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With the goal of providing assistive technology for the communication impaired, we

proposed electroencephalography (EEG) cortical currents as a new approach for

EEG-based brain-computer interface spellers. EEG cortical currents were estimated

with a variational Bayesian method that uses functional magnetic resonance imaging

(fMRI) data as a hierarchical prior. EEG and fMRI data were recorded from ten healthy

participants during covert articulation of Japanese vowels /a/ and /i/, as well as during a

no-imagery control task. Applying a sparse logistic regression (SLR) method to classify

the three tasks, mean classification accuracy using EEG cortical currents was significantly

higher than that using EEG sensor signals and was also comparable to accuracies in

previous studies using electrocorticography. SLR weight analysis revealed vertices of

EEG cortical currents that were highly contributive to classification for each participant,

and the vertices showed discriminative time series signals according to the three

tasks. Furthermore, functional connectivity analysis focusing on the highly contributive

vertices revealed positive and negative correlations among areas related to speech

processing. As the same findings were not observed using EEG sensor signals, our

results demonstrate the potential utility of EEG cortical currents not only for engineering

purposes such as brain-computer interfaces but also for neuroscientific purposes such

as the identification of neural signaling related to language processing.

Keywords: brain-computer interfaces, silent speech, electoencephalography, functional magnetic resonance

imaging, inverse problem

INTRODUCTION

Brain-computer interface (BCI) spellers offer a means of hands-free character input for individuals
with motor impairments through the utilization of brain activity signals (Kubler et al., 2001;
Wolpaw et al., 2002; Birbaumer, 2006a,b; Birbaumer and Cohen, 2007; Shih et al., 2012). Most BCI
spellers use distinct electroencephalography (EEG) activity such as the P300 event-related potential
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(Farwell and Donchin, 1988; Nijboer et al., 2008) or steady-
state visual evoked potentials (SSVEP) (Cheng et al., 2002). The
P300 is a positive peak potential which appears approximately
300ms after stimulus onset in reaction to infrequently presented
visual or auditory stimuli (Sutton et al., 1967), whereas SSVEPs
are generated in reaction to high-speed flashing light and are
characterized by sinusoidal-like waveforms with frequencies
synchronized to those of the flashing light (Adrian andMatthews,
1934).

BCI spellers based on the P300 and SSVEPs are considered
“reactive” BCI spellers, since they utilize potentials arising
in reaction to external stimuli, such as the appearance of
a desired character on a communication board. Conversely,
“active” BCI spellers are spellers that utilize brain activity
consciously controlled by the user (Zander et al., 2010), like
that when imagining a vowel. As such, active BCI spellers are
not subject to limitations associated with providing external
stimuli (e.g., time and space required to display a character).
Comparing these spellers, reactive BCI spellers are closer to the
market because of their higher information transfer rates and
stability. However, with developments in neuroimaging, active
BCI spellers have drawn attention from researchers using neural
decoding techniques. EEG has been used to decode English
vowels /a/ and /u/ (Dasalla et al., 2009); Dutch vowels /a/,
/i/, and /u/ (Hausfeld et al., 2012); words “yes” and “no”
(Lopez-Gordo et al., 2012); and Chinese characters for “left”
and “one” (Wang et al., 2013). Decoding performance in these
studies were higher than chance level but not comparable
to reactive BCI spellers due to lower signal-to-noise ratio
in spontaneous EEG features. Other brain imaging methods,
such as semi-invasive electrocorticography (ECoG) and non-
invasive functional magnetic resonance imaging (fMRI), have
also attracted increasing attention due to their higher spatial
discrimination than EEG. Studies using ECoG to decode vowels
(Ikeda et al., 2014), vowels and consonants (Pei et al., 2011),
and phonemes (Leuthardt et al., 2011); and fMRI to decode
words “yes” and “no” (Naci et al., 2013) showed relatively
higher decoding performance than EEG studies. Although
the performance was still lower than that of reactive BCI
spellers, these findings indicate that speech intention can be
decoded using brain activity signals if limitations in EEG spatial
discrimination can be overcome.

In this study, we demonstrated a method to enhance the
utility of EEG in speech intention decoding by using EEG cortical
current signals to classify imagined Japanese vowels. Applying a
hierarchical Bayesian method (Sato et al., 2004; Yoshioka et al.,
2008) that incorporates fMRI activity as a hierarchical prior,
spatial discrimination of EEG was improved while preserving its
high temporal discrimination. The method is also useable in real-
time application since fMRI data need only be acquired one time
in advance. The efficacy of this method has already been proven
by studies on decoding of motor control (Toda et al., 2011;
Yoshimura et al., 2012), visual processing (Shibata et al., 2008),
and spatial attention (Morioka et al., 2014). Moreover, since
ECoG-based spellers (Leuthardt et al., 2011; Pei et al., 2011; Ikeda
et al., 2014) showed relatively higher decoding performance
than EEG-based spellers, we hypothesized that EEG cortical

current signals would also offer higher decoding performance
because EEG cortical current signals are theoretically equivalent
to ECoG signals if current dipoles are assigned to the cortical
surface. Ten healthy human participants performed covert vowel
articulation tasks (i.e., silent production of vowel speech in one’s
mind, Perrone-Bertolotti et al., 2014), and EEG cortical current
signals were estimated using EEG and fMRI data. Classifiers
based on sparse logistic regression (SLR) (Yamashita et al., 2008)
were trained to discriminate between tasks, and classification
accuracies were compared between EEG cortical currents and
EEG sensor signals.

MATERIALS AND METHODS

Participants
Ten healthy human participants (1 female and 9 males; mean
age ± standard deviation: 34.1 ± 9.2) participated in this study.
All participants had normal hearing. Written informed consent
was obtained from all participants prior to the experiment.
The experimental protocol was approved by ethics committees
of the National Center of Neurology and Psychiatry and
Tokyo Institute of Technology. All participants underwent
an fMRI experiment to obtain prior information for EEG
cortical current estimation, structural MRI acquisition to create
an individual brain model, an EEG experiment, and three-
dimensional position measurements of the EEG sensors on the
scalp.

Experimental Tasks
Participants covertly articulated two Japanese vowels (/a/ and
/i/) cued with auditory stimuli. Auditory stimuli were obtained
from the Tohoku University - Matsushita Isolated Word
Database (Speech Resources Consortium, National Institute of
Informatics, Tokyo, Japan) and edited using Wave Editor (Abyss
Media Company, Ulyanovsk, Russia) to create stimuli consisting
of a single vowel. White noise was created using MATLAB
R2012b (The MathWorks, Inc., Natick, MA) and used as a
stimulus for a non-imagery (control) task. Stimulus duration was
400ms, with 300ms of speech and 100ms of silence. In the fMRI
experiment, auditory stimuli were presented in 3-s durations,
with each duration consisting of six repetitions of vowel speech or
white noise. Participants covertly repeated the vowel for 3 s when
presented with a vowel stimulus, and they refrained from imagery
when presented with white noise. We used six repetitions of
stimulus and covert speech to obtain higher brain activity signals
related to the tasks (Figure 1A). In the EEG experiment, the
auditory stimuli were presented only once in the 3-s durations
for a single (no-repetition) covert articulation (Figure 1B). In
both experiments, to prevent eye and head movement artifacts, a
white fixation cross was presented at the center of the experiment
screen. The color of the fixation cross changed to red 1 s before
each stimulus interval and remained red for 4 s before returning
to white.

fMRI Experiment and Data Acquisition
The fMRI experiment was conducted to identify brain activation
areas and their intensities for use as hierarchical priors when
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FIGURE 1 | (A) Event-related design for the fMRI experiment. One trial

consisted of a pre-task (1 s), task (3 s) with six auditory stimuli (0.3 s each), and

rest (4, 6, or 10 s). The rest duration was randomly assigned for each trial. The

color of the fixation cross was red during the pre-task and task intervals.

(B) Experimental design for the EEG experiment. One epoch consisted of a

pre-task (1 s), task (3 s) with auditory stimulus (0.3 s), and rest (1, 1.5, or 2 s).

The rest duration was randomly assigned for each epoch. The color of the

fixation cross was red during the pre-task and task intervals.

estimating cortical currents from EEG (Sato et al., 2004).
Participants lay in a supine position on the scanner bed and
wore MR compatible headphones (SereneSound, Resonance
Technology Inc., Northridge, CA). Auditory stimuli were
provided at a sound pressure level of 100 dB. The fixation
cross was projected on a screen and viewed through a mirror
attached to the MRI head coil. To confirm task execution,
participants pressed a response button with their right hand
when they heard the auditory stimuli. Using an event-related
design, one trial was comprised of a pre-task period (1 s), a task
period (3 s), and a rest period (4, 6, or 10 s, pseudo-randomly
permuted over three consecutive trials; Figure 1A). Participants
performed three runs, with each run consisting of 10 trials
for each task (/a/, /i/, and no-imagery). Tasks were ordered in
pseudo-random permutations over three consecutive trials. The
experiment program was created using Presentation version 16.3
(Neurobehavioral Systems, Inc., Berkeley, CA).

A 3 T Magnetom Trio MRI scanner equipped with an 8-
channel array coil (Siemens, Erlangen, Germany) was used for
the fMRI experiment. Functional data were acquired with a T2∗-
weighted gradient-echo, echo planar imaging sequence using
the following parameters: repetition time (TR) = 3 s; echo time
(TE)= 30ms; flip angle (FA)= 90◦; field of view (FOV)= 192×
192mm; matrix size= 64× 64; 43 slices; slice thickness= 3mm;
118 volumes.

After the fMRI experiment, two types of 3D anatomical
images, a sagittal image and an axial image, were acquired
using T1-weighted magnetization prepared rapid gradient echo
sequences (for sagittal scans: TR = 2 s; TE = 4.38ms; FA = 8◦;
FOV = 256× 256mm; matrix size= 256× 256; 224 slices; slice
thickness = 1mm; for axial scans: TR = 2 s; TE = 4.38ms; FA =

8◦; FOV= 192×192mm;matrix size= 192×192; 160 slices; slice
thickness = 1mm). The sagittal image covered the whole head,
including the face, specifically for use in constructing a polygon
model of the cortical surface.

EEG Experiment and Data Acquisition
Participants were seated in a sound-attenuated chamber (AMC-
3515, O’HARA & CO., LTD. Tokyo, Japan) and wore earphones

Anterior

Posterior

Fp1 Fp2

F3 F4
Fz

F8F7

FC6
FC2FC1

FC5

T8Cz

Pz

Oz
O2O1

C4C3

P3 P4

P8P7

CP6
CP2CP1

CP5

PO4PO3

T7

AF4AF3

FIGURE 2 | Sensor positions in the EEG experiment. Thirty-two

electrodes were used based on the extended international 10–20 system.

(Image S4i, Klipsch Group, Inc., Indianapolis, IN) providing
auditory stimuli at a sound pressure level of 70 dB. Tasks
were presented in pseudo-random permutations with randomly
assigned interstimulus intervals of 2, 2.5, or 3 s. Participants
performed 10 sessions, with each session consisting of 5 trials per
task. Eye blinking was allowed only during the interval period
when a white fixation cross was presented (Figure 1B).

EEG signals were recorded using a g.USBamp
amplifier/digitizer system and 32 g.LADYbird active sensors
(g.tec medical engineering, Graz, Austria). The resolution and
range of the amplifier were 30 nV and±250mV, respectively. The
sensors were positioned according to the extended international
10–20 system (Figure 2), and the average from both earlobes
was used as reference. The scalp was cleaned with 70% ethanol
before filling the electrode gaps with conducting gel. Signals were
acquired at a sampling rate of 256Hz and band-pass filtered from
0.5 to 100Hz using an experiment program created in MATLAB
2012b.

After the EEG experiment, coordinate positions of EEG
sensors were measured using a Polaris Spectra optical tracking
system (Northern Digital Inc., Ontario, Canada). The nasion,
left pre-auricular point and right pre-auricular point were also
measured as reference points. These reference points were used
to co-register the EEG sensor positions to voxel coordinates of
the T1-weighted sagittal image.

EEG cortical Current Estimation Using a
Hierarchical Bayesian Methods
EEG cortical currents were estimated using Variational
Bayesian Multimodal Encephalography (VBMEG) toolbox
(ATR Neural Information Analysis Laboratories, Japan; http://
vbmeg.atr.jp/?lang=en) running on MATLAB R2012b, unless
otherwise specified. All VBMEG processes were conducted in
accordance with standard procedures described in the toolbox
documentation.

Cortical Surface Model and Three-Layer Model
We constructed a cortical surface model comprised of current
dipoles equidistantly distributed on and perpendicular to
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the cortical surface, which consisted of sulci and gyri. We
also constructed a three-layer model consisting of boundary
information for scalp, skull, and cerebrospinal fluid. The T1-
weighted sagittal image was used for creating the two models.
A bias corrected image and a gray-matter volumetric image of
the sagittal image were obtained using the “Segment” function
in SPM8 (Wellcome Department of Cognitive Neurology, UK;
available at http://www.fil.ion.ucl.ac.uk/spm). The bias corrected
image was used for creating a polygon model of the cortical
surface in FreeSurfer (Martinos Center software, http://surfer.
nmr.mgh.harvard.edu/), followed by the cortical surface model.
The gray-matter volumetric image was used in conjunction with
the output files of FreeSurfer to create the three-layer model.

fMRI Data Processing
fMRI data were analyzed with SPM8 and VBMEG. Slice-timing
correction was performed on all echo planar images (EPIs),
followed by spatial realignment to the mean image of all EPIs.
The T1-weighted axial image was co-registered to the T1-
weighted bias-corrected sagittal image before all realigned EPIs
were co-registered to the T1-weighted axial image. Then, all
EPIs were spatially normalized to the Montreal Neurological
Institute (MNI) (Montreal, Quebec, Canada) reference brain
via the T1-weighted bias-corrected sagittal image, and spatially
smoothed with a Gaussian kernel of 8mm full-width at
half-maximum.

In SPM first-level analysis, for each participant, we calculated
t-values for two contrasts task /a/> task /i/ and task /i/> task /a/
using p-value thresholds for uncorrected multiple comparisons
of 0.001, 0.005, 0.01, 0.05, and 0.1 (termed “single-activation”).
All of the t-values were then used to define two kinds of priors,
area (the number of cortical vertices to be estimated) and activity
(affecting current amplitude of each vertex) in VBMEG. Using
VBMEG, the t-values of the respective contrast images were
inverse-normalized into individual participant’s space and co-
registered to the cortical surface model as area and activity priors.
Merging priors across the two contrasts at each p-value threshold,
we created final area and activity priors for EEG cortical current
estimation for each participant.

We also created other sets of area and activity priors for
each participant using results from SPM group (second-level)
analyses. A one-sample t-test was performed for the contrast
between task /a/ and task /i/ (p = 0.01 uncorrected). Group
analyses were performed for 11 conditions. One analysis used
all participants’ images (“Group-activation”), and the remaining
10 analyses used 9 participants’ images, changing combinations
in a leave-one-participant-out manner (“LOOgroup-
activation”). The t-value images of the group-activations and
LOOgroup-activations were inverse normalized into individual
participant’s space to create area and activity priors of each
participant.

EEG Data Processing
EEG sensor signals were low-pass filtered at a cutoff frequency
of 45Hz, and 50 epochs per task were extracted in reference to
auditory stimulus onsets. Each epoch had a duration of 4 s, 1 s
of pre-onset and 3 s of post-onset. Coordinate positions of EEG

FIGURE 3 | Three-class classification accuracies of EEG cortical

current signals obtained from inverse filters with different

hyper-parameters. Results using a prior magnification parameter m0 = 10,

100, and 1000 are denoted as yellow, cream, and pink areas, respectively.

Results using prior reliability parameters γ0 = 1, 10, and 100 are denoted as

blue, red, and yellow dots, respectively. All conditions used the same fMRI

area/activity priors from Unc001. Error bars denote standard error. Statistical

differences were calculated using non-parametric permutation tests.

sensors were co-registered to the T1-weighted bias-corrected
sagittal image using positioning software supplied with VBMEG.

Inverse Filter and Cortical Current Time Course

Estimation
To design an inverse filter in VBMEG, several parameters,
including two hyper-parameters, must be defined through a
current variance estimation step. We determined the best hyper-
parameters using a nested cross-validation method described
in Section Vowel Classification Analysis using Sparse Logistic
Regression. The other parameters were defined as follows:
analysis time range = −0.5–3 s; time window size = 0.5 s; shift
size = 0.25 s; dipole reduction ratio = 0.2. We then used the
inverse filter to calculate cortical current time courses for trial
data at 0.5–3 s. Parameters differed for area and activity analyses
(described in Section Vowel Classification Analysis using
Sparse Logistic Regression). The two hyper-parameters, a prior
magnification parameter (m0) and a prior reliability (confidence)
parameter (γ0), were selected from m0 ∈ {10, 100, 1000} and
γ0 ∈ {1, 10, 100}, respectively. Both parameters constrain
influence of fMRI data on current variance estimation (Sato et al.,
2004). A larger magnification parameter m0 leads to a larger
dipole current amplitude for a given fMRI activation. A larger
reliability parameter γ0 requires a more sharply peaked fMRI
activation in the variance distribution. For both, high values
signify that brain activity during the fMRI experiment was the
same as that during the EEG experiment. We chose their values
based on a method by Morioka et al. (2014). However, we did
not select high values because our fMRI and EEG data were
not recorded simultaneously but on different days using slightly
different experimental protocols.
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TABLE 1 | List of conditions used for designing inverse filters for EEG cortical currents.

Condition P-value threshold Hyper-parameters The number of vertices Accuracy (%)

For area For activity m0 γ0

Unc0001 0.001 0.001 10, 100, 1000 1, 10, 100

Unc0005 0.005 0.005 10, 100, 1000 1, 10, 100

Unc001 0.01 0.01 10, 100, 1000 1, 10, 100

Unc005 0.05 0.05 10, 100, 1000 1, 10, 100

Unc01 0.1 0.1 10, 100, 1000 1, 10, 100

Group 0.01 0.01 10 1

LOOgroup 0.01 0.01 10 1

RandLOOgroup 0.01 0.01 10 1

Bestcond

P1 0.01 0.001 10 10 229 63.3

P2 0.01 0.01 10 10 47 62.7

P3 0.005 0.005 10 100 13 50.0

P4 0.01 0.001 100 100 83 49.3

P5 0.01 0.01 100 10 260 46.7

P6 0.05 0.05 10 100 335 66.0

P7 0.001 0.001 10 1 130 54.0

P8 0.01 0.01 10 10 31 56.0

P9 0.01 0.01 10 10 206 59.3

P10 0.1 0.01 10 1 663 77.3

In Unc0001, Unc0005, Unc001, Unc005, and Unc01 conditions, the same p-values for area and activity were used from individual participant SPM results, and 9 inverse filters were

calculated for each condition using all combinations of the two hyper-parameters. In Group, LOOgroup, and RandLOOgroup conditions, p-value thresholds and hyper-parameters were

the same because data used in SPM second-level analysis differed for Group and LOOgroup, and RandLOOgroup data used the same data as LOOgroup with randomized labeling.

In Bestcond condition, parameters that showed the highest accuracies were listed along with the number of vertices obtained from the estimation.

Vowel Classification Analysis Using Sparse
Logistic Regression
We applied sparse logistic regression (SLR) (Yamashita et al.,
2008) for vowel classification, which can train high-dimensional
classifiers without need for advance dimension reduction.
Three-class classifiers for /a/, /i/, and no-imagery (control)
were trained based on sparse multinomial logistic regression
(SMLR) using SLR Toolbox version 1.2.1 alpha (Advanced
Telecommunications Research Institute International, Japan;
http://www.cns.atr.jp/~oyamashi/SLR_WEB.html). SMLR
trained three classifiers for the individual three tasks, and it chose
the class with the highest probability using test data.

For both EEG sensor and cortical current signals, the signals
were passed through an 8-point moving average filter, and
data from 1.0 to 2.0 s of post-onset were used for analysis to
avoid influence by auditory or event-related evoked potentials,
such as N1 and P300, and also by motor-related potentials
evoked by pressing the response button. Classification accuracies
for EEG cortical current signals were evaluated in a nested
cross-validation manner to observe the influence of the hyper-
parameters. For EEG sensor signals, nested cross-validation was
not applied because hyper-parameter tuning was not applicable.
Instead, 5× 10-fold cross validationwas used, which repeats a 10-
fold cross validation 5 times, randomizing the trials in a fold for
each iteration. This repeated cross-validationmethodwas applied
to obtain more generalized classification accuracies.

To see the influence of the hyper-parameters on classification
accuracy, we used fixed area/activity priors of p = 0.01 (single-
activation) as shown in Figure 3. The 50 trials for each task were
randomly divided into 10 groups, with 5 trials each. Eight groups
were used to train a classifier using one of nine hyper-parameter
pairs (where m0 ∈ {10, 100, 1000} and γ0 ∈ {1, 10, 100}). One
of the remaining groups was used as validation data to calculate
classification accuracies for the pair of hyper-parameters. The last
remaining group was reserved as test data to be used after the best
hyper-parameters were found. The process was repeated 9 times
for each permutation of training and validation data, and mean
classification accuracies were calculated for each validation. This
was repeated for all parameters pairs, and mean accuracies across
participants were plotted in Figure 3.

Next, the pair of hyper-parameters with the highest accuracy
was selected, and a new classifier was trained using both the
training and validation data (9 groups), and net classification
accuracy was calculated using the test data reserved in the
first step. This step was performed to compare accuracies
among different area/activity priors. The process was repeated 10
times per pair of fMRI area/activity priors, changing the group
used as test data in a leave-one-group-out manner. The entire
nested cross-validation process was further repeated 5 times,
randomizing the trials in each of the 10 groups.

We calculated accuracies for the following 8 fMRI prior pairs
(Table 1): 5 single-activations (uncorrected p = 0.001, 0.005,
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0.01, 0.05, and 0.1), Group-activation (Group, uncorrected
p = 0.01), LOOgroup-activation (LOOgroup, uncorrected
p = 0.01), and LOOgroup with data labels randomized
during classifier training (RandLOOgroup, uncorrected
p = 0.01). We included the RandLOOgroup condition to
determine if accuracies increased simply due to increased data
dimensionality.

In Figure 4A, we compared mean classification accuracies
across participants using the net accuracies among the prior
pairs. Note that we did not show all mean accuracies for
single-activations but rather mean calculated using the best
accuracies among the results of the single activations (termed
“Bestcond”). Conditions that gave the best accuracy for each
participant are shown in Table 1. Statistical analyses to assess
significant difference between them were performed using
non-parametric permutation tests (Nichols and Holmes, 2002;
Stelzer et al., 2013; Yoshimura et al., 2014), which compare
the mean classification accuracy to other mean accuracies that
were calculated repeatedly using randomly permuted class-labels
and calculated p-values. The comparison was repeated 10,000
times using pseudo-randomized labels. Therefore, the labeling
with the highest overall difference would have a p-value of
1/10,000= 1.00e-04.

Evaluation of EEG Cortical Current
Estimation for Contribution to Vowel
Classification
We examined which cortical vertices or EEG sensors contributed
to vowel classification by analyzing weight values of the three-
class classifiers. For each classifier of /a/, /i/, and no-imagery,
weight values were normalized by the maximum weight value
in each cross validation, and mean weight values of time point
features (32 points per vertex) for each vertex or EEG sensor
were then calculated. The mean weight values for all of the
vertices or EEG sensors were plotted as a colored map for
all cross-validation times (Figure 5 for EEG sensors, Figure 6
for cortical vertices). For some vertices and EEG sensors that
were frequently selected by the cross-validation analysis, we
compared differences in time course signals during the three
tasks. Mean time course signals were calculated across trials and
plotted for EEG sensors (Figure 5) and EEG cortical currents
(Figure 6).

For cortical vertices, we further calculated mean weight value
of each classifier across participants for 30 anatomical regions to
find the most contributive anatomical area for the classification
(Figure 7). Since MNI coordinate positions of cortical vertices
were stored when constructing the cortical surface model in
VBMEG, we were able to examine the anatomical regions
corresponding to the locations of the cortical vertices using SPM
Anatomy toolbox (Version 1.7) (Eickhoff et al., 2005) (http://
www.fz-juelich.de/inm/inm-1/DE/Forschung/_docs/SPMAnato
myToolbox/SPMAnatomyToolbox_node.html). We defined
the following 30 anatomical regions of interest (ROIs)
for the contribution analysis: left and right hemispheric
superior frontal gyrus (L/R-SFG), middle frontal gyrus (L/R-
MFG), inferior frontal gyrus (L/R-IFG), primary motor cortex

FIGURE 4 | (A) Mean accuracies averaged across 10 participants for the

three-class classification using EEG sensor and cortical current data. Error

bars denote standard error. The dotted line denotes chance level of 33.3%.

*p < 0.05, **p < 0.01, ***p < 5e-04 usnig non-parametric permutation tests.

Parameters used for each condition (No. 1–No. 5) are shown in Table 1. (B)

Comparison of classification output ratio for each task resulting from EEG

sensor (left) and cortical current (right) classification. Using a probability map

from each classification analysis, the number of times that marked the highest

probability was counted for each task. Then the ratio of that number to the

total number of cross-validations was calculated and averaged across

participants. For each task, red bars represent the ratio classified as vowel /a/,

blue bars as vowel /i/, and green bars as no-imagery.

(L/R-M1), premotor cortex (L/R-PM), primary somatosensory
cortex (L/R-S1), superior parietal lobule (L/R-SPL), inferior
parietal lobule (L/R-IPL), primary auditory cortex (L/R-Aud),
superior temporal gyrus (L/R-STG), middle temporal gyrus
(L/R-MTG), inferior temporal gyrus (L/R-ITG), cingulate
gyrus (L/R-CG), hippocampus (L/R-Hip), and occipital
gyrus (L/R-OcG).

Moreover, we calculated coefficient of correlations for all
vertex pairs and all EEG sensor pairs to find vertices or sensors
that highly correlate with frequently selected vertices or sensors
(Figures 8, 9).
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RESULTS

Comparison of Hyper-Parameters for EEG
Cortical Current Estimation
In Figure 3, three-class classification accuracies from the nested
cross-validation analysis were plotted for the 9 pairs of hyper-
parameters. All mean accuracies were higher than chance level
(33.3%) and differed according to the hyper-parameters used.
Also, the best pair of hyper-parameters was not always the
same in each cross-validation step. As expected, we obtained
higher accuracies using lower hyper-parameter values. Since
both hyper-parameters represented similarity between fMRI
and EEG activity patterns, this result is reasonable because we
recorded EEG and fMRI data on different days using slightly
different experimental protocol. We used the hyper-parameters
that provided the highest accuracy, m0 = 10 and γ0 = 1,
in the next analysis (Section Comparison between Classification
Accuracies for EEG Sensors and Cortical Currents) comparing
accuracies for different fMRI activity priors.

Comparison between Classification
Accuracies for EEG Sensors and Cortical
Currents
Figure 4A compares three-class classification accuracies (/a/, /i/,
and no-imagery) of EEG sensor and EEG cortical current signals
estimated using different fMRI area/activity priors. All values
are mean accuracies across participants. All accuracies except
randomly labeled data (No. 5) were significantly higher than
chance level (Bestcond: 58.5 ± 2.93%, p = 2.00e-04; Unc001:
48.5 ± 1.80%, p = 1.00e-04; Group: 55.0 ± 2.55%, p = 1.00e-
04; LOOgroup: 48.8 ± 1.90%, p = 1.00e-04; RandLOOgroup:
35.7 ± 1.43%, p = 0.08; EEG: 39.5 ± 1.62%, p = 7.00e-04;
using permutation tests). Furthermore, all EEG cortical currents
data except randomly labeled data showed significantly higher
accuracies than EEG data (Bestcond: p = 1.00e-04; Unc001:
p = 0.0018; Group: p = 4.00e-04; LOOgroup: p = 0.0024;
RandLOOgroup: p = 0.11; using permutation tests). Since the
randomly labeled data (RandLOOgroup) showed nearly chance-
level accuracy, accuracy increases using EEG cortical currents
likely could not be attributed to increased data dimensionality but
rather tomeaningful information being extracted by EEG cortical
current estimation.

Comparing accuracies for different fMRI priors (No. 1–No.
4), Bestcond (58.5%) showed significantly higher accuracy than
all other conditions except the Group condition. Interestingly,
the Group condition (55.0%) showed relatively higher accuracy
than Unc001 even though activation of the Group condition
was obtained using all participants in Unc001 (Bestcond vs.
Group: p = 0.39; Unc001 vs. Group: p = 0.050; Unc001 vs.
LOOgroup: p = 0.91; Unc001 vs. Bestcond: p = 0.0076; Group
vs. LOOgroup: p = 0.065; LOOgroup vs. Bestcond: p = 0.011;
using permutation tests).

Classification ratios (Figure 4B) further revealed that there
was no disproportion in true-positive classifications among
tasks. Specifically, only in EEG cortical currents were true-
positives significantly more frequent than false-positives and

false-negatives, and no significant difference in true-positives was
observed between tasks [cortical currents: F(8, 81) = 10.8, p =

3.11e-10; EEG: F(8, 81) = 3.8, p = 0.001; by one-way ANOVA).
Therefore, classification accuracy (Figure 4A) was not the result
of prominently high accuracy in any single task, and there was no
disproportion in accuracies for the three tasks.

Contribution of Brain Regions to
Classification of Covert Vowel Articulation
Left panels of Figures 5A–C, 6A–C show weight analysis
results of EEG and cortical current classifiers, respectively, in
a participant who showed the highest accuracy among the
participants. For both EEG sensor and cortical current signals,
the same sensors or vertices tended to be selected throughout
the cross-validation. These tendencies were observed for all
participants, even though locations of frequently selected sensors
or vertices differed between participants.

When calculating mean weight values of the 30 ROIs across
participants (Figure 7), L-SFG, L-MFG, R-IFG, L-PM, L-ITG,
and L-Hip showed significantly higher values than R-M1, R-PM,
L-S1, LR-SPLs, R-IPL, LR-Auds, R-STG, LR-MTGs, R-ITG, and
LR-OcGs [p < 0.05 in multi-comparison analysis after a three-
way ANOVA (main effect of participant: F(9) = 1.63, p =

0.17; main effect of ROI: F(29) = 3.24, p = 0; main effect of
task: F(2) = 12.8, p = 0; interaction between participant and
area: F(261) = 1.48, p = 0.0001; interaction between area and
task: F(58) = 0.94, p = 0.60; multi-comparison results showed
no-significance between participants)].

Mean weight values of EEG sensors across participants
(Figure 7B) revealed that T7, P7, and O2 showed significantly
higher values than the other sensors [p < 0.05 in multi-
comparison analysis after a three-way ANOVA (main effect of
participant: F(9) = 0.28, p = 0.98; main effect of sensor:
F(31) = 1.81, p = 0.005; main effect of task: F(2) = 12.4,
p = 0; interaction between participant and area: F(279) = 1.50,
p = 0; interaction between area and task: F(62) = 1.05, p =

0.37; multi-comparison results showed no significance between
participants)].

To see the difference in time series signals between tasks
for the EEG sensors and vertices that were frequently selected
and assigned high weight values (termed “FSHV-sensors” and
“FSHV-vertices”, respectively), we compared mean time series
signals across trials for the three tasks in the same participant
(orange boxes in the right panels of Figures 5A–C, 6A–C.
FSHV-sensors tended to be located in the right frontal area (Fz,
Fp2, F4, FC6) for vowel /a/ classifiers, in the bilateral frontal area
(AF3, F7, C3, Fp2, AF4, F8, and FC6) for vowel /i/ classifiers,
in the bilateral frontal and the left occipital areas (F7, AF4, and
O1) for no-imagery classifiers in case of the participant. Only
slight differences were observed among their signals even though
the sensors positions were apart from each other. FSHV-vertices
were located in bilateral frontal areas [L-SFG (BA9), L-PM
(BA6), and R-IFG (BA47)] for vowel /a/ classifiers, in left
temporal and bilateral frontal areas [L-MTG (BA21), L-PM
(BA6), L-SFG (BA9), R-IFG (BA47), R-PM (BA6)] for vowel /i/
classifiers, and in left frontal area [L-PM (BA6)] for no-imagery

Frontiers in Neuroscience | www.frontiersin.org 7 May 2016 | Volume 10 | Article 175

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Yoshimura et al. Vowel Decoding from EEG CS

FIGURE 5 | Examples of EEG sensor signals in a participant who showed the highest accuracy. Left panel: Color maps of mean weight values of all sensors

for each cross-validation analysis calculated by classifier for vowel /a/ (A), vowel /i/ (B), and no-imagery (C). Right panel: Frequently selected sensors with high mean

weight values (FSHV-sensors) were selected from the color maps and mean time series signals across trials were plotted. Red lines represent signals during vowel /a/

task, blue lines represent vowel /i/ task, and green lines represent no-imagery task. Signals from 1 to 2 s after the auditory stimuli (orange box) were used for

classification analyses. EEG sensor positions of the FSHV-sensors are shown beside each signal plot.

classifiers. The most notable difference with the EEG results was
that signal patterns during imagery (orange box in the right
panels of Figures 6A–C) were quite different for each task and
location.

Next we calculated correlation coefficients (CC) for all EEG
sensor- or vertex- pairs of signals to identify neural signaling
related to language processes. For EEG sensors (Figure 8), as
expected, many pairs of EEG sensor signals showed high CC
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FIGURE 6 | Examples of EEG cortical current signals in the same participant in Figure 5. Left panel: Color maps of mean weight values of all vertices sorted

according to brain areas for each cross-validation analysis calculated by classifier for vowel /a/ (A), vowel /i/ (B), and no-imagery (C). Right panel: Frequently selected

vertices with high mean weight values (FSHV-vertices) were selected from the color maps, and mean time series signals across trials were plotted. Red lines represent

signals during vowel /a/ task, blue lines represent vowel /i/ task, and green line represent no-imagery task. Signals from 1 to 2 s after the auditory stimuli (orange box)

were used for classification analyses. Positions of the FSHV-vertices and their MNI standard coordinates are shown beside each signal plot. MNI standard coordinates

of the current vertices were calculated using the normalization matrix obtained from SPM analysis to determine anatomical locations of the current vertices.

values, and high correlations were particularly observed between
sensors located close to each other, even if located contra-
laterally. For EEG cortical currents (Figure 9, left panels), high
correlations were limited mainly to vertices located in the same

hemisphere. Furthermore, when we drew connectivity maps
using the FSHV-vertices as seeds and lines connecting to vertices
with absolute CC values of more than 0.6, we found that the
FSHV-vertices had positive or negative correlations with vertices
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FIGURE 7 | Mean normalized weight values across participants. Red bars represent results from weight for vowel /a/, blue bars for vowel /i/, and green bars for

no-imagery. (A) Values for 32 EEG sensors were compared. (B) Values for 30 ROIs were compared: left (L) and right (R) hemisphere of SFG, MFG, IFG, M1, PM, S1,

SPL, IPL, Aud, STG, MTG, ITG, CG, Hip, and OcG.

located in Brodmann areas (BA) 6, 9, 20, 21, 22, 38, 46, and 47
(Figure 9, right panels).

DISCUSSION

The aim of this study was to classify brain activity associated
with covert vowel articulation. Results demonstrated that using
EEG cortical current signals provided significantly higher
classification accuracy than that using EEG sensor signals.
Accuracy using cortical current signals was also comparable to
those of existing studies using semi-invasive ECoG (Leuthardt
et al., 2011; Pei et al., 2011; Ikeda et al., 2014). These results
seem to be attributed to enhancement in spatial discrimination
of EEG using cortical current estimation, since signal patterns
of cortical currents were found to differ greatly from each other
(Figures 6A–C). The enhancement in spatial discrimination
further provided the possibility of findings on neural processing
of vowel articulation (Figure 9). Although, EEG cortical current
estimation employs fMRI data as hierarchical priors, real-time
fMRI data acquisition is not required since the hierarchical
priors are used for inverse filter design, and the inverse filter is
calculated in advance using pre-recorded fMRI and EEG data.
Therefore, EEG cortical current signals are applicable to real-time
interfaces. To our knowledge, this is the first study to demonstrate
usability for EEG cortical currents in BCI spellers, as well as the
contributive anatomical areas and their functional connectivities
for covert vowel articulation.

Brain Regions Contributive to Covert
Vowel Articulation Revealed by EEG
Cortical Current Signals
Our EEG cortical current results (Figure 7) showed that left
MFG (BA46), right IFG (BA47), left PM (BA6), and left ITG
(BA20) were highly contributive to the classification of vowels
/a/ and /i/ and no-imagery. Though the neural circuit for covert
vowel articulation cannot be confirmed from this analysis, our
results are consistent with existing findings on phonological
processing during language production. Several studies using
fMRI reported significant activation of BA46 (left MFG) during
phonological processing compared to semantic processing (Price
and Friston, 1997; Heim et al., 2003). Considering that our study
used auditory stimuli and covert articulation of single vowels, the
observed higher contribution in left MFG is reasonable.

The right IFG has been shown to have significant activation
during vowel speech production compared to listening to
vowel production as well as to rest (Behroozmand et al.,
2015). Our experimental tasks require similar brain activity,
calling for vowel speech production and listening processes.
Moreover, IFG includes Broca’s area, which is a well-known
area of language processing, and studies have shown that these
adjacent regions are involved in spoken language processing
(Hillert and Buracas, 2009), selective processing of text and
speech (Vorobyev et al., 2004), and voice-based inference
(Tesink et al., 2009). Considering these findings, the higher
contribution of right IFG in our study may be due to our
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FIGURE 8 | Color maps of correlation coefficient (CC) values for EEG sensor signals. Sensors names are listed along with the horizontal and vertical axes. CC

values were calculated for all tasks signals: vowel /a/ (A), vowel /i/ (B), and no-imagery (C).

requiring selective imagery of vowel sounds rather than text
of vowels.

The higher contribution of left PM (BA6) seems reasonable
because PM is included in speech motor areas. Speech motor
areas are thought to mediate the effect of visual speech cues
on auditory processing and to be associated with phonetic
perception (Skipper et al., 2007; Alho et al., 2012; Chu et al.,
2013). Left ITG (BA20) is often reported in studies using
comprehension tasks (Papathanassiou et al., 2000; Halai et al.,
2015). Considering the simplicity of our experimental tasks, the
higher contribution of left ITGmight be associated with selective
processing of text and speech (Vorobyev et al., 2004) because
we asked participants to imagine the sound of the vowel speech
they heard rather than text. Our functional connectivity analysis
(Figure 9) showed negative correlations between some FSHV-
vertices in BA6 and other vertices in temporal areas, especially

in participants who showed high classification accuracies. These
findings also may support presence of selective processing of text
and speech in BA20 using information from BA6 before speech
production processes are initiated in the frontal areas.

Use of SLR for Classification Analysis
This study employed SLR for classification analysis mainly for
two reasons. One reason was simply that it offered higher
classification accuracies than conventional methods, such as
support vector machines (SVMs). An SVM may give better
results if an effective feature selection method is applied before
SVM analysis. However, we sought to minimize the number of
processes to ensure robustness in BCI application. Therefore, we
used SLR since it can train high dimensional classifiers without
prior feature selection to reduce dimensionality, which was the
second reason for its use in this study.
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FIGURE 9 | Left panel: Color maps of correlation coefficient (CC) values for EEG cortical current signals. ROIs names that cortical vertices were included in

are listed along with the horizontal and vertical axes. CC values were calculated for all tasks signals: vowel /a/ (A), vowel /i/ (B), and no-imagery (C). Right panel: The

FSHV-vertices defined in Figure 6 [(1–7) in this figure) were set as seeds, and positive correlations above 0.6 (red lines) and negative correlations below–0.6 (blue

lines) were visualized with BrainNet Viewer (Xia et al., 2013) (http://www.nitrc.org/projects/bnv/). Green balls on the brain maps denote vertices, with their sizes

representing mean weight values, and names of the brain areas in Brodmann style and MNI coordinates of the seeds are written besides the brain maps.
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Owing to the ability of SLR to train high dimensional
weight values without dimensional reduction, we were able to
compare contribution of each brain region to classification.
Analysis of mean weight values (Figure 7) showed that the
areas highly contributive to classification were consistent with
existing findings on the neural network for language processing.
Furthermore, several studies, including a neurophysiological
non-human study, have shown the validity of SLR’s feature
selection method, called automatic relevance determination
(Mackay, 1992), for neuroscientific applications (Miyawaki et al.,
2008; Tin et al., 2008; Yamashita et al., 2008). Our results offer
additional evidence in support of SLR.

Challenges and Future Prospects Toward a
BCI speller
Two steps remain for establishing an active BCI speller. First,
classification accuracy must be increased for practical use.
Second, the number of syllables to be classifiedmust be increased.
This study used vowels /a/ and /i/ to examine the possibility
to classify Japanese words “Yes” (hái) and “No” (i.e.,). Mean
accuracies of 2-class classification in this study were 82.5% (for
“Group” prior) and 87.7% (for “Bestcond”), which are above
the 70% accuracy deemed sufficient for real-time application
(Pfurtscheller et al., 2005). Moreover, a BCI classifying “Yes”
and “No” could be applicable not only as a speller but also
in other applications such as cursor or robot control. For an
ideal Japanese BCI speller, however, it is desirable to classify at
least a 50-character syllabary including vowels and consonants.
Since even existing reactive BCI spellers using stimulus-evoked
potentials have difficulty in classifying 50 commands, a realistic
solution would be to devise an application paradigm that includes
50 syllables but uses a smaller number of classifications (Fazel-
Rezai and Abhari, 2008; Treder and Blankertz, 2010). To increase
classification accuracy, we may need more parameter tuning
at the individual level, because Bestcond showed that highest
accuracies and contributive areas differed between participants.
This study employed standard VBMEG toolbox procedures for
cortical current estimation, which used SPM analysis results
as priors. We varied the area and activity priors by defining
thresholds in SPM statistical analysis to find the best priors
for each participant. In a separate analysis, we also found a
significant correlation between the number of cortical vertices
and accuracy (R = 0.73, p = 0.016). This shows that it might be

worthwhile to increase the number of cortical vertices not only
by tuning thresholds in SPM but also by introducing anatomical
information to cover full areas associated with language and
speech.

CONCLUSION

This study provides the first demonstration of covert vowel
articulation classification using EEG cortical currents. The
classification accuracy using EEG cortical currents was
significantly higher than that using EEG and comparable to
existing findings using semi-invasive ECoG signals. SLR weight
analysis further revealed that highly contributive brain regions

were consistent with the results of existing findings on language
processing. With fMRI data acquisition required only once in
advance to calculate an inverse filter, EEG cortical currents are a
potentially effective modality for active BCI spellers.
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