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ABSTRACT

Forests, the largest terrestrial carbon sinks, play an important role in carbon sequestration and climate
change mitigation. Although forest attributes and environmental factors have been shown to impact
aboveground biomass, their influence on biomass stocks in species-rich forests in southern China, a
biodiversity hotspot, has rarely been investigated. In this study, we characterized the effects of envi-
ronmental factors, forest structure, and species diversity on aboveground biomass stocks of 30 plots (1 ha
each) in natural forests located within seven nature reserves distributed across subtropical and marginal
tropical zones in Guangxi, China. Our results indicate that forest aboveground biomass stocks in this
region are lower than those in mature tropical and subtropical forests in other regions. Furthermore, we
found that aboveground biomass was positively correlated with stand age, mean annual precipitation,
elevation, structural attributes and species richness, although not with species evenness. When we
compared stands with the same basal area, we found that aboveground biomass stock was higher in
communities with a higher coefficient of variation of diameter at breast height. These findings highlight
the importance of maintaining forest structural diversity and species richness to promote aboveground
biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate
warming on the ecosystem services of subtropical and northern tropical forests in China. Notably, many
natural forests in southern China are not fully stocked. Therefore, their continued growth will increase

their carbon storage over time.
Copyright © 2024 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

(Hyvonen et al., 2007; Pan et al., 2013; Zeng et al., 2021). Several
recent studies aimed at elucidating the mechanisms underlying

Forest carbon sequestration, a process critical to mitigating
climate change, refers to the fixation of carbon dioxide from the
atmosphere into glucose (via photosynthesis), which is then con-
verted into biomass for long-term carbon storage in forests
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carbon sequestration and storage in forest ecosystems have focused
on forest aboveground biomass (AGB) stocks. However, these
studies mainly focused on typical tropical and temperate forests
(Zheng et al., 2006; Hao et al., 2018; Aguirre Gutiérrez et al., 2019).
Although some studies have been conducted on AGB stocks in
subtropical forests, these studies were based on small plots or di-
vision of a large plot into many small plots in a single site (Ali et al.,
2017; Li et al., 2019; Rodriguez-Hernandez et al., 2021). Southern
China includes both subtropical and marginal tropical regions. The
forests in this region are characterized by high diversity, owing to
their varied topography and climatic conditions. Despite
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substantial research efforts, knowledge of the specific factors that
impact AGB in these forests remains limited.

Exploring the effects of environmental factors and forest attri-
butes on AGB is essential because of their roles in regulating carbon
sequestration and storage. Across a regional gradient, climate and
topography strongly shape species distribution (Toledo et al., 2012;
Gonmadje et al.,, 2017; Cai et al., 2023), and influence plant growth
and AGB stocks (Chu et al., 2016; Ali et al., 2019a; Linger et al.,
2020). For example, studies have shown that high annual precipi-
tation drives AGB accumulation in Neotropical forests (Poorter
et al., 2015, 2017). AGB accumulation has also been shown to be
affected by elevation, although this effect varies between forests
(Culmsee et al., 2010; Ensslin et al., 2015; Venter et al., 2017).
Additionally, species diversity has a considerable positive effect on
the productivity and AGB stocks of forests, although, the strength of
this relationship varies among ecosystems (Fridley et al., 2012;
Liang et al., 2016). For example, in plantation forests, species di-
versity was shown to be significantly positively correlated with
AGB stocks (Huang et al., 2018; Feng et al., 2022), whereas in nat-
ural forests, both positive and negative relationships between these
factors have been reported (Chisholm et al., 2013; Poorter et al.,
2015; Ali et al., 2016; Fotis et al., 2018). In addition to taxonomic
diversity, stand structure has been reported as another important
factor affecting AGB (Zhang et al., 2015; Ali et al., 2016; Ullah et al.,
2021). For example, Zhang and Chen (2015) found that the AGB of
Canadian boreal forests increased with tree size heterogeneity
through the complementarity effect. A similar result was observed
in secondary subtropical forests in eastern China (Ali et al., 2016).
Thus, the promotion of resource utilization through tree size dif-
ferentiation in forest communities may be an important mecha-
nism regulating AGB accumulation. Forest age also plays a vital role
in forest carbon storage and sequestration (Pregitzer et al., 2004;
Liu et al., 2014; Poorter et al., 2016). Notably, the size of the sample
forest plot may influence the estimation of AGB, with an over-
estimation of AGB in small plots (Hernandez-Stefanoni et al., 2018).
The scale of the sample plots is another factor that may influence
the relationship between species diversity and the AGB of forests
(Chisholm et al., 2013). For example, Poorter et al. (2015) found that
in Neotropical forests, species diversity was most strongly corre-
lated with AGB at a small spatial scale (0.1 ha), whereas no clear
relationship was found at a larger spatial scale (1 ha).

In this study, we used data from 30 forest plots (1 ha each) in
seven nature reserves to characterize the effects of environmental
factors, forest structure, and species diversity on aboveground
biomass stocks of natural forests in the subtropical and marginal
tropical zones of the Guangxi Zhuang Autonomous Region in
southern China. In addition, we evaluated the potential capacity of
natural forests in the study region to sequester carbon.

2. Materials and methods
2.1. Study sites and forest plots

The research was carried out in the Guangxi Zhuang Autono-
mous Region (20°54'-26°23'N, 104°26'-112°03'E; hereafter,
Guangxi,) in southern China. The region lies at the southeastern
edge of the Yunnan-Guizhou Plateau. The topography of the re-
gion is characterized by a high elevation in the northwest, a low
elevation in the southeast, and a general inclination from south-
east to northwest. The region is mountainous (62.05% of the total
area), and 35% of the land is covered by karst landforms, mainly
distributed in western, central and northeastern Guangxi (Fig. 1).
This region lies in the transition from the middle subtropical to
northern tropical zones and has a typical monsoon climate. Across
the region, the mean annual temperature ranges from 17.6 °C to
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23.8 °C and the mean annual precipitation (MAP) ranges from
723.9 mm to 2983.8 mm, but rainfall distribution varies seasonally
and gradually decreases from east to west. The complex climatic
and geological conditions of Guangxi contribute to the abundance,
diversity, and spatial distribution patterns of vegetation. Natural
forests in this region include tropical monsoon rainforests, ever-
green broadleaf forests, mixed evergreen and deciduous broadleaf
forests and karst mountain forests. Moving from east to west,
moisture-loving species are gradually replaced by drought-
tolerant species.

According to the methodology developed by the Center for
Tropical Forest Science, Smithsonian Tropical Research Institute, 30
dynamic forest plots of 1 ha each (100 m x 100 m) were established
in seven well-separated national nature reserves across Guangxi,
with 3—5 plots at each site (Fig. 1). The surveyed plots spanned from
northern tropical to middle subtropical climates, ranging from
106°21’ to 110°15’E and 21°50’ to 25°37'N, and from 340.0 to
1842.84 m in elevation (Table S1). Trees in each plot with a diam-
eter at breast height (DBH) > 5 cm were included in this study.

2.2. Species diversity

Species diversity metrics included species richness and species
evenness. We used the species richness (S) based on the total
number of tree species per forest plot and species evenness based
on Pielou evenness index (E) to quantify tree species diversity, ac-
cording to the methods described by Zhang et al. (2012). The Pielou
evenness index was calculated using the following equations:

S

H= —Z(Pi lnPi) (1)
i=1

E=H/InS (2)

where P; is the proportional basal area of ith species in each plot.
Calculations of species diversity were performed using the “vegan”
R package (Oksanen et al., 2022).

2.3. Stand structural attributes and age

The stand structural attributes used here include variations in
tree size and stand basal area. Tree size variation was quantified
using the coefficient of variation of tree DBH (DBH CoV), which was
calculated as the ratio of the standard deviation of all DBH mea-
surements to the mean DBH of each plot (Brassard et al., 2008;
Varga et al., 2005). Stand age reflects the developmental stage of a
tree community and is an important driver of biomass. In this study,
the average DBH of the five largest trees in each plot was used as a
proxy for stand age.

2.4. Forest aboveground biomass estimation

The AGB (Mg) of individual trees with DBH > 5 cm was calcu-
lated using the allometric equation developed by Chave et al.
(2015), which has been widely used in AGB estimation for trop-
ical and subtropical forests (Ali et al., 2016; Poorter et al., 2017;
Rodriguez-Hernandez et al., 2021).

0.976
AGB = 0.0673 x (p x D? x 1-1)

3)

where D is the stem diameter (cm), p is the wood density (g cm—3),
and H is the height (m) of trees in a given plot. The wood densities
of tree species from Shiwandashan (SWDS), Damingshan (DMS),
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Fig. 1. Distribution map of the 30 forest plots in Guangxi, China. ML, Mulun Nature Reserve (karst); SWDS, Shiwandashan Nature Reserve; DMS, Damingshan Nature Reserve; CWLS,
Cenwanglaoshan Nature Reserve; JWS, Jiuwanshan Nature Reserve; DYS, Dayaoshan Nature Reserve; and HP, Huaping Nature Reserve. The numbers on the map indicate the number

of plots.

and Mulun (ML) were determined using the water displacement
method, and those of the remaining species were collected from an
existing database (Chave et al., 2009; Zhang et al., 2011). In cases
where the wood density of a particular species was unavailable, the
genus-, family-, or plot-level mean wood density value was used
instead, according to protocols established in previous studies
(Jucker et al., 2018; Ali et al., 2019a). For a more accurate estimate of
tree height, we measured the DBH and tree height at four sites:
SWDS, DMS, ML, and Cenwanglaoshan (CWLS). Approximately 90
trees were measured according to the DBH gradient in each site.
These data were used to establish a height (H)-diameter (D) model
for each site (Table S2) and to estimate the height for all trees in
each plot at each site. The tree heights at the remaining three sites,
Dayaoshan (DYS), Huaping (HP), and Jiuwanshan (JWS), were
estimated using the CWLS height (H)-diameter (D) model because
all four sites have similar climatic conditions. The height (H)-
diameter (D) model and AGB calculations were performed using
the “BIOMASS” package in R v.4.1.3 (Réjou-Méchain et al., 2017). For
comparison, the AGB data of tropical, subtropical, and Neotropical
forest plots were collected from previous studies (Zheng et al.,
2006; L et al., 2010; Lin et al., 2012; Poorter et al., 2017).

2.5. Environmental variables

Due to the great difference in precipitation between the eastern
and western parts of this region, we evaluated the impact of MAP
on forest AGB. Climatic data from 74 meteorological stations in
Guangxi were obtained from the China Meteorological Data Service
Center (http://data.cma.cn) and included daily meteorological re-
cords from 1981 to 2010. The MAP at each station was calculated
and then used to estimate the MAP of each plot. The MAP of each
plot was estimated based on the MAP of the 74 stations using the
Kriging spatial mapping method in the “mgcv” (Wood, 2017) and
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“gstat” (Graler et al.,, 2016) R packages. Because Guangxi is a
mountainous region, elevation was also factored into the analysis.

2.6. Statistical analyses

All statistical analyses were conducted using the R software
(v.4.3.2, R Core Team). Linear regression analyses were performed
to examine the relationship between variables (DBH CoV and AGB,
stand basal area and AGB; age proxy and DBH CoV). The multiple
regression model was used to determine the relative effects of
abiotic and biotic factors on AGB. All variables were standardized to
amean of 0 and standard deviation of 1 prior to multiple regression
analysis. The collinearity of variables was determined using the
“vif* function in the “car” R package (Fox et al., 2019). After
removing the strongly multicollinear variables, the stand age proxy,
MAP, elevation, species richness, and species evenness index (VIF <
2) were selected as independent variables in the multiple regres-
sion model. Finally, the relative importance of the stand age proxy,
MAP, elevation, species richness, and species evenness in influ-
encing AGB was assessed by comparing the standardized regression
coefficients of each independent variable.

3. Results

Across our seven study sites, the mean AGB was the highest in
the CWLS Nature Reserve (212.37 + 16.63 Mg ha™!), followed by
that in the HP Nature Reserve (191.09 + 17.54 Mg ha~'). The mean
AGB of the five plots in the SWDS Nature Reserve, which is located
in the  tropical-subtropical transitional  zone, was
127.57 + 9.58 Mg ha~ . The lowest mean AGB was found in the ML
karst forests (72.59 + 5.26 Mg ha™') (Fig. 2).

Multiple regression analysis revealed that AGB was positively
correlated with the stand age proxy, elevation, MAP, and species
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Fig. 2. Aboveground biomass of the 30 forest plots (1 ha each) in the seven sites.

richness (P<0.001, P<0.001,P<0.01 and P < 0.05, respectively), with
the stand age proxy having a relatively greater effect. However, AGB
and species evenness were not correlated (P = 0.35) (Fig. 3).

Our result showed that DBH CoV and stand basal area had a
strong and significant (R?> = 0.58, P < 0.001; R?> = 0.84, P < 0.001,
respectively) positive effect on AGB (Fig. 4a and b). We also found
that in stands with a similar basal area, communities with a lower
DBH CoV also had a lower AGB. For example, the AGB of DMS],
DMS2, DMS3, JWS3, and JWS4 was lower than that of other plots
with similar basal areas (Fig. 5).

4. Discussion

Our results showed that the AGB of the forest plots in this study
was lower than that of some mature tropical and subtropical forests
in other regions of China and Neotropical forests in the Americas.
We found that AGB was positively correlated with elevation, MAP,
stand structural attributes, and species richness. Overall, the old-
growth forests had relatively higher AGB, whereas the karst for-
ests had the lowest AGB, likely due to growth restriction resulting
from limited soil water and nutrients. Our study addresses a gap in
the existing knowledge regarding the AGB stocks of natural forests
in a species-rich region of southern China.

2_ .
o 0.24* R*=0.85
Species richness
. -0.09
Species evenness |
0.30 **
MAP -
. 0.40 ***
Elevation
0.69 ***

Age proxy -

-1.0 -0.5 0.0 0.5 1.0

Effect size

Fig. 3. Effect size resulting from a multiple regression among aboveground biomass,
stand age proxy (mean diameter at breast height of the 5 largest trees), mean annual
precipitation (MAP), elevation, species richness and species evenness for the 30 forest
plots. Each variable was standardized before comparing the effect sizes of independent
variables. *P < 0.05; **P < 0.01; ***P < 0.001.

4.1. Aboveground biomass is positively correlated with precipitation
and elevation

Water is required for plant metabolic processes such as photo-
synthesis and respiration. Therefore, water availability is an
important driver of AGB (O'Brien, 2006). Our results show that MAP
positively affected AGB stocks, which is consistent with the results
of previous studies on tropical, subtropical, and temperate forests
in China (Ali et al., 2019a; Chen et al., 2023). A large amount of
annual rainfall can extend the growing season, thereby improving
the tree biomass accumulation (Poorter et al.,, 2017). Wang et al.
(2022) reported that water is the main factor driving canopy
height in subtropical and tropical forests. Consequently, forests in
humid climates can accumulate higher amounts of biomass.
Conversely, extreme drought is likely to reduce forest biomass
accumulation. Numerous studies have reported increased tree
mortality owing to an increase in drought events (Brodribb et al.,
2020; Gonzalez et al., 2021; Bauman et al.,, 2022; Wang et al,,
2023). The positive correlation between MAP and AGB stocks in-
dicates that increased water availability can increase AGB in the
subtropical and northern tropical regions of China. Therefore,
changes in rainfall patterns resulting from climate warming are
likely to have considerable impacts on forest ecosystem services in
these regions.

Our results also reveal that elevation positively affects AGB
stocks, i.e., the AGB of high-elevation forests tended to be higher
than that of low-elevation forests, as observed in tropical forests
(Alves et al., 2010). This may in part be due to the lower degree of
disturbance in high-elevation forests, although it was different
from the unimodal pattern observed across the elevation gradient
in other studies (Ensslin et al., 2015; Phillips et al., 2019). However,
in all these studies, the highest biomass was found in the middle of
the elevation (around 2000 m). Therefore, the increasing pattern
prior to reaching the peak in these unimodal patterns was the same
as in the present study. The elevation gradient of our study plots
ranged from 340.0 m to 1842.84 m. These results suggest the
important role of the elevation gradient in AGB stocks and that
conservation of high-elevation forests is beneficial for carbon
accumulation and mitigating climate change.

4.2. Stand structural attributes, species richness, and age influence
aboveground biomass

Our results indicate that AGB was positively correlated with the
proxy used for stand age. Stand age reflects the duration of stand
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biomass accumulation (Pregitzer et al., 2004), which is associated
with stand structure, productivity, and biomass stocks (Michaletz
et al., 2014; Matsuo et al., 2021). Our results are consistent with
those of other studies, showing that mature forests store more
biomass than young forests (Xu et al., 2010; Becknell et al., 2012; Liu
et al., 2018). We found that AGB was relatively high in the forests of
the CWLS Nature Reserve, which are well protected, primary, and
mature. This finding is likely because compared to young forests,
mature forests usually have larger trees and greater structural di-
versity (Fig. S1), resulting in greater forest biomass storage (Slik
et al, 2013; Lutz et al., 2018; Ali et al, 2019b; Poulsen et al.,
2020). These results suggest that stand age may be an important
factor that determines the relationship between structural di-
versity and AGB.

A growing body of research have demonstrated that forests with
higher species diversity tend to have higher productivity or AGB
stocks (Poorter et al., 2015; Zhang et al., 2017; Liu et al., 2018).
Consistent with these studies, we found that AGB was positively
correlated with species richness. High species richness can improve
ecosystem productivity or AGB stocks through niche

complementarity (enhancing facilitation) or selection effects
(highly productive species and high biomass species were
included) (Poorter et al., 2015). However, we did not observe a
significant relationship between species evenness and AGB. This
could be related to the humid environment of our study region.
Similarly, Chen et al. (2023) found species evenness was not
correlated with AGB in subtropical humid forests. The lack of a
statistically significant relationship between species evenness and
AGB may be related to the limited plot data of our study. This issue
should be clarified in future studies by including more forest plots.

Positive effects of stand structural diversity on AGB have been
universally reported for boreal forests (Zhang and Chen, 2015),
temperate forests (Aponte et al., 2020), subtropical secondary for-
ests (Ali et al., 2016), and tropical forests (Ali et al., 2019¢). Higher
structural diversity enables coexisting species from different
ecological niches to make full use of different resources, such as
light, water, and mineral nutrients, which may promote AGB
accumulation (Zhang et al., 2015). Our results also showed that the
AGB increased significantly with increasing stand basal area. In
addition, our results showed that in forests with the same stand
basal area, those with a larger DBH CoV had larger AGB stocks. A
high stand basal area can be caused by many small trees of similar
size or trees of different sizes (including large and small trees)
(Poorter et al., 2015). It is also possible that mature forests had
higher tree stature than secondary forests (Nyirambangutse et al.,
2017). This may explain why the AGB of our plots was lower than
that of other forest sites with a similar stand basal area.

4.3. Natural forests in southern China exhibit a large potential
carbon sequestration capacity

Our results showed that the average AGB in Guangxi was
141.11 Mg ha L. Specifically, the AGB of subtropical forests ranged
from 97.60 Mg ha~! to 250.63 Mg ha~!, with an average of
161.62 Mg ha~ . This is lower than that of some mature subtropical
forests in other regions of China (Lin et al., 2012; Shen et al., 2016;
Rodriguez-Hernandez et al., 2021). Notably, those forests are old-
growth forests, with some as old as 400 years. The average AGB
of the SWDS National Nature Reserve in the tropical zone was
127.57 Mg ha~!, which is lower than those in other tropical forests
in China and Neotropical forests in the Americas (Fig. 4b). The
average AGB of the karst forest plots in the ML National Nature
Reserve was 72.59 Mg ha~'. This karst forest has a lower AGB than
the subtropical and tropical forests in this study, which may be
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closely related to the unique karst habitat. Trees in karst forests
mostly grow on rocks or in barren soil, resulting in lower tree
stature. This, in turn, affects biomass accumulation. AGB was
similar to that of secondary karst forests (mean value was
80.1 Mg ha™') in Guizhou Province (Liu et al., 2009) but much lower
than that of a well-protected tropical karst forest (mean value was
24757 Mg ha~!) in Xishuangbanna, Yunnan Province (Tang et al.,
2012).

Taken together, these results indicate that the AGB of forests in
Guangxi is lower than that of mature subtropical and tropical for-
ests at other sites. One possible explanation for these results is that
most of the forests examined in Guangxi were historically logged,
with many large trees being felled, lowering forest structural di-
versity. Compared to mature forests (such as CWLS), plots of SWDS
have more individuals, but fewer big trees. In addition, canopy
height is also lower. Accordingly, the forests examined in this study
had relatively lower biomass stocks. In a previous study, Yu et al.
(2014) reported that stand age is a key factor accounting for the
high carbon dioxide uptake capacity of East Asian subtropical for-
ests because of the high level of photosynthesis required by young
forests to produce biomass. When we monitored five year-interval
tree growth in the SWDS plots of the present study, we found this
tropical forest had higher carbon sequestration capacity (mean
value was 5 Mg ha~! year™!; Zeng et al., unpublished data) than
other primarily tropical forests (1.68 Mg ha~! year~!) (van der
Sande et al., 2017). Therefore, as forests reach an old-growth age,
they potentially have remarkable carbon sequestration capacity.

5. Conclusions

In summary, our results showed that forest AGB stocks in the
study region of southern China were lower than those in other
tropical and subtropical forests in China and Neotropical forests in
the Americas. Furthermore, we found that AGB accumulation is
promoted by stand age, tree size heterogeneity, and species rich-
ness. Moreover, our study highlights that AGB stocks in this region
are promoted by higher precipitation and elevation. Climate
warming, accompanied by changes in rainfall patterns, is likely to
have a substantial impact on forest ecosystem services in the sub-
tropical and northern tropical regions of China. Old-growth forests
exhibit higher structural diversity and biomass stocks than sec-
ondary forests. Nevertheless, many natural forests in southern
China are not fully stocked, and their continued growth will in-
crease carbon storage. Therefore, the protection of natural forests is
important for mitigating climate change through carbon
sequestration.
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