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Abstract: Essential proteins are indispensable to cells’ survival and development. Prediction and
analysis of essential proteins are crucial for uncovering the mechanisms of cells. With the help
of computer science and high-throughput technologies, forecasting essential proteins by protein–
protein interaction (PPI) networks has become more efficient than traditional approaches (expensive
experimental methods are generally used). Many computational algorithms were employed to predict
the essential proteins; however, they have various restrictions. To improve the prediction accuracy,
by introducing the Local Fuzzy Fractal Dimension (LFFD) of complex networks into the analysis of
the PPI network, we propose a novel algorithm named LDS, which combines the LFFD of the PPI
network with the protein subcellular location information. By testing the proposed LDS algorithm
on three different yeast PPI networks, the experimental results show that LDS outperforms some
state-of-the-art essential protein-prediction techniques.

Keywords: essential proteins; PPI network; LFFD; subcellular location information

1. Introduction

As one of the important gene products, proteins play a critical role in the lifespan of
cells for all living organisms. Essential proteins are those that cause lethality or infertility
of a cell if only one of them is removed [1]. Organisms cannot survive without essential
proteins [2,3]. Therefore, the prediction of essential proteins is a meaningful task due to its
theoretical interest and practical significance.

Up to now, there are generally two kinds of methods used to predict essential proteins.
One is the traditional biological experimental techniques, such as gene knockouts [4],
RNA interference [5], and conditional knockouts [6]. All of them are expensive and time-
consuming. Another is the computational approaches with the advantage of efficient and
low-cost owing to high throughput technologies, such as mass spectrometry analysis [7],
yeast two-hybrid system [8,9], and tandem affinity purification [10]. Many computational
approaches have been proposed from the network perspective to capture the relations
between network features and protein essentiality. If each protein is regarded as a node,
the protein–protein interaction (PPI) network can be understood by the concept of a
complex network. Complex network-related methods have long been used in PPI networks
studies [11–15].

In the current study of the PPI networks, an interesting finding uncovers that highly
connected proteins are more likely to be essential ones. This is called the centrality–lethality
rule. Accordingly, more and more research efforts focus on the correlations between PPI
network topological centrality and protein essentiality. Among them, a wealth of methods
have emerged, such as Degree Centrality (DC) [16,17], Subgraph Centrality (SC) [18], Be-
tweenness Centrality (BC) [19], Closeness Centrality (CloseC) [20], Clustering Coefficient
(ClusterC) [21], and Information Centrality (IC) [22]. Li et al. [23] proposed a local average
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connectivity (LAC) to identify essential proteins. Qi et al. [24] utilized the local interaction
density (LID) of the PPI network to predict essential proteins. The above methods provide
a new idea for predicting essential proteins. However, due to the high proportion of false
positives and false negatives in the PPI networks, they also have certain shortcomings.
Taking account of the defect of PPI networks, biological information of proteins should
also be considered, including protein complex information, gene expression data, orthol-
ogous protein information, subcellular localization information, and so on. Li et al. [25]
developed a PeC method that integrates PPI information (edge clustering coefficient) and
gene expression profiles (Pearson’s correlation coefficient of two interacting proteins) for
discovery of essential proteins. Lei et al. [26] designed a weighted PPI network by apply-
ing Hyperlink-Induced Top Search (HITS) for essential proteins mining. Ren et al. [27]
predicted essential proteins by incorporating PPI networks and protein-complex informa-
tion. Because essential proteins are usually interconnected, Peng et al. [28] introduced an
iterative method for identifying essential proteins based on orthology and PPI networks.
Recently, plenty of research has demonstrated that subcellular localization plays a key role
in predicting essential protein. Accordingly, Tang et al. [29] proposed a new method by
combing the subcellular localization information and PPI data. The experimental results
show that it raises the recognition accuracy of essential proteins.

In Ref. [30], Song et al. reported that PPI networks are a fractal network and therefore
possesses topological self-similarity [31]. This provides a theoretical basis for predicting
essential proteins according to the fractal dimension of the PPI network. A large number
of fractal dimension algorithms have been put forward, for instance, box-covering algo-
rithm [32], ball-covering algorithm [33], and edge-covering box-counting algorithm [34], to
be used to analyze various complex networks in the real world. However, the algorithms
mentioned are all aimed at the global fractal structure of complex networks but ignore
the characterization of every node. To make up for this defect, Filipi et al. [35] proposed
the local fractal dimension (LFD) of complex networks and apply it to analyze two power
grid networks. They found that nodes with high LFD are mostly the topological center
of networks.

In this paper, we first develop a new LFD combing with an idea of the fuzzy set, which
is called the local fuzzy fractal dimension (LFFD). Compared with the LFD, the LFFD
can accurately reflect the role of nodes in the networks. Next, we obtain the subcellular
location information of essential and non-essential proteins of Saccharomyces cerevisiae.
Then, the subcellular compartment score can be determined using the Bayes formula. Next,
combining the LFFD and the subcellular compartment score, we present a so-called LDS
algorithm to predict the essential proteins. Three PPI datasets are employed to test our
algorithm. On the same datasets, nine existing methods are used for comparison. The
result shows that LDS brings the best result.

2. Methods
2.1. Local Fractal Dimension

A protein–protein interaction (PPI) network is generally denoted as an undirected
network G = (V, E), which is composed of node set V and an edge set E. Each node v ∈ V
represents a protein, each edge (u, v) ∈ E represents an interaction between protein u and
protein v.

It is widely known that most real-world networks obey the power-law distribution. In
Ref. [31], the authors show that the distribution of the PPI network is also according to the
power law. According to the power law, Equation (1) holds for the PPI network,

Bv(r) = CrDv (1)

where Bv(r) is the total number of nodes in the sphere (including the boundary) with center
node v and topological radius r. r is taken from 1 to the farthest distance from node v to
others. Dv is the local fractal dimension (LFD) of node v, and C is constant. The fractal
dimension Dv can be calculated by the derivatives between the logarithm of Bv(r) and r, as
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follows. In general, one can obtain the Dv by calculating the fitting slope of the straight line
in the double-log of Bv(r) and r.

Dv =
d

d ln r
ln Bv(r) (2)

To visualize this process, we give an example as shown in Figure 1. The center node
(red circle) is v, from v to the nodes with r = 1 (dark yellow diamond) and thus Bv (1) = 6
(=1 + 5); from v to the nodes with r = 2 (green rectangular) and thus Bv (2) = 11 (=6 + 5);
from v to the nodes with r = 3 (blue triangle) and thus Bv (3) = 15 (=11 + 4); and from v
to the nodes with r = 4 (black pentagon) and thus Bv (4) = 19 (=15 + 4). As calculated by
Equation (2), the value of Dv is 0.8295.
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Figure 1. A simple example of calculating a local fractal dimension. The left is the network structure
diagram. The right is the double-log plot between the Bv(r) and r.

2.2. Local Fuzzy Fractal Dimension

In the calculation of the local fractal dimension, the nodes with a topological distance
equal to or less than r are considered equally important. However, the distribution of these
nodes is usually different and should not be treated equally. The closer to the center node,
the greater the contribution to the center node. By this token, the local fractal dimension Dv
cannot truly describe the self-similarity of the PPI network. Here, we propose a method to
calculate local fuzzy fractal dimension (LFFD) inspired by the concept of fuzzy set. In this
method, the Gaussian membership function is employed to distinguish the contribution of
different nodes to the center node. The LFFD is defined as

D f (v) =
d

d ln r
ln Nv(r) (3)

where Df(v) denotes the LFFD of node v, Nv(r) is the fuzzy value of the center node v and r
is the topological radius. They are determined by

Avj(r) = e−
d2

vj
2r2 (4)

Nv(r) =
∑ Avj(r)

N
(5)

where dvj is the shortest distance between node v and node j, Avj (r) is the Gaussian
membership function value when dvj is less than or equal to r, and N is the total number of
nodes whose shortest distance to the central node v is less than or equal to r. Taking r from
1 to the farthest distance from node v to others in the PPI network, the corresponding Nv(r)
is determined by averaging the membership value over the N nodes. Like the calculation
process of Dv, Df(v) can be calculated by the fitting slope of the straight line in the log-log
plot between the Nv(r) and r.
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To show this method clearer, we take a well-known kite network as an example. In
Figure 2, node 7 is the selected central node, and r is 1 to 4. The calculation of Nv(r) is
shown as follows.

N7(1) =
1
7

7

∑
i=1

e−
d2

i7
2×1 =

1
7

(
6e−

1
2 + e0

)
= 0.6627

N7(2) =
1
8

8

∑
i=1

e−
d2

i7
2×4 =

1
8

(
6e−

1
8 + e0 + e−

1
2

)
= 0.8627

N7(3) =
1
9

9

∑
i=1

e−
d2

i7
2×9 =

1
9

(
6e−

1
2×9 + e0 + e−

4
2×9 + e−

9
2×9

)
= 0.8981

N7(4) =
1

10

10

∑
i=1

e−
d2

i7
2×16 =

1
10

(
6e−

1
2×16 + e0 + e−

4
2×16 + e−

9
2×16 + e−

16
2×16

)
= 0.9059
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Figure 2. An example of calculating LFFD. The left is the kite network structure diagram. The right is
the double-log plot between the Nv(r) and r.

Therefore, according to Equation (3), the LFFD of node 7 is 0.2312.

2.3. Subcellular Compartment Score

The scholars point out that subcellular location information has been widely exploited
in the prediction of essential proteins [36]. We download the subcellular location data of
Saccharomyces cerevisiae from the COMPARTMENTS database [37], which is classified
into 11 different subcellular compartments, namely Cytoskeleton, Cytosol, Endoplasmic
Reticulum, Endosome, Extracellular space, Golgi apparatus, Mitochondrion, Nucleus,
Peroxisome, Plasma membrane, and Vacuole. By collecting from MIPS [38], SGD [39],
DEG [40], and SGDP, we obtain a list of known 1285 essential proteins and 4394 non-
essential proteins of Saccharomyces cerevisiae.

By analyzing the subcellular location data of identified essential and non-essential
proteins, we develop a new evaluation strategy to obtain the subcellular compartment score,
which is the probability that proteins in a subcellular compartment are potentially essential
proteins. Firstly, we calculate the probability that the protein appears at each subcellular
compartment in all 5679 (=1285 + 4394) protein data, which is defined as follows:

P(Ci) = P(E)P(Ci|E) + P(NE)P(Ci|NE) (6)

where Ci is the subcellular compartment with i from 0 to 10 and P(Ci) is the probability
that protein appears at Ci. P(E) is the probability of essential proteins in 5679 proteins
data, and P(Ci|E) is the conditional probability, which indicates the probability that protein
appears at Ci in 1285 essential proteins. P(NE) is the probability of non-essential proteins
in 5679 protein data, and P(Ci|NE) indicates the probability that protein appears at Ci in
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4394 non-essential proteins. Then, the Bayes formula is employed to obtain the subcellular
compartment score,

P(E|Ci) =
P(E)P(Ci|E)

P(Ci)
(7)

where P(E|Ci) is the score of compartment Ci, indicating the probability that the pro-
tein appearing at Ci is an essential protein. According to the above method, the score
of 11 subcellular compartments can be calculated. Finally, we count the subcellular com-
partment score of each protein in the PPI network. For some proteins, we compute the
average value in the case of their subcellular location information containing multiple
compartments, which is determined by

SCS(v) =
1
N ∑

v∈Ci

P(E|Ci) (8)

where N is the subcellular compartment number of node v. SCS(v) is the final subcellular
compartment score of node v. SCS(v) is set to 0 when the subcellular compartment of node
v is null.

2.4. LDS Algorithm

The local fuzzy fractal dimension describes the topological feature of the PPI network,
while the subcellular location information characterizes the biological information of the
PPI network. To comprehensively assess the essentiality of every protein, we combine
the above two characteristics to acquire the final value of each protein by using the LDS
algorithm. The final value of protein v is defined as LDS(v), which is defined by

LDS(v) = α× ND f (v) + (1− α)× SCS(v) (9)

where NDf(v) is the Min-Max normalization result of Df(v), and α is the parameter within
the range (0, 1). If α is equal to 1, the LDS(v) only depends on the topological feature, and
the LDS(v) is only determined by the biological information in the case of α = 0. All proteins
in the PPI network are ranked in descending order of LDS value.

3. Results and Discussion
3.1. Experimental Data

As mentioned above, the PPI network of Saccharomyces cerevisiae (yeast) has been
widely used in studying essential proteins. In this work, we also use it to perform our
experiment. Our PPI datasets were downloaded from the DIP database [41] and the MIPS
database. After removing self-interactions and repeated interactions, we constructed three
PPI datasets. They are the first dataset DIP4746 with 4746 proteins and 15,166 interactions
from the DIP database, the second dataset DIP5093 with 5093 proteins and 24,743 inter-
actions from the DIP database, and the third dataset MIPS4546 with 4546 proteins and
12,319 interactions from the MIPS database, respectively. In addition, we queried the essen-
tial and non-essential proteins and subcellular location information in each dataset. For
the sake of discussion, we include the unknown proteins as non-essential proteins. More
details are listed in Table 1.

Table 1. The information of the experimental data.

Datasets Proteins Interactions Essential
Proteins

Non-Essential
Proteins

DIP4746 4746 15,166 1130 3616
DIP5093 5093 24,743 1167 3926

MIPS4546 4546 12,319 1016 3530
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3.2. Performance of the LDS Algorithm

To demonstrate the performance of the LDS algorithm, we selected the top1000 to
top1500 with step size 100 as the essential candidates by ranking proteins in descending
order of the LDS value. Then, we checked the candidates with the collection of essential
proteins mentioned in Section 2.3. As a comparison, the results obtained from the LDS and
other nine traditional prediction methods, namely, DC, SC, BC, CloseC, ClusterC, IC, LAC,
PeC, and LID, are shown in Figures 3–5, respectively.

Figure 3. Comparison of the number of essential proteins predicted by LDS and other methods for
dataset DIP4746. (a–f) are for the top 1000~1500, respectively.

Figure 4. Comparison of the number of essential proteins predicted by LDS and other methods for
dataset DIP5093. (a–f) are for the top 1000~1500, respectively.
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Figure 5. Comparison of the number of essential proteins predicted by LDS and other methods for
dataset MIPS4546. (a–f) are for the top 1000~1500, respectively.

From these figures, some findings can be concluded: (1) The nine compared methods
show different performance for the different datasets. For example, the methods LAC and
LID outperform other methods on the datasets DIP4746 and DIP5093; however, they have
mediocre performance on the dataset MIPS4546. The method PeC has the upper hand on
the dataset MIPS4546 but is inferior to most methods over the former two datasets. The
performance of the proposed LDS algorithm is quite stable. It showed the best performance
for the three considered datasets. (2) Our proposed LDS algorithm performs slightly better
for the dataset DIP4746 compared to other methods but is better than the others on the
latter two datasets, especially for dataset MIPS4546. These findings suggest that the LDS is
more suitable to predict essential proteins due to its high accuracy and robustness.

To further evaluate the performance of the proposed LDS algorithm comprehensively,
six evaluation indexes, namely sensitivity (SN), specificity (SP), positive predictive value
(PPV), negative predictive value (NPV), F-measure, and accuracy (ACC) are adopted here,
defined as in Equations (10)–(15):

SN =
TP

TP + FN
(10)

SP =
TN

TN + FP
(11)

PPV =
TP

TP + FP
(12)

NPV =
TN

TN + FN
(13)

F−measure =
2× SN × PPV

SN + PPV
(14)

ACC =
TP + TN

TP + TN + FP + FN
(15)

where TP is the number of essential proteins correctly predicted as essential proteins and
TN is the number of non-essential proteins correctly predicted as non-essential proteins. FP
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is the number of non-essential proteins incorrectly predicted as essential proteins, and FN
is the number of essential proteins incorrectly predicted as non-essential proteins.

To assess the effectiveness of the LDS algorithm and the other methods, we select the
top1500 of ranking results as essential proteins candidate set while the rest are categorized
as non-essential proteins candidate set. The compared results calculated by using the
LDS algorithm and the other nine methods on the three datasets are listed in Table 2. We
highlight the best result for each dataset. As expected, all the highlighted results come
from the LDS algorithm. It is confirmed again that LDS has a distinct advantage over
other methods.

Table 2. Comparisons of SN, SP, PPV, NPV, F-measure, and ACC between LDS with other methods
for three different PPI datasets. The bold is the best result.

Datasets Methods SN SP PPV NPV F-Measure ACC

DIP4746

DC 0.5469 0.7561 0.412 0.8423 0.470 0.7063
SC 0.500 0.7414 0.3767 0.8259 0.4297 0.6839
BC 0.4681 0.7315 0.3527 0.8148 0.4023 0.6688

CloseC 0.4611 0.7293 0.3473 0.8124 0.3962 0.6654
ClusterC 0.5336 0.7519 0.402 0.8376 0.4586 0.700

IC 0.5478 0.7564 0.4127 0.8426 0.4707 0.7067
LAC 0.5451 0.7555 0.4107 0.8417 0.4684 0.7054
PeC 0.4717 0.7326 0.3553 0.8161 0.4053 0.6705
LID 0.554 0.7583 0.4173 0.8447 0.4760 0.7097
LDS 0.5673 0.7624 0.4273 0.8494 0.4875 0.716

DIP5093

DC 0.4901 0.7636 0.3813 0.8344 0.4289 0.701
SC 0.4559 0.7534 0.3547 0.8233 0.399 0.6853
BC 0.4165 0.7417 0.324 0.8105 0.3645 0.6672

CloseC 0.4422 0.7494 0.344 0.8188 0.387 0.679
ClusterC 0.4773 0.7598 0.3713 0.8302 0.4177 0.6951

IC 0.4876 0.7629 0.3793 0.8336 0.4267 0.6998
LAC 0.5193 0.7723 0.404 0.8439 0.4544 0.7143
PeC 0.4619 0.7552 0.3593 0.8252 0.4042 0.688
LID 0.5261 0.7743 0.4093 0.8461 0.4604 0.7175
LDS 0.5467 0.7804 0.4253 0.8528 0.4784 0.7269

MIPS4546

DC 0.4242 0.6972 0.2873 0.8079 0.3426 0.6362
SC 0.2776 0.655 0.188 0.759 0.2242 0.5706
BC 0.3917 0.6878 0.2653 0.7971 0.3164 0.6216

CloseC 0.2825 0.6564 0.1913 0.7607 0.2281 0.5728
ClusterC 0.4242 0.6972 0.2873 0.8079 0.3426 0.6361

IC 0.3858 0.6861 0.2613 0.7951 0.3116 0.619
LAC 0.4242 0.6972 0.2873 0.8079 0.3426 0.6362
PeC 0.4232 0.6969 0.2867 0.8076 0.3418 0.6357
LID 0.4311 0.6992 0.292 0.8102 0.3482 0.6392
LDS 0.5719 0.7397 0.3873 0.8572 0.4618 0.7022

3.3. Influence of the Parameter α

As shown in Equation (9), the parameter α (∈[0, 1]) is a weight value in the proposed
LDS algorithm, which is used to balance the topological structure and biological infor-
mation. Larger α means that the weight of fractal structure is greater. To illustrate how
the α affects the result in the prediction of essential proteins, we changed the α in the
range of [0, 1] with step size of 0.1 and redo our experiment reported in Section 3.2. The
results are shown in Figure 6. We find that the prediction results depend greatly on α.
Specifically, for the datasets DIP4746 and DIP5093, the best results are obtained from α
taking 0.4~0.5, which suggests that both topological features and biological information
are almost equally important for predicting the essential proteins in those two datasets.
However, for the dataset MIPS4546, the optimum α that brings the best result is on the
platform of 0~0.2, indicating that biological information is the main factor affecting the
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prediction of essential proteins. A potential reason for the difference of parameter values
may be that Saccharomyces cerevisiae (yeast) datasets downloaded from different protein
database websites have distinct topological features.

Figure 6. Number of essential proteins predicted by LDS in top1000–1500 for three datasets with
different parameter α.

4. Conclusions

The prediction of essential proteins is an effective way to reveal the molecular mecha-
nisms of cellular life. Based on the combination of the topological feature and biological
information of the PPI network, we developed a novel LDS algorithm to predict essential
proteins in this research. To investigate the performance of our proposed algorithm, we
carried out several experiments on the three PPI datasets. The experiment results on the
three datasets of Saccharomyces cerevisiae confirm that the LDS outperforms the other
nine existing methods, namely DC, SC, BC, CloseC, ClusterC, IC, LAC, PeC, and LID. Six
statistical indicators verify its advantage comprehensively.

In summary, this work is a primary attempt of the leading fractal nature of PPI to the
prediction of essential proteins. The results suggest that it is significant to predict essential
proteins by feature fusion. In a future study, we will focus on how to merge different
features to improve prediction accuracy.
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