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SUMMARY

The influenza virus is a major cause of morbidity and
mortality worldwide. Yet, both the impact of intracel-
lular viral replication and the variation in host
response across different cell types remain unchar-
acterized. Here we used single-cell RNA sequencing
to investigate the heterogeneity in the response of
lung tissue cells to in vivo influenza infection. Anal-
ysis of viral and host transcriptomes in the same
single cell enabled us to resolve the cellular hetero-
geneity of bystander (exposed but uninfected) as
comparedwith infected cells.We reveal that all major
immune and non-immune cell types manifest sub-
stantial fractions of infected cells, albeit at low viral
transcriptome loads relative to epithelial cells. We
show that all cell types respond primarily with a
robust generic transcriptional response, and we
demonstrate novel markers specific for influenza-in-
fected as opposed to bystander cells. These findings
open new avenues for targeted therapy aimed exclu-
sively at infected cells.

INTRODUCTION

Influenza infection is a major cause of severe morbidity and mor-

tality. Understanding the interplay between the influenza virus

and its host cells is critical for the development of successful

therapeutic approaches. In numerous studies, the host response

to influenza infection has been characterized by measuring bulk

cell populations and their further experimental validation. Collec-

tively, these have provided rough models of the host response

(e.g., Altboum et al., 2014; Shapira et al., 2009), but it is clear

that the in situ infected lung is far more complex than the current

models. For example, while epithelial cells are known to be the

main targets of the influenza virus, several studies have docu-

mented that other cell types, such as endothelial cells, natural

killer (NK) cells, macrophages, and dendritic cells (DCs), are

also susceptible to the influenza virus, with potential implications

of intracellular infection for their functionality (Manicassamy
et al., 2010; McFadden et al., 2009). Complexity may also be

related to a wide range of viral transcriptional states within the in-

fected cells (Russell et al., 2018; Xin et al., 2018; Zanini et al.,

2018), as well as to the heterogeneity of host-response states

(Avraham et al., 2015). Another complication may be attributable

to the dual role of themetabolic machinery in supporting the host

while also limiting the energetic demands of the viral life cycle

(Jovanovic et al., 2015; Kissig et al., 2017). Yet another source

of heterogeneity may derive from the possibility that only a sub-

set of the cells are actually infected by influenza, while most of

the cells in the population are bystanders (exposed but unin-

fected) and typically respond to defensive host signals such as

type I interferons (IFNs) (McFadden et al., 2009).

Multiple key questions related to the complexity of the in vivo

influenza infection have yet to be answered. In particular, the

extent and nature of intracellular infection in different cell types

has not been systematically elucidated. Furthermore, systematic

characterization of host-response heterogeneity in bystander

and infected cells across various cell types remains uncharacter-

ized. Advances in the fluorescent labeling of influenza viruses

have opened the way to an unbiased separation of infected

and bystander cells (De Baets et al., 2015; Manicassamy et al.,

2010). A potential source of limitation with this technique is

that reporter proteins cannot be expressed in the influenza virus

without changing its infectivity, probably because of the signifi-

cant burden of the reporter on viral fitness (Breen et al., 2016).

As a result, it has been a challenging task to characterize in vivo

the full repertoire of viral-host interactions using these strains. An

opportunity to tackle this challenge was provided by recent ad-

vances in single-cell genomic technologies (Jaitin et al., 2014;

Paul et al., 2015), allowing for simultaneous mapping of both

the host and the viral transcriptome in the same single cell.

Here, we report the first comprehensive single-cell mRNA

profiling of influenza-treated lungs. We characterized the host

and the viral transcriptomes for 7,325 single cells from nine im-

mune and non-immune cell types in both wild-type and Irf7-

knockout (KO) mice. We found that substantial proportions

(22%–62%) of all cell types are infected by the influenza virus,

and showed that infected cells predominantly have low intracel-

lular viral transcriptome loads. Exceptional in this respect are

epithelial cells, which are infected with massive viral loads

(reaching up to 20%of all transcripts). Using Irf7-KOmice, which

are incapable of launching an effective type I IFN response, we
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found that infectivity is a basic cellular property that is indepen-

dent of the type I IFN host response. Moreover, our analysis

highlights a core module of type I IFN genes (‘‘IFN module’’)

that is shared by nearly all cell types. By comparing infected

and bystander cells in both wild-type and Irf7-KO mice, we

showed that this module is predominantly affected by Irf7-

dependent bystander exposure, consistently with the estab-

lished IFN feedback loop. Another notable finding was that

influenza infection also leads to a generic repression of mito-

chondrially encoded genes and that this response is largely un-

coupled from induction of the IFNmodule: unlike the IFNmodule,

the mitochondrial module responds to both Irf7-dependent and

Irf7-independent signals and manifests its peak of repression

only after intracellular viral invasion.

Our results open the way to interventions targeted specifically

on infected cells, suggest principles of viral-host interactions

that are applicable in influenza and possibly also in other patho-

gens, and highlight the power of simultaneous single-cell mea-

surements of both hosts and viral transcriptomes in delineating

a comprehensive map of in vivo infection.

RESULTS

Dissecting In Vivo Influenza Infection Using Combined
Single-Cell Mapping of Host and Viral Transcriptome
To simultaneously study, in an unbiased way, both host and viral

transcriptional states after influenza infection, we used single-

cell RNA sequencing (scRNA-seq) of cells frommouse lungs (fe-

male C57BL/6J mice aged 5.5–6.5 weeks) obtained 2 days after

influenza infection. We first used fluorescence-activated cell

sorting (FACS) to isolate immune (CD45+) and non-immune

(CD45�) cells derived from the lungs of influenza-treated and

PBS (‘‘control’’)-treatedmice. Next, we used amassively parallel

single-cell RNA-seq approach (MARS-seq; Jaitin et al., 2014)

that profiles all polyadenylated mRNAs (STAR Methods, Fig-

ure 1A). A total of 2,034 and 2,146 cells were analyzed from influ-

enza-treated and control mice, respectively. To evaluate the

quality of the data, we identified genes that are differentially

expressed in cells isolated from the influenza-treated mice

compared with the control (binomial test, STAR Methods). As

expected, these genes (Pbinomial <10
�5) were overrepresented

in antiviral-related signaling pathways, such as IFN signaling

(Phg <10
�8) and Irf7 signaling (Phg <10

�7).

Clustering of single cells enabled us to distinguish between

different cell types while taking into account the possible con-

founding effect of antiviral-related programs. We did this by first

excluding genes that correlated strongly with the top two prin-
Figure 1. Comprehensive Influenza Infection Map of Bystander and In
(A) Schematic illustration of the experimental workflow. Immune and non-immune

mice, 48 hr post infection, for massively parallel single-cell RNA-seq (MARS-seq

allowing identification of infected as opposed to bystander cells as well as retros

(B) Transcriptional signatures of single cells associated with nine major cell types.

4,064 single cells (columns). The expression matrix displays the clustering of ce

derived from different treatments (light/dark gray respectively denote control/infl

states (white/yellow/brown respectively denote unexposed/bystander/infected c

(C�E) Visualization of single cells across different cell types, treatments, and intrac

(C); the mouse to which the cell belongs (D), and the intracellular infection state

See also Figure S1 and Table S1.
cipal components (top 1.5% of principal-component-correlated

genes), which were strongly enriched for antiviral, anti-prolifera-

tive, and inflammatory processes (Figure S1A). Next, we applied

the expectation maximization clustering algorithm as previously

described (Paul et al., 2015), and manually annotated each clus-

ter based on the expression of canonical markers. The analysis

produced nine robust clusters with a total of 4,064 cells, which

comprised four clusters of non-immune cell types: epithelial cells

(EP), lymphatic and blood endothelial cells (LEC and BEC,

respectively), and fibroblasts (FIB), and five specialized immune

cell types: granulocytes (GN), T cells, B cells, NK cells, and a joint

cluster of dendritic cells, monocytes, and macrophages collec-

tively termed the mononuclear phagocyte system (MPS) (Fig-

ure 1B, Table S1, STAR Methods). To determine whether cells

were indeed clustered by cell type rather than by treatment or

by intracellular viral gene transcription, each individual cell was

annotated according to its best matchwith the global expression

of previously sorted bulk cell subsets. As shown in Figures S1B

and S1C, the annotation of individual cells based on the bulk

transcriptome data was in agreement with the marker-based

annotation of these clusters. We further used t-distributed sto-

chastic neighbor embedding (t-SNE) to project the different

cell subpopulations onto a 2-dimensional space. As expected,

cells annotated with the same cell type formed a separate t-

SNE cluster independently of treatment (influenza-treated

versus control) (Figures 1C and 1D).

Since the viral mRNA (vmRNA) is polyadenylated, MARS-seq

captures both viral and host mRNAs within each individual cell

(Figure 1A). We inferred the viral load within a cell from the

amount of unique molecular identifiers (UMIs) that are aligned

with viral segments. Specifically, the viral load was defined as

the proportion of viral UMIs (that is, UMIs aligned with one of

the viral segments) in the total UMI content of a given cell.

Accordingly, wedefined three groupsof cells: (1) ‘‘infected cells,’’

cells whose viral load is higher than a certain selected viral-load

cutoff; (2) ‘‘bystanders,’’ cells that are derived from the influenza-

treated mouse but do not detectably express any vmRNA (viral

load is zero); and (3) ‘‘unexposed cells,’’ cells derived from a con-

trol mouse that was never infected (Figure 1A). Utilizing a model

that takes cross-contamination and various technical artifacts

into account, we showed that infected cells can be recovered

with high precision over a range of viral-load cutoffs (Supple-

mental Information and Figures S2A–S2C). For example, among

the inferred infected granulocyteswe correctly predicted 99%by

using a strict viral-load cutoff of 1%, and 88% by using a more

permissive (0.01%) cutoff. Utilizing a reporter model of in vitro

infection (Shnayder et al., 2018), we were able to assess how
fected Cells Identified by Single-Cell RNA Sequencing
single cells were isolated from the whole lung of control and influenza-treated

). In each single cell, the host and the vmRNA were simultaneously measured,

pective annotation of cell types based on transcriptional identities.

Gene expression of annotated cell-type-specific genes (rows) is shown across

lls into nine cell-type groups (first row), where each cell type consists of cells

uenza-treated animals; second row) and shows heterogeneity of cell infection

ells, third row).

ellular infection states. t-SNE plots show the cell-type annotation of single cells

(E). Color-coding is as in (B).
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Figure 2. Combined Single-Cell Analysis of Virus and Host Reveals High Prevalence of Infected Cells in All Major Lung-Derived Cell Types

(A) Prevalence of infected cells in each of the immune and non-immune cell types. The percentage of infected cells (y axis) in each cell type (x axis) is reported for

cells derived from either the control (light gray) or the influenza-treated mice (dark gray). The expected percentages of false positives are marked in white

error bars.

(B) Extent to which the abundance of infected cells is an intrinsic property of the cell type. Shown is the percentage of infected cells in each cell type from an

influenza-treated wild-type mouse (x axis) compared to its biological replicate (y axis).

(C) Analysis of potential implications of the type I IFN pathway in cell-type-specific infection. Shown are the percentages of infected cells in an Irf7 wild-type

(x axis) versus an Irf7-KO mouse (y axis).

(D) Single-cell heterogeneity of intracellular viral load within the influenza-treated host. Shown are the percentages of low (yellow), medium (light brown), and high

(dark brown) viral-load states (y axis) within the population of infected cells, as identified for each of the nine cell types (x axis; total numbers of infected cells are

indicated).

See also Figures S1–S4, Tables S2 and S3.
well vmRNA detection recapitulates the actual infected cells (see

details in Supplemental Information). We observed that our cell

grouping correctly predicts a high fraction of bona fide infected

cells (Figure S2D): using viral-load cutoffs of 0.05%, we correctly

recovered 79% of the infected cells. Infected cells that were not

identified were those with low viral loads that lead to dropout

events; it should, however, be possible to identify many of those

cells by increasing the RNA-seq coverage.

High Prevalence of Infected Cells Is a Characteristic of
All Major Cell Types
We first explored the prevalence of infected cells within each of

the nine major cell types. We focused on infected cells carrying

a viral load of at least 0.05%, as this load faithfully represents

a reasonable precision-recall trade-off (Supplemental Experi-

mental Procedures, Figure S2E, and Table S2), high purity of

influenza-infected cells (Russell et al., 2018, Supplemental

Experimental Procedures and Figure S2F), and relatively high

viral expression level (Figures S2G and S2H). Based on this cut-

off, we calculated for each cell type the percentage of infected
682 Cell Systems 7, 679–691, June 27, 2018
cells among the cells derived from the influenza-treated mouse.

Interestingly, relatively large percentages of infected cells were

observed in each of the nine cell types, ranging between 22%

and 31% in adaptive immune cells, between 25% and 36% in

innate immune cells, and between 32% and 62% in non-immune

cells, with the highest percentage of virus-infected cells (62%)

observed in epithelial cells (Figures 2A and 1E). Even after sub-

tracting the expected percentages of erroneous predictions,

intracellular viral infection was still prevalent in all cell types

(Table S2).

Several lines of evidence suggested that the high predicted

prevalence of infection was not due to technical artifacts. First,

we confirmed the high prevalence of infected cells using flow cy-

tometry of immune cell subsets that were stained for the intracel-

lular viral nucleoprotein (NP) (STAR Methods). In agreement with

our predictions, we found a high prevalence of NP-positive cells

within the infected lung tissue, with observed percentages of

48%, 43%, 55%, 61%, and 43% NP-positive cells in Cd45+,

Cd45+Ly6g+, Cd45+Cd11b+, Cd45+Ly6g�Cd11b�, and Cd45�

cells, respectively (using false detection rate <5%; Figures S3A



and S3B). In comparison, only 2% of NP-positive cells were

observed when cells were stained for extracellular NP (Fig-

ure S3B, STARMethods), indicating that the observed high prev-

alence of infected (NP-positive) cells could not be attributed to

free NP proteins or NP-RNA complexes. Second, we observe

a low amount of background noise: only 25 of 2,075 unexposed

cells (1.2%) were erroneously classified as infected cells (Fig-

ure 2A and Table S1). Third, an authentic influenza replication in-

volves the generation of spliced isoforms for vmRNAs derived

from specific segments. Indeed, we could detect the typical

spliced form of the vmRNA derived from Segment 7 in cDNA li-

braries of Cd45+ cells (Figure S3C, STAR Methods), strength-

ening the notion that viral replication is not limited to epithelial

cells but can also occur in immune cells. Fourth, UMIs were spe-

cifically aligned to the 30 end of the polyadenylated viral RNA

(Figure S1D) and cells were found to simultaneously express

different viral genes (Figure S1E), confirming that the results

were not attributable to non-specific predictions. Fifth, detection

of vmRNA could, in principle, be confounded by the quality and

complexity of cells. In that case, the infected and bystander cell

populations should differ in their cell qualities. Such a difference

is implausible, however, because the quality metrics of infected

cells resemble those seen in bystanders (Figures S3D and S3E),

with the single notable exception of cell size, which, in agree-

ment with earlier studies (Xin et al., 2018), is higher in the infected

cells (Supplemental Information and Figures S3D–S3G).

The Prevalence of Infected Cells Is a Cell-Type-Specific
Property
The widespread presence of infected cells found in all major cell

types raises a fundamental question: do the differences in frac-

tions of infected cells in different cell types (Figure 2A) reflect

a true biological signal (rather than experimental noise)? To

address this question we performed a second biological repli-

cate of an influenza-treated animal (using the same pipeline as

in Figure 1A). This biological replicate consisted of the same

cell-type populations, with totals of 833 bystanders and 402 in-

fected cells (Table S1). Importantly, cell-type-specific percent-

ages of infected cells were found to be highly reproducible in

the two biological replicates (Spearman correlation = 0.93; Fig-

ure 2B), although there were differences in absolute fractions be-

tween experiments. In particular, T cells were associated with

the lowest infection, while the highest percentage of infected

cells was observed in epithelial cells. Among the rest, non-im-

mune cells were generally associated with higher infection rates

than those of immune cells. Notably, these results were repro-

ducible in replicate mice examined 72 hr after infection

(Spearman correlation = 0.83; Figure S4A) and were consistent

with previous reports (Figure S4B). Since all of the single-cell

experimental and computational procedures were applied on

each mouse independently, our results suggested that the

observed differences in fractions of infected cells between cell

types reflect a true cell-type-specific property.

One mechanism that might explain this cell-type-specific

property is type I IFN signaling driven by the master transcription

regulator protein Irf7 (Ciancanelli et al., 2015). To test this possi-

bility we generated single-cell RNA-seq data of lung tissue from

an influenza-treated Irf7-KOmouse at 48 hr post infection (Table

S1). Intriguingly, despite the major difference in IFN signaling cir-
cuits observed between Irf7-KO and WT mice (Figure S1A), we

found good correlation between the cell-type fractions of in-

fected cells in the two strains (Spearman correlation = 0.84;

Figure 2C). Together, these data suggested that the observed

differences in infection percentages result from one or more

cell-type-intrinsic properties, independently of the type I IFN-

mediated host response.

Infected Epithelial Cells, but Not Other Cell Types, Show
a Wide Range of Intracellular Viral Loads
Wenext focused on the composition of viral loads in the subpop-

ulation of infected cells. A recent report described a wide range

of viral loads during influenza infection of epithelial cells in vitro

(Russell et al., 2018). We wanted to find out whether this epithe-

lial cell property also applies during in vivo infection, and if so, we

further aimed to assess the relevance of this finding to additional

cell types. To address this, we divided the group of infected cells

into three categories of viral-load states: low (<0.5%), medium

(between 0.5% and 5%), and high (>5%).

We found that epithelial cells manifest a wide range of viral-

load states spanning two orders of magnitude, with 33%,

23%, and 44% of infected epithelial cells characterized respec-

tively by low, medium, and high viral-load states (Figures 2D and

S4C). Our data therefore confirm the previously reported epithe-

lial heterogeneity in vitro (Russell et al., 2018) and, in addition, ex-

tends this result to include the case of in vivo infection. Interest-

ingly, we found a clear distinction between epithelial cells and

the rest of the cell types, with the observation that infected cells,

in all of the non-epithelial cell types, mainly displayed low hetero-

geneity of viral-load states: the vast majority (85%–100% of the

infected cells in the different cell types) maintained low viral-load

states, whereas high viral-load states were maintained by only

up to 1.1%of those cells (Figure 2D and Table S3). Similar results

were obtained in additional infected mice (Figure S4D), further

suggesting that viral-load heterogeneity is higher in epithelial

cells than in other cell types, at least during early stages of

infection.

Characterizing a Core Signature of the Antiviral
Response Shared Across All Cell Types
Evidence from diverse studies points to a powerful cellular

response to influenza infection, involving the induction of multi-

ple IFN-responding genes (Ivashkiv and Donlin, 2013). However,

current studies have typically used bulk-tissue data or focused

on one or a few cell types (Altboum et al., 2014; Mostafavi

et al., 2016). Those studies were therefore limited in their ability

to identify the ‘‘generic’’ influenza response that is presumably

essential in all immune- and non-immune cell types. To charac-

terize this response systematically, we calculated the differential

expression between cell populations of the influenza-treated

and control tissues for each of the nine cell types separately.

We found a total of 450 genes to be differentially expressed

(Pbinomial <10
�6) in at least one cell type (Figure 3A, Table S4;

STAR Methods). Clustering of these genes revealed a large

generic module of 101 genes that showed consistent upregula-

tion during influenza infection in nearly all immune- and non-im-

mune cell types (Figure 3A, e.g., Irf7 and B2m in Figure 3B). As

shown in Figure S5A, comparison of expression levels in the

influenza-treated and control mice revealed that the module
Cell Systems 7, 679–691, June 27, 2018 683
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Figure 3. Characterization of the Generic Host Response to Influenza

(A) Generic regulatory programs across all cell types. Differential expression in influenza-treated and control mice (color bar) of nuclear-encoded (top) and

mitochondrial DNA-encoded (bottom) genes (rows) across the nine major cell types (columns). Only 450 nuclear genes that are differentially expressed (DE) in at

least one cell type (p < 10�6) and 21mitochondrial genes are shown. Right column indicatesmembership in four type I IFN-related categories. Generically induced

genes (the ‘‘IFN module,’’ 101 genes), as well as generically repressed genes (the ‘‘mitochondrial module,’’ 7 genes), are marked on the left.

(legend continued on next page)
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was indeed expressed at higher levels during infection in all

genes and cell types. As an additional support, the module

was validated in an independent biological replicate experiment

(Figure S5B). Notably, the majority of genes in this module

represented known IFN-stimulated genes (e.g., Phg <10�39 and

Phg <10�51 for the ‘‘IFNb1’’ and ‘‘IFNR’’ signaling categories,

respectively) and targets of various antiviral transcription factors

such as Irf7 and Stat1 (Phg <10
�41 and Phg <10

�46, respectively),

indicating that themodule is part of a general type I IFN response

that is independent of the cell type. For brevity, we refer to

this generic type I IFN module as the ‘‘IFN module.’’

Having defined the IFN module, we were able to characterize

the antiviral response in each single cell. We did this by gener-

ating an antiviral progression trajectory for each cell type by ar-

ranging the order of the individual cells according to their ‘‘anti-

viral score,’’ calculated as the average expression of a single cell

across the IFN module. The trajectory revealed strong co-regu-

lation in all cell types: genes of the IFNmodule were either co-ex-

pressed or anti-correlated through the trajectory (Figure 3C), as if

the trajectory manifests a gradual progression of cells from a ho-

meostatic to an antiviral state. Consistently with this notion, the

influenza-treated cells were more strongly biased than the unex-

posed cells toward the high antiviral range (p < 10�13 in all cell

types; Figure S5C). To validate the antiviral trajectory, we used

the single-cell RNA-seq data from influenza-treated Irf7-KO

mice. We hypothesized that in the absence of Irf7, the cells

would exhibit an impaired trajectory of the antiviral response.

We found that cells from the Irf7-KO sample indeed showed a

clear bias toward the high antiviral range, but did not develop

to their full antiviral potential (Figure S5C). This showed that the

trajectory indeed represents a snapshot of the cells’ progression

through the antiviral response. We note that the plasticity of this

antiviral trajectory probably reflects reversible regulatory alter-

ations (unlike irreversible developmental processes), as previ-

ously observed in immune cells (Lavin et al., 2014; Okabe and

Medzhitov, 2014).

Recent studies demonstrated substantial suppression of

mitochondrial-encoded genes in response to IFN and lipopoly-

saccharide treatments, which was attributed to either a meta-

bolic shift in oxidative phosphorylation or removal of the entire

mitochondrial fraction through mitophagy (Jovanovic et al.,

2015; Kissig et al., 2017). However, the generality of these find-

ings in different cell types and their relevance for influenza stim-

ulation remained unknown. Interestingly, analysis across the

cell types revealed seven mitochondrially encoded genes that

were consistently repressed in nearly all cell types (Figures

3A and S5A; the ‘‘mitochondrial module’’). Two lines of evi-

dence further supported this module. First, we analyzed bulk

data from influenza-treated lungs and found substantial repres-

sion of the mitochondrial module (Figure S5D). Secondly, the

data clearly demonstrated anti-correlation of the IFN and mito-
(B) Shown are the distributions of single-cell expression levels (y axis) of selected

from control (light gray) and influenza-treated mice (dark gray). Asterisks denote

(C) Antiviral cell trajectory. Shown is the expression of the IFN module of genes (

along the antiviral trajectory (columns). Cells of different types appear in separat

(D) Opposite dynamics of the generic IFN and mitochondrial modules. Expressi

trajectory (x axis) is shown.

See also Figures S5 and S6, and Tables S4 and S5.
chondrial modules through the antiviral cell trajectory (Fig-

ure 3D). Taken together, our data suggested that the generic

IFN and the mitochondrial modules constitute two arms of

the host response that are independent of the particular

cell type.

Further inspection of three selected cell types (granulocytes,

T cells, and fibroblasts, which had the largest amount of profiles

among the innate, adaptive, and non-immune cell categories,

respectively) indicated that about 70% of the expressed genes

were dynamically up- or downregulated through the antiviral

response trajectory (Figures S6A and S6B). Interestingly, trajec-

tory-regulated genes of different cell types were enriched with

the same underlying regulatory programs (Figures S6C and

S6D), although the specific target genes of each regulatory pro-

gram differed drastically between cell types (e.g., Daxx was

regulated in granulocytes and T cells but not in fibroblasts,

whereas Gbp6 was regulated in T cells and fibroblasts but not

in granulocytes; Figures S6E and S6F). Overall our data provide

comprehensive information about which gene is regulated over

the antiviral trajectory in particular cell types (Table S5). Since

the cell-type specificity of the antiviral dynamics is currently

known for only a limited number of genes, this mapping is critical

for understanding themechanisms of antiviral response progres-

sion in different cell types.

The Generic Host Response Is Associated with Both
Extracellular Exposure and Intracellular Viral Infection
A high-resolution map of expression changes in infected and

bystander cells can convey valuable information about the

host-response circuits. In particular, differences in expression

levels can be affected by extracellular exposure to the infectious

lung environment, or may be associated with intracellular viral

invasion. Previous studies have characterized many of the

signaling cascades that operate in influenza infection, such as

IFN and NF-kB signaling (Shapira et al., 2009), but the contribu-

tion of each stimulus to the host response was not well under-

stood. We hypothesized that differential expression between

the populations of bystanders and unexposed cells would

identify transcriptional regulation associated with exposure to

extracellular environmental signals, since both cell subsets

lack intracellular host-pathogen encounters. Similarly, differen-

tial expression between infected and bystander cell pop-

ulations could identify transcriptional regulation associated

with the intracellular virus infection, since both subsets are

essentially exposed to the same extracellular signals. For

simplicity, we termed bystander/unexposed differential expres-

sion as ‘‘bystander response’’ and infected/bystander differen-

tial expression as ‘‘infection response’’ (Figure 4A, top; in both

cases, a signed log binomial test p value was used). While it

would have been interesting to test the effect across the entire

spectrum of viral-load state (Figure 2D), here we focused on
generic-response genes (subpanels) in each cell type (x axis) for cells derived

the significance of differential expression.

rows, Z-normalized for each gene) across single cells ranked by their position

e panels.

on of the modules (y axis) in each cell type (color-coded) across the antiviral
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Figure 4. Distinct and Shared Regulatory Programs Among Bystander and Infected Cells
(A) Examination of the type I interferon (‘‘IFN’’) and mitochondrial modules in bystander and infected cells. Shown are the median bystander response (x axis) and

median infection response (y axis) across all genes in the IFN modules (filled circles) and mitochondrial modules (empty circles) of each cell type (color-coded).

Bystander and infection types of responses are illustrated (top), and are shown as signed log10 p value (positive/negative, induced/repressed): the ‘‘bystander

response’’ refers to the bystander versus unexposeddifferential expression and ‘‘infection response’’ refers to the infected versus bystander differential expression.

(B) Distribution of average expression of genes (denoted ‘‘GEX’’) per cell (y axis) in unexposed cells (white), bystander cells (yellow), and infected cells (brown).

Shown is the average expression across the IFN module (top) and the mitochondrial module (bottom) for representative cell types. Asterisks denote significant

bystander response or infection response (*p < 10�3, **p < 10�13).

(C) Comparison of gene response between epithelial cells (y axis) and other cell types (x axis) in wild-type (top) and Irf7-KO (bottom) mice. Shown are bystander

response (left) and infection response (right) of individual genes (dots), color-coded by their module (green/maroon/gray, respectively, for IFN module/mito-

chondrial module/other genes).

(D) Summary of transcriptional response in bystander as opposed to infected cells. Shown are distributions of bystander response (white fill) and infection

response (gray fill) in wild-type (black border) and Irf7-KO (red border). Plots show data for all cells across the IFN module (left), except for epithelial cells across

the mitochondrial module (middle), and epithelial cells across the mitochondrial module (right). See also Figures S7 and S8.
the low/medium range that was represented in our data across

all cell types (Tables S2 and S3).

The generic IFN module showed significant bystander

response in all cell types, indicating a generic extracellular expo-
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sure effect. The infection response of this module, in contrast,

was substantially smaller and was not consistently observed or

reproduced across cell types (Figures 4A–4C, top, and S7A). It

is well recognized that environmental signals during in vivo



infection act through the IFN feedback loop (Iwasaki and Pillai,

2014). In agreement, our analysis of the infected Irf7-KO mouse

revealed a significant reduction in the bystander response of the

IFN module (Figures 4C and 4D, left, and S7A). The IFN module,

therefore, is primarily regulated by extracellular exposure in a

manner dependent on Irf7 activity.

The mitochondrial module demonstrated the effects of both

extracellular exposure and intracellular infection by exhibiting

a significant infection response in addition to a significant

bystander response (Figures 4A and 4B). In all cell types except

for epithelial cells, the mitochondrial module was typically

downregulated in bystander cells relative to unexposed cells,

and the repression was further enhanced in the infected cell

population (e.g., Figures 4B and S7B�S7D). The knockout ef-

fect of Irf7 ablated the bystander response of the mitochondrial

module (as in the case of the IFN module), but had no substan-

tial effect on its infection response (Figures 4C and 4D, middle).

Conceptually, this suggested that although the virus is main-

tained at a relatively low viral load, it is still sensed through

Irf7-independent intracellular viral sensors. Furthermore, on

the basis of asynchronous regulation, our observations clearly

pointed to uncoupling between the mitochondrial and the IFN

programs: whereas the peak of the IFN response was typically

induced in the absence of intracellular invasion, the mitochon-

drial repression peak appeared in the presence of an intracel-

lular influenza virus.

While the bystanders ofmost cell types exhibited considerable

downregulation of mitochondrially encoded genes, the by-

standers of epithelial cells displayed the opposite trend (Figures

4D right, and S7C). Notably, intracellular infection reversed the

epithelial-cell-specific bystander response (with consistent re-

sults along the entire range of low/medium viral loads; Fig-

ure S7E), and thereby all cell types converged to similar expres-

sion levels (Figures 4D and S7F).

Whereas our observations pointed to two distinct bystander

mechanisms acting on the mitochondrial module (induction in

epithelial cells and repression in other cell types), comparison

with the Irf7-KO findings provided indications that different cell

types differ only in their balance between the two underlying pro-

grams: (1) In epithelial cells, overexpression of the mitochondrial

module in wild-type bystander cells was maintained (and even

slightly elevated) in Irf7-KO bystander cells (Figures 4D, right,

and S7B), suggesting that the regulation in epithelial cells

is achieved by strong Irf7-independent activation and weak

Irf7-dependent inhibition. (2) In the remaining cell types, the

bystander response in the wild-type was associated with repres-

sion while the bystander response in Irf7-KO showed the oppo-

site effect (Figures 4C, left, and 4D, middle), consistently with

combined control of a strong Irf7-mediated inhibition and a

weak Irf7-independent activation. Similar results were obtained

with an independent biological replicate (Figures S8A and S8B).

In summary, our data point to several generic mechanisms

that act in all cell types. The IFNmodule responds predominantly

to extracellular exposure, mediatedmainly by Irf7 in all cell types,

in agreement with previous findings (Iwasaki and Pillai, 2014).

The mitochondrial module, in contrast, is regulated by three

distinct generic mechanisms: (1) bystander exposure leading

to an Irf7-mediated inhibition (strong inhibition in all cell types

except for epithelial cells); (2) bystander exposure that leads to
an Irf7-independent induction of genes (strongest in epithelial

cells); and (3) a generic repression, observed in all cell types in

response to intracellular viral invasion.

Intracellular Viral Infection Leads to Cell-Type-Specific
Responses
In view of the generic response associated with intracellular

infection, we next examined whether some programs display

cell-type-specific effects. As statistical power is reduced upon

testing a single gene in a single cell type, we analyzed three

cell types with the largest amount of cell profiles—granulocytes,

T cells, and fibroblasts—as representatives of innate, adaptive,

and non-immune cells. A total of 234 genes attained significant

differential expression between infected cells and bystanders

in one of these cell types (false discovery rate [FDR] < 0.01, Table

S6), suggesting a transcriptional response associated with intra-

cellular viral infection. To validate the identified genes, we carried

out an experiment using an independent biological replicate. The

results showed that the candidate genes significantly overlap

with those identified by the replicate mouse. In granulocytes,

for instance, of 47 candidates, 17 (36%) attained significant

scores in another mouse (Phg <10�7, Figure S8C). Differential

expression scores were also strongly correlated between the

two replicates (Figure S8D). We therefore focused on the set of

34 validated genes (Figure 5A). Examination of the expression

pattern along the antiviral trajectory showed that the identified

targets consisted primarily of responding genes, with stronger

response amplitudes in infected cells than in bystanders (Figures

5A and 5B). In particular, in 24 of the 34 genes (70%), the

bystander and infection responses followed the same direction

(either enhanced repression or enhanced induction). Thus, intra-

cellular infection was generally associated with an elevated peak

of response of cell-type-specific genes, irrespective of the direc-

tion of response. This is not unexpected, given that the intracel-

lular viral sensing through Toll-like receptor 3 and RIG-I probably

resulted in an enhanced antiviral response.

Overall, the 34 targets showed enrichment in antiviral and in-

flammatory response pathways (p < 10�20) and in functional cat-

egories related to cell movement, migration, and homing genes

(p < 10�11). In addition, we found that the gene targets were en-

riched in extracellular proteins (either secreted or attached to the

external side of the plasma membrane; p < 0.03). In conclusion,

our results point to cell-type-specific functional influences of

intracellular viral infection on the composition and functionality

of both intracellular and extracellular environments.

DISCUSSION

In this study, we used single-cell RNA sequencing of polyadeny-

lated mRNA to simultaneously study the viral and host transcrip-

tomes in the same individual cell. The biology of the influenza

virus offers valuable insights into the interpretation of these

data. Assembled influenza virions possess eight segments of

a non-polyadenylated negative-stranded RNA genome; inside

the infected cell, the viral genome is replicated and also serves

as a template for transcription of positive-sense polyadenylated

vmRNAs (York and Fodor, 2013). Taken together, the polyadeny-

lation signature provides specific detection of vmRNAs that were

produced during intracellular viral transcription. Importantly, our
Cell Systems 7, 679–691, June 27, 2018 687
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Figure 5. Cell-Type-Specific Transcriptional Changes after Intracellular Infection

(A) List of the top 34 genes manifesting significant infection response (false discovery rate, p < 0.01) in a particular cell type. The bystander response (bystanders

versus unexposed) and infection response (infected versus bystanders) of each gene in its relevant cell type are shown on a red/blue color scale (signed log10
p value ranging from �50 to +50; positive/negative, induced/repressed). The three bottom rows indicate membership in functional categories. Directionality of

effects; enhanced induction, enhanced repression, and other dynamics are marked.

(B) Representative genes displaying significant infection response in a particular cell type. Shown are the moving averages of expression levels in bystander

(yellow) and infected (brown) cells (y axis) along the antiviral trajectory (x axis) for representative gene-cell type pairs from A. See also Figure S8 and Table S6.
strategy is capable of identifying intracellular viral products even

in the absence of productive infection (Brooke et al., 2013; Heldt

et al., 2015). This property is particularly important to reconstruct

the host response to any type of intracellular viral constituents.

Our dual viral-host scRNA-seq mapping should be broadly

applicable to a wide range of viruses. In particular, our mapping

is tailored for viruses that generate polyadenylated mRNAs

during their intracellular replication. scRNA-seq is especially

effective for viruses in which the RNA genome is embedded

within free viral particles that are not polydenylated. Our

approach should be therefore applicable to a variety

of medically important negative-sense single-stranded RNA

(ssRNA) viruses (such as RSV, influenza, Ebola, and measles)

and double-stranded DNA viruses (such as herpesviruses, ade-

noviruses, and poxviruses). Our dual-transcriptome mapping

is less effective in reverse transcribing viruses and double-

stranded RNA viruses, which have two sources of positive-
688 Cell Systems 7, 679–691, June 27, 2018
stranded RNAs (both genome- and transcriptome-derived

RNAs); further optimization will be needed to apply our method-

ology in these cases. Of note, in the special case of positive-

sense ssRNA viruses, our approach is not applicable due to

the lack of polyadenylated transcriptome (e.g., Zika, dengue,

and yellow fever viruses) or the polyadenylated genome (e.g.,

foot-and-mouth disease virus, rubella, and severe acute respira-

tory syndrome). Tailored technologies have been developed for

this specific case (e.g., Zanini et al., 2018). Our dual-transcrip-

tome approach shares with these technologies the challenge

of distinguishing intracellular viral transcription from exogenous

acquisition (by phagocytosis) of infected cells. Combining sin-

gle-cell transcriptomics data with flow cytometry or mass cy-

tometry (CyTOF) measurements could help determine the cell’s

infection state.

Infectivity of the influenza virus has traditionally been ascribed

to epithelial cells of the airways, although low amounts of



infection have also been reported in other cell types (De Baets

et al., 2015; Manicassamy et al., 2010; McFadden et al., 2009).

Our findings suggested that viral infection in vivo is highly prev-

alent in many additional cell types (Figure 2A). In agreement

with the transcriptome analyses, our flow cytometry assays

confirmed that immune cells indeed harbor a large percentage

of cells expressing the viral NP during in vivo infection (Figures

S3A and S3B). If the high prevalence of infected cells is not

due to technical noise, thismodel would predict that the percent-

age of infected cells would be a cell-type-specific property.

Quantitatively similar fractions of infected cells were indeed

observed across the different biological replicates examined

(Figures 2B, 2C, S4A, and S4B). The prediction that infected cells

would be prevalent in all cell types was consistent with the

observation that much of the wide spectrum of antiviral-related

cell states was generic and appeared in nearly all cell types (Fig-

ures 3 and 4 and Supplemental Experimental Procedures). Thus,

instead of a different antiviral response being tailored to ‘‘sus-

ceptible’’ and ‘‘resistant’’ cell types, the host response confers

the first line of defense in all key cell types.

In agreement with our findings, infectivity levels based on a

GFP-expressing virus have been previously reported across all

cell types (De Baets et al., 2015; Manicassamy et al., 2010;

McFadden et al., 2009). Notably, those studies could identify

only a low fraction of infected cells in each cell type, probably

owing to a combination of several differences: GFP detection

is likely to be less sensitive than detection of amplified vmRNA,

and GFP-expressing viruses rapidly lose their reported gene

(see, e.g., Manicassamy et al., 2010); Furthermore, the expres-

sion levels of different viral genome segments may vary signifi-

cantly within cells (Heldt et al., 2015), implying that some cells

may display low GFP levels despite their substantial expression

of other viral genes. It should be borne inmind that our study was

limited to a particular experimental setting, and further experi-

mentation will therefore be needed to investigate the effects of

various host genetic backgrounds and viral strains.

Recent studies have demonstrated a wide range of intracel-

lular virus-related states, including heterogeneity in viral tran-

scription and virus titers. For example, in vitro infection of

epithelial cells results in wide heterogeneity of transcriptional

viral loads (Russell et al., 2018), and during in vitro infection,

low viral loads are prevalent in Madin-Darby canine kidney

epithelial (MDCK) cells (Brooke et al., 2013). Here, focusing on

in vivo infection, we found that epithelial cells indeed display

high viral-load heterogeneity, whereas the remaining cell types

maintain low viral-load states (Figure 2D). Notably, high vmRNA

expression does not necessarily imply high viral progeny, prob-

ably owing to failure to express one or more viral segments

(Heldt et al., 2015); in fact, up to 90% of cells infected at low

multiplicity of infection fail to release infectious progeny (Brooke

et al., 2013). Changing intracellular host response and viral

loads could affect viral titers and should be further explored

(Cristinelli and Ciuffi, 2018). Novel experimental techniques will

be needed to reveal the underlying mechanisms of virus pro-

duction levels through joint analysis of host transcriptional re-

sponses (Figure 1A) and viral titer assays (Heldt et al., 2015)

at single-cell resolution. Revealing such mechanisms will be of

great interest, since their modification may lead to more effec-

tive therapeutic interventions.
Epithelial cells are considered to be amajor source of influenza

virion progeny (Manicassamy et al., 2010; McFadden et al.,

2009), but the contribution of intracellular viral invasion relative

to that of the intracellular viral-load state has not been investi-

gated in detail. Our data suggested that the intracellular viral

state is a predominant player in determining the higher viral prog-

eny of epithelial cells compared with any other cell types: the

fraction of high viral-load cells was found here to be 30-fold

larger in epithelium (Figure 2D), while the fraction of infected

epithelial cells was only �1.9-fold larger (Figure 2A).

Studies of several cell types have demonstrated that the type I

IFN response is accompanied by an antagonistic suppression of

mitochondrially encoded genes (Jovanovic et al., 2015; Kissig

et al., 2017). However, those studies relied on data from a single

cell type, ignoring the possible generality of the findings. By

analyzing influenza infection over all cell types from the entire

lung, we were able to establish the general principles of antiviral

induction and mitochondrial suppression across all of the abun-

dant cell types of influenza-treated lungs. The existence of two

antagonistic generic programs may be an efficient antiviral strat-

egy: whereas the activation of the type I IFN response provides

antiviral defense mechanisms such as biosynthesis and secre-

tion of cytokines, suppression of mitochondrial activity typically

limits energetic resources, which, in turn attenuates the effi-

ciency of viral replication and manipulation (Goswami

et al., 2013).

Suppression of mitochondrial energetic resources during

in vivo influenza infection may be both beneficial (limiting intra-

cellular viral replication) and detrimental (limiting rapid host

response). It is therefore likely that the different cell types main-

tain an appropriate balance between antiviral response and

mitochondrial suppression. Our data suggested (1) that the het-

erogeneity of the generic IFN module typically reaches its main

potential in bystander cells (Figure 4), and upon intracellular

viral invasion the antiviral program is fine-tuned in a cell-type-

specific manner (Figure 5); (2) that the peak of mitochondrial

generic suppression typically arises in infected cells, and that

in the absence of intracellular viral invasion, bystander cells

demonstrate cell-type-specific control of mitochondrially en-

coded genes (upregulation in epithelial cells and downregula-

tion in the rest of the cell types; Figure 4). Given these observa-

tions, it is tempting to speculate that the mechanism of

mitochondrial energy balance is addressed by means of tem-

poral uncoupling of the IFN module from the mitochondrial

module: bystanders exploit the ‘‘window of opportunity’’ prior

to intracellular infection to achieve their shift toward high IFN-

response states, while supporting the energetic demands

with an adequate amount of energetic resources. Mitochondrial

suppression reaches its full capacity only in infected cells,

when viral restriction is crucial in a ‘‘just-in-time’’ mechanism

(Zaslaver et al., 2004). Accordingly, after intracellular viral inva-

sion, when energetic resources are limited, substantial adjust-

ment of the host gene expression is limited to specific genes

and cell types.

Although epithelial cells have been studied in depth, it is still

unclear how their response program differs from that of other

cell types. Such comparison has been difficult because of the

need to isolate multiple cell types simultaneously from the

same infected organ. This question is particularly relevant
Cell Systems 7, 679–691, June 27, 2018 689



because exposure of the epithelial barrier to the invading path-

ogen probably precedes the exposure of other cell types;

thus, the ability of epithelial cells to maintain substantial secre-

tion of antiviral and pro-inflammatory cytokines may be

crucial for an efficient and timely host response. The present

study shows that epithelial cells are phenotypically distinct:

bystander epithelial cells display substantial induction of mito-

chondrially encoded genes, rather than the observed charac-

teristic partial suppression by the rest of the cell types studied

here (Figures 4C and 4D). Thus, our data support a model in

which bystander epithelial cells display tailored changes in en-

ergetic resources to support the feasibility of their excessive

energetic demands. While these observations are consistent

with the experiments described here, additional experimenta-

tion will be needed to determine whether the mitochondrial

transcriptome is decoupled from the cell size during viral

infection in vivo.

An important therapeutic challenge is to identify particular

cell functionalities that can distinguish between infected and

bystander cells. Our data indicated that mitochondrial function-

ality is an attractive target, given the observation that in all cell

types the mitochondrial module was more strongly suppressed

in infected cells than in bystanders (Figure 4A). Another prom-

ising observation was that mobility- and extracellular matrix-

related genes are differentially expressed in infected and

bystander cells (Figure 5). Furthermore, infected cells tended

to be larger than bystanders (Figure S3G). Determining whether

such functional differences exist and whether there might be in-

terrelationships among the various functionalities will require

further experimentation. In such experiments, both viral load

and functional characterizations will need to be measured simul-

taneously at the resolution of single cells. The ability to relate cell

functionalities with viral-load states should prove useful in

the future development of infected-cell-specific therapeutic

strategies.
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Other

MARS-seq reagents (Jaitin et al., 2014) N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Irit Gat-
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Adult female C57BL/6J mice aged 5.5�6.5 weeks were used in the study. Wild-type animals were obtained from Harlan and Irf7-KO

mice were purchased from RIKEN BioResource Research Center. All mice were housed on hardwood chip bedding under specific-

pathogen-free conditions at the Animal Breeding Center of the Weizmann Institute of Science (Rehovot, Israel). They were held in

individually ventilated cages and lights were on a 12-h light/dark cycle. Rodent chow and water were given ad libitum throughout

the experiment. All animals were handled according to the regulations formulated and approved by the Institutional Animal Care

and Use Committee (IACUC).

Influenza Infection
Mouse-adapted PR8 H1N1 influenza virus (A/Puerto Rico/8/34) was grown in hen egg amnion. Anesthetized mice were inoculated

intranasally with 40 mL of diluted virus (63103 PFU/mouse). Control mice received 40 mL of sterile PBS intranasally. Body weight was

measured daily. All of the infectedmice showed 8% to 11% body weight loss 48 hr after infection. Mice were killed 48 hr or 72 hr after

treatment (see Table S1 for a detailed list of experiments).

METHOD DETAILS

Single-Cell Sorting
Infected or PBS-treated mice were killed by anesthesia overdose. Their lungs were then perfused with PBS via the right ventricle, and

then divided into two groups that were subjected to different dissociation techniques. Half of the entire pool of lungs was dissected

and dissociated into single-cell suspensions, using the Miltenyi Lung Dissociation Kit (Miltenyi Biotec) in combination with a

gentleMACS dissociator (Miltenyi Biotec) and enzymatic dissociation. The other half of the lung pool was minced, suspended in

5mL of digestion buffer consisting of elastase (3 U/mL; Worthington Biochemical Corporation) and DNase I (0.33 U/mL; Sigma-Al-

drich) in DMEM/F12 medium, incubated with frequent agitation at 37�C for 20 min, and briefly triturated (Treutlein et al., 2014).

Whereas the Milteny kit is optimized for most immune cell types, the elastase-based protocol allows for a higher representation

of epithelial cells. Next, an equal volume mixture of DMEM/F12 supplemented with 10% fetal bovine serum and penicillin-strepto-

mycin (1 U/mL; Biological Industries) was added to the single-cell suspensions in both groups. Following their enzymatic incubations,

cells derived from the same lungs (after the two dissociation techniques) were merged and forced through a 100-mmmesh and then

through a 70-mmmesh into ice-cold FACS buffer (2 mM EDTA pH 8.0, 0.5% bovine serum albumin in PBS). Prior to sorting, all sam-

ples were stained for DAPI, filtered through a 40-mm mesh, and stained with F450-conjugated TER-119 and APC-conjugated CD45

antibodies (BioLegend). Cell populations were sorted using SORP-aria (BD Biosciences) and gates were set at standard FSC and

SSC levels. Following erythrocyte and doublet exclusion (by application of an FSC-H/SSC-W singlets gate), isolated DAPI-TER-

119-CD45+ and DAPI-TER-119-CD45- cells were single-cell-sorted into 384-well cell-capture plates containing 2 mL of lysis solution

and barcoded poly(T) reverse transcription (RT) primers for single-cell RNA-seq (Jaitin et al., 2014; Paul et al., 2015). Four empty wells

served as controls in each 384-well plate. Immediately after sorting, each plate was spun down to ensure immersion of cells into the

lysis solution, snap-frozen on dry ice, and stored at �80�C until processed.

Massively Parallel Single-Cell mRNA-Seq Library Preparation (MARS-Seq)
Single-cell mRNA libraries were prepared as previously described (Paul et al., 2015; Shnayder et al., 2018). Briefly,mRNA from single-

sorted cells was barcoded using poly(T) RT primers, converted into cDNA, and pooled using an automated pipeline. The pooled
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sample was then linearly amplified by T7 in-vitro transcription, and the resulting RNAwas fragmented and converted into a sequence-

ready library by tagging the samples with pool barcodes and illumina adapter sequences during ligation, RT, and PCR. Each pool of

cells was tested for library quality, and concentration was assessed as described (Jaitin et al., 2014; Paul et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

mRNA-Seq Pre-processing
The analysis starts with a joint alignment of MARS-seq reads for both the host and viral genomes, followed by the joint quantification

of host and viral transcripts.We performed this joint analysis as previously described (Shnayder et al., 2018), with a fewmodifications.

We used HISAT (Kim et al., 2015) to map the single-cell reads to a joint reference of both the mouse genome build mm9 and

the influenza genome (NCBI records: NC_002016, NC_002017, NC_002018, NC_002019, NC_002020, NC_002021, NC_002022,

NC_002023). To identify authentic intracellular viral replication (rather than free virions), specificity for the positive-sense viral

mRNA is imperative; in accordance, we mapped reads to the positive-strand-specific isoforms of the viral genes. Reads that

were mapped at multiple (host or viral) positions were omitted. We recorded reads that were mapped to either influenza segments

or to exonic regions of mouse genes based on the UCSC transcript annotation. The expression level for each single cell was calcu-

lated on the basis of its number of UMIs. To account for spuriousmapping, we filtered reads with cell-barcoding errors and UMIs that

contained more than one error that might be due to sequencing or amplification errors. Quantification of technical noise associated

with the assessment of viral transcripts is described in Supplemental Experimental Procedures. Poor-quality genes (with <5 recorded

UMIs across all cells) were excluded from further analysis. We also filtered poor-quality cells (with < 200 recorded UMIs across all

genes; Table S1). Additional cells were filtered at the cell-type annotation stage (see below).

Categorization of Infected versus Bystander Cells
The ’viral load’ of a cell was defined as the number of UMIs that map to one of the eight viral segments, expressed as a percentage of

all mapped UMIs. A cell was considered ’infected’ if its viral load was higher than a certain cutoff. ‘Bystanders’ were defined as cells

derived from an influenza-treated mouse in which no viral segments were detected. These definitions were previously used in a com-

bined single-cell mapping of host and viral transcriptome (Russell et al., 2018). To determine the quality of this categorization we used

precision and recall (sensitivity) measures, as well as the percentage of false negatives (Supplemental Experimental Procedures).

Cell-Type Annotation
Cell typeswere annotated in four steps. First, we identified and filtered host genes thatwere highly variable across cells and thusmight

blur the cells’ identity. We did this by performing principal component analysis (PCA) on all cells, and omitting from further analysis

genes that correlatedwith the top twoPCs (top 1.5%of PC-correlated genes). In the second step, cellswere clustered using themulti-

nomialmixturemodel clustering algorithm (Paul et al., 2015). Thefirst twostepswereperformedseparately onCD45+andCD45�cells.

In the third step, each of the resulting cell groups was annotated on the basis of two criteria: (1) by the presence of a set of well-known

cell surfacemarkers, as demonstrated in Figure 1B, and (2) by resemblance to profiled bulk populations of cell types from the ImmGen

compendium (Heng et al., 2008). For each group, the resemblance was estimated using deconvolution on the group’s average profile

as the dependent variable and bulk profiles as explanatory variables. In the fourth step, groupsweremerged into 12 clusters based on

their cell-type annotation. The nine largest clusters that appeared in all mice were used for further analysis, and the remaining three

small clusters were discarded (Table S1). As an example, we analyzed a total of 2075 cells (from control mice) and 1989 cells (from

infected mice, 48 h, replicate I) within these nine clusters (Table S1). The quality of the clustering solution was evaluated according

to the homogeneity of each cluster at single-cell resolution. In particular, we tested the similarity between each single cell and a

bulk cell-type profile (using Pearson’s correlation; Figure S1B). For visualization purposes, the data were reduced to two dimensions

using the t-SNE algorithm (Van Der Maaten and Hinton, 2008), based on the known cell-type markers from Figure 1B.

Detection of the Influenza NP
Lung samples from C57BL/6J-infected or PBS-treated mice were prepared for flow-cytometric analysis as described above. Cd45+

cells were enriched by the use of Cd45microbeads (130-052-301MACS,Miltenyi Biotec). Prior to fixation, cells were stained with the

following antibodies (all from Biolegend): anti-mouse I-A/I-E (BLG-107621, 1:50), anti-mouse Ly-6g (BLG-127607, 1:100), anti-

mouse/human Cd11b (BLG-101215, 1:100) and anti-mouse Cd64 (BLG-139305, 1:50). For intracellular NP staining, cells were per-

meabilized using an intranuclear staining kit (00-5523, Invitrogen) and were then incubated with NP for 1 h. No permeabilization was

performed in the case of extracellular NP staining. Gates were set at standard strict FSC and SSC levels. After exclusion of doublets,

NP levels were monitored in populations of Cd45+, Cd45+Ly6g+, Cd45+Ly6g-Cd11b+, Cd45+Ly6g-Cd11b-, and Cd45- cells.

Detection of Viral Spliced Forms
Viral spliced forms could not be identified based on our 3’-end single-cell mRNA libraries (Jaitin et al., 2014; Paul et al., 2015) since

they share their 3‘ sequence. To identify viral spliced formswithin immune cells, Cd45+ cells were taken from lung samples of infected

and control mice as described above. Total RNA was then extracted from these cells and reverse-transcribed using qPCRBIO cDNA

Synthesis Kit (PCR Biosystems Cat# PB30.11-10). The generated cDNA was used as a template in PCR reaction, using GoTaq Flexi

DNA Polymerase (M8295, Promega) with the following combinations of primers that are specific for the spliced or unspliced forms of
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Segment 7 of the influenza virus (labeled as indicated with FAM or ATTO-532 fluorophores). For the spliced form: FAM-TAACC

GAGGTCGAAACGTCCTAT (forward) and CTTTGGCACTCCTTCCGTAG (Reverse). For the unspliced form: ATTO-532-AACC

GAGGTCGAAACGTACGTTC (forward) and TCCATGAGAACCTCAAGATCG (reverse). Fluorescence of PCR products were

measured with 3500xl sequencer.

Differential Expression Scores
Differential expression between two cell populations, A and B (e.g., influenza-treated mouse versus control; unexposed cells versus

bystander cells) was calculated for each gene independently. The differential expression test makes the null assumption that the two

cell populations are derived from the same binomial distribution of gene expression: xi � B(ni, pAB), where xi is the number of UMIs of

a certain gene in the i-th cell, ni is the total UMI count in the i-th cell, and pAB is the probability of sampling a UMI associated with that

gene in both populations A and B. The alternative hypothesis is that the expression in each cell population is derived from a different

binomial distribution: xi�B(ni,pA)and xi�B(ni, pB), respectively, in cells frompopulationsA andB, wherepA andpB are the probabilities

of sampling a UMI associated with the relevant gene in the respective cell populations. Accordingly, here we calculated the maximum

likelihoodof the null and the alternative hypothesesby fitting the binomial parameters bpA, bpB and bpAB to eachcell population separately.

Finally, a likelihood ratio test (LRT)was applied and aP-valuewas approximated in accordancewithWilks’ theoremusing a chi-squared

distributionwithonedegreeof freedom.We report the ’differential expression’ (DE) either as aP-valueor asa signed log10 (LRTP-value),

where thesigncorresponds to thedifferencebetween themaximum likelihoodparameters (namely, thesuccessprobabilities bpA and bpB)

of the two cell populations. Note that calculation of the differential expression takes into consideration differences in total UMI counts

(ni values) among the two populations of cells. Here no adjustment for inflation of observed P-values is needed (Figure S7G).

In all cases, we applied differential expression tests only on genes that were associatedwith reportedmappedUMIs in at least 20%

of the cells derived from one of the two compared cell populations. In particular, the ’bystander response’ is defined as the differential

expression between bystander and unexposed cells. Similarly, the ’infection response’ is defined as the differential expression be-

tween infected and bystander cells. As the power of infection response testing largely depends on the purity of the population of in-

fected cells, all infection response tests relied on improved precision that is associated with compromised recall: the cells that are

considered ’infected’ exclude 1-viral-UMI cells and include cells carrying viral load > 0.03%. This rule indeed attained substantially

higher precision (Figure S2I, top) while maintaining a reasonable number of inferred infected cells (Figure S2I, bottom).

Construction of the Generic IFN Module and the Antiviral Trajectory
To identify the generic response, we compared cells derived from the influenza-treated mouse and the control mouse. We identified

450 nuclear genes that satisfied the following four criteria: (i) genes that were differentially expressed (Pbinomial<10
-6) in at least one cell

type; (ii) genes in which the fold change in mean expression was greater than 2 in at least one cell type; (iii) genes that were expressed

inmore than 20%of either the control or the influenza-treatedmice; (iv) genes in which themean difference in expression between the

two cell populations was higher than 0.0004 in at least one cell type. The resulting 450 responding genes (Figure 3A and Table S4)

were then subjected to hierarchical clustering, which highlighted a group of 101 genes that were consistently upregulated in all cell

types. This gene group is referred to as the ’generic IFN module’.

Given this module, the ’antiviral state’ of a cell was defined as the average expression of the generic IFNmodule in each single cell.

Ordering of cells by their state is referred to as the ’antiviral trajectory’. This trajectory was validated in cells of each cell type sepa-

rately by demonstrating: (i) enrichment of antiviral-related functionalities in trajectory-correlated genes (Figure S6D); (ii) distinct dis-

tributions of Irf7-KO-derived and wild type-derived single cells through the trajectory (Figure S5C); and (iii) co-regulation of genes

along the trajectory (Figures 3C and 3D). Transcriptional dynamics is represented as amoving average of expression over the antiviral

trajectory, sliding one cell at a time with a window size of one-sixth of the trajectory length (Figures 3D, 5B, S6F, and S7D).

Dynamic Transcriptional Regulation through the Progression of Antiviral Cell States
We limited our analysis to 3 key cell types: granulocytes, T cells and fibroblasts as the largest representatives of innate, adaptive and

non-immune cells, respectively (Table S1). To characterize the dynamics of genes along the antiviral trajectory, we first selected

genes that were expressed in at least 20% of the cells and then clustered the genes based on their expression in the infected tissue

along the antiviral trajectory (independently in each cell type). To restrict our analysis to a robust signature of transcriptional dy-

namics, we assembled only the genes that reside in large clusters (>460 genes, Figure S6 and Table S5).

Enrichment Analysis
Enrichment of regulators and of pathways was calculated using a hyper-geometric test using the Ingenuity Knowledge Base

(QIAGEN) gene annotation. All reported P-values were Bonferroni corrected.

DATA AND SOFTWARE AVAILABILITY

The single cell data reported in this study have been deposited in the Gene Expression Omnibus (GEO) database, under GEO acces-

sion number GSE107947.
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