the position 66 and adjacent residues [17],

which are located at the pro-region of the protein and are important for the release-dependent

activation of BDNF [14]. Thus, we sought to develop the in silico complete model of BDNF

and its V66M variant.

HHPred and SwissModel returned incomplete models of BDNF, whereas Rosetta, I-Tasser,

RaptorX, Phyre2 and M4T returned complete models. The alignment between the modeled

structures of BDNF and its crystallographic fragment (PDB ID: 1BND) by TM-align is shown

in Table 1, The alignment provides two distinct values: RMSD and TM-score, which are used

to evaluate the structural similarity of the submitted molecules [58]. RMSD is defined as the

spatial differences between two static structures [61]. Protein size and local structural devia-

tions are not considered in RMSD calculation. Based on this approach, the TM-align server

also provides a TM-score, which is calculated from smaller portions of the structure and is nor-

malized according to protein size, thus providing greater sensitivity in evaluating structural

similarity [58]. Accurate models present TM-scores approaching 1 and RMSD < 2.0 Å [20].

Thus, the structural alignment (Table 1) indicated the generated models are accurate. Rosetta’s

model (Fig 1) presented the best RMSD and TM-score values amongst the complete models

and was considered the most accurate. The structural similarity between the Rosetta’s model

and its template structure, the experimental fragment of BDNF (PDB ID: 1BND), is shown in

Fig 2.

The Rosetta’s model had its stereochemical quality confirmed by PROCHECK and RAM-

PAGE (Fig 4) and its 3D-1D structural compatibility confirmed by Verify3D (Fig 3C).
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Moreover, the ProSa and QMEAN assessment showed that the overall quality of the Rosetta’s

model is comparable to that of experimental determined protein structures (Fig 3B and 3C).

To further validate the modeled protein structure, we compared its secondary structure

with the 1BND experimental fragment and with the CONCORD results (Fig 5). It indicates

that the theoretical model of BDNF also shows high accuracy regarding its secondary struc-

ture. With the quality assessment and the confirmation of the secondary structure prediction,

the theoretical model of BDNF was considered a high-quality model and selected for the subse-

quent analyses.

Structurally and functionally important residues of a protein are usually conserved along

evolution. Thus, the biological importance of a residue can be correlated to its level of evolu-

tionary conservation [49]. We used ConSurf to investigate the evolutionary conservation of

the position 66 of BDNF. ConSurf estimates the evolutionary conservation of amino acids in a

protein and attributes a conservation score to them [49].

Although the V66M mutation of BDNF is described as being associated with the develop-

ment of psychiatric disorders [13,15] and occurs in a position that is determinant for the intra-

cellular sorting and activity-dependent secretion of the protein [14], the ConSurf analysis

classified position 66 of BDNF as variable and buried (Fig 6). This result could be related to the

low sensitivity of the functional prediction algorithms used to predict the known deleterious

potential of the V66M mutation on BDNF [13,15], as most are based on evolutionary informa-

tion from the sequence to make predictions [24].

We also developed a complete theoretical model of the V66M variant of BDNF to further

investigate the effects of V66M mutation on BDNF. The comparison between the in silico
modeled structure of wild-type BDNF and its variant V66M (Fig 7) shows that the V66M sub-

stitution does not affect the side chain interactions of residue 66, as well as the possible hydro-

gen bonds formed. Interestingly, the hydrogen-bonding analysis we carried out (Table 2),

pointed to differences in the occupancy of hydrogen bonds formed throughout the BDNF

wild-type and its V66M variant simulations, indicating that the V66M mutation may affect the

BDNF propensity for hydrogen bond formation at its pro-domain.

The impact of mutations on the structure and function of a protein can be thoroughly

examined using MD simulations [62]. We then performed MD simulations of wild-type

BDNF and its V66M variant to investigate the effects of the V66M mutation on BDNF [70].

The plateau of RMSD values, observed at both simulations (Fig 8), is similar between the

BDNF wild-type and V66M variant, indicating that both structures fluctuate around a stable

average conformation [61,63]. Moreover, the RMSD values of the V66M variant at the plateau

are similar to those of the wild-type structure. The RMSF (Fig 9) and B-factor (Fig 10) analyses

indicated no local flexibility alterations between the wild-type BDNF and its V66M variant.

The changes observed in the Rg (Fig 13) and SASA (Fig 14) analyses suggested that the V66M

mutation does not affect the surface-to-volume ratio of BDNF.

Since the average RMSD value of the entire simulations of wild-type BDNF (0.55 ± 0.04nm

and 0.53 ± 0.05nm, respectively) and its variant V66M (0.58 ± 0.07nm and 0.62 ± 0.04nm,

respectively) are similar to those at their plateaus, we then submitted the full MD trajectories

of wild-type BDNF and its variant V66M to Bio3D for the PC analysis in order to capture their

molecular motions for a longer time (200ns of entire simulation, instead of 100ns of plateau

time).

The alterations observed in the PC analysis (Fig 11) indicated that the V66M mutation

could affect the BDNF essential motions, particularly at its N-terminus (Fig 12). Considering

that the biological functions of proteins are usually determined by their essential motions [67],

such as binding to substrates and protein interactions [69], the alterations observed during the

PC analysis, could be related to the functional impairment of BDNF upon V66M. Especially
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because the BDNF pro-domain, located at its N-terminus, is determinant for the intracellular

sorting, activity-dependent secretion [14], molecular folding [77], and proteolytic cleavage of

BDNF [78].

Although the RMSF and B-factor analyses suggested that the V66M mutation does not

affect BDNF local flexibility, the PC analysis indicated that this mutation could affect the

BDNF essential dynamics. The process of applying PC analysis to a protein trajectory is also

known as essential dynamics, since the essential motions of a given protein are extracted from

a set of sampled conformations [68]. Certain types of internal motions, such as binding to sub-

strates and protein interactions, allow proteins to perform their biological functions. The aim

of essential dynamics, in this sense, is to determine how these movements relate to protein

function and to identify the most representative degrees of freedom. The essential dynamics

allows to separate a set of internal atomic movements into two subspaces: 1) the essential sub-

space, which contains only a few degrees of freedom [69] usually describing relevant move-

ments to protein function [68], such as opening, closing, and flexing; 2) and the remaining

subspace, which describes small irrelevant local fluctuations [69]. Thus, the PC analysis, which

describes the essential movements of a protein [68], usually better characterize its mechanical

behavior [70] rather than the RMSF and B-factor analysis, which describe both relevant and

irrelevant local fluctuations.

The alterations observed in the secondary structure analysis (Fig 15) suggested that the

V66M mutation could affect the BDNF secondary structure at its N-terminus, especially at the

BDNF first alpha-helix (pre-domain). The BDNF pre-domain leads the newly-generated pro-

tein to the endoplasmic reticulum, where it is cleaved to pro-BDNF. This constitutes a crucial

step in the processing of BDNF [87]. The secondary structure analysis also pointed to little

alterations at the BDNF pro-domain, which is crucial for BDNF functionality [14,77,78]. Thus,

considering that the function of most proteins is guided by interactions with other molecules

and, consequently, dependent on hydrogen-bonding [73] and secondary structure formation

[73–75], the alterations observed in the secondary structure (Fig 15) and hydrogen-bonding

analysis (Table 2) further indicate that the V66M mutation may affect BDNF functional inter-

actions particularly at its pre and pro-domain.

The MD analyses suggested that the V66M mutation does not affect the BDNF local flexibil-

ity and surface-to-volume ratio, but could affect the BDNF essential motions, particularly at its

N-terminus. The MD analyses also suggested that the V66M mutation could affect the BDNF

hydrogen-bonding at its pro-domain, as well as its secondary structure at the N-terminus (pre

and pro-domain). Thus, considering that hydrogen-bonding, secondary structure formation

and essential dynamics are determinant for protein interactions and, consequently, protein

function [69,73–75]; the alterations observed throughout the MD simulations may be associ-

ated with the functional impairment of BDNF upon this mutation [67], as well as its involve-

ment in psychiatric disorders [8,13]. Especially because these alterations may impact BDNF

effective interactions at the pre and pro-domain, which are fundamental for the processing

[87], intracellular sorting, activity-dependent secretion [14], molecular folding [77], and pro-

teolytic cleavage of BDNF [78].

Conclusions

Computational (in silico) approaches are efficient and necessary to predict protein structures

and study disease-associated mutations. This work provided an accurate and complete model

of BDNF in silico. Stability and functional predictions pointed to the low accuracy of the algo-

rithms used in predicting the known deleterious potential of the V66M mutation and showed

the importance of combining more than one method to predict the effects of non-synonymous

Functional and structural analysis of human BDNF protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0215508 April 18, 2019 22 / 28

https://doi.org/10.1371/journal.pone.0215508


mutations. Phylogenetic analysis indicated that position 66 of BDNF is not conserved; how-

ever, it is fundamental for the intracellular sorting and activity-dependent secretion of the

protein. The conservation degree of position 66 of BDNF could also be related to the low accu-

racy of the algorithms used in predicting the known deleterious potential of the V66M muta-

tion, since most of them are based on evolutionary information to make predictions.

Furthermore, MD analyses indicated that the V66M mutation does not affect the BDNF flexi-

bility and surface-to-volume ratio, but affects the BDNF essential motions, hydrogen-bonding

and secondary structure formation, particularly at its N-terminus. Thus, considering that these

parameters are determinant for protein interactions and, consequently, protein function; the

alterations observed during the MD analyses may be related to the functional impairment of

BDNF upon V66M mutation, as well as its involvement in psychiatric disorders. Especially

because the BDNF N-terminus, which contains its pre and pro-region, is crucial for its activity

and distribution.
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29. López-Ferrando V, Gazzo A, De La Cruz X, Orozco M, Gelpı́ JL. PMut: A web-based tool for the annota-

tion of pathological variants on proteins, 2017 update. Nucleic Acids Res. 2017; 45: W222–W228.

https://doi.org/10.1093/nar/gkx313 PMID: 28453649

30. Adzhubei I, Jordan DM, Sunyaev SR. Predicting Functional Effect of Human Missense Mutations Using

PolyPhen-2. Curr Protoc Hum Genet. 2013;7: Unit7.20. https://doi.org/10.1002/0471142905.

hg0720s76.Predicting

31. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc.

Nature Publishing Group; 2015; 4: 1073–1081. https://doi.org/10.1038/nprot.2015.123

32. Bromberg Y, Rost B. SNAP: Predict effect of non-synonymous polymorphisms on function. Nucleic

Acids Res. 2007; 35: 3823–3835. https://doi.org/10.1093/nar/gkm238 PMID: 17526529

33. Capriotti E, Calabrese R, Fariselli P, Martelli PL, Altman RB, Casadio R. WS-SNPs&GO: a web server

for predicting the deleterious effect of human protein variants using functional annotation. BMC Geno-

mics. BioMed Central Ltd; 2013; 14: S6. https://doi.org/10.1186/1471-2164-14-S3-S6 PMID: 23819482

34. Pappalardo M, Wass MN. VarMod: Modelling the functional effects of non-synonymous variants.

Nucleic Acids Res. 2014; 42: W331–W336. https://doi.org/10.1093/nar/gku483 PMID: 24906884

35. Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: Predicting stability changes upon mutation from the pro-

tein sequence or structure. Nucleic Acids Res. 2005; 33: W306–W310. https://doi.org/10.1093/nar/

gki375 PMID: 15980478
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