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The major interest domains of single-cell RNA sequential analysis are identification of
existing and novel types of cells, depiction of cells, cell fate prediction, classification of
several types of tumor, and investigation of heterogeneity in different cells. Single-cell
clustering plays an important role to solve the aforementioned questions of interest. Cluster
identification in high dimensional single-cell sequencing data faces some challenges due to
its nature. Dimensionality reduction models can solve the problem. Here, we introduce a
potential cluster specified frequent biomarkers discovery framework using dimensionality
reduction and hierarchical agglomerative clustering Louvain for single-cell RNA
sequencing data analysis. First, we pre-filtered the features with fewer number of cells
and the cells with fewer number of features. Then we created a Seurat object to store data
and analysis together and used quality control metrics to discard low quality or dying cells.
Afterwards we applied global-scaling normalization method “LogNormalize” for data
normalization. Next, we computed cell-to-cell highly variable features from our dataset.
Then, we applied a linear transformation and linear dimensionality reduction technique,
Principal Component Analysis (PCA) to project high dimensional data to an optimal low-
dimensional space. After identifying fifty “significant”principal components (PCs) based on
strong enrichment of low p-value features, we implemented a graph-based clustering
algorithm Louvain for the cell clustering of 10 top significant PCs. We applied our model to
a single-cell RNA sequential dataset for a rare intestinal cell type in mice (NCBI accession
ID:GSE62270, 23,630 features and 1872 samples (cells)). We obtained 10 cell clusters
with a maximum modularity of 0.885 1. After detecting the cell clusters, we found
3871 cluster-specific biomarkers using an expression feature extraction statistical tool
for single-cell sequencing data, Model-based Analysis of Single-cell Transcriptomics
(MAST) with a log 2FC threshold of 0.25 and a minimum feature detection of 25%.
From these cluster-specific biomarkers, we found 1892 most frequent markers,
i.e., overlapping biomarkers. We performed degree hub gene network analysis using
Cytoscape and reported the five highest degree genes (Rps4x,Rps18,Rpl13a, Rps12 and
Rpl18a). Subsequently, we performed KEGG pathway and Gene Ontology enrichment
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analysis of cluster markers using David 6.8 software tool. In summary, our proposed
framework that integrated dimensionality reduction and agglomerative hierarchical
clustering provides a robust approach to efficiently discover cluster-specific frequent
biomarkers, i.e., overlapping biomarkers from single-cell RNA sequencing data.

Keywords: single-cell sequencing data analysis, dimensionality reduction, principal component analysis(PCA),
agglomerative hierarchical clustering, modularity optimization, cluster specified biomarkers

1 INTRODUCTION

Single-cell RNA sequencing (scRNAseq) technology plays a vital
role in medical fields such as oncology, digestive and urinary
systems, microbiology, neurology, reproduction, and
immunology (Tang et al., 2019). For identifying the genome,
transcriptome single-cell RNA sequencing technology may be
used. Additionally, it can obtain other multi-omics information
to disclose the differences in cell populations and evolutionary
relationships among cells. However, there are some limitations in
traditional sequencing technology. For example, it can only find
the average of many cells, and it fails to analyze a few cells.
Traditional sequencing technology invokes the probability of
losing cellular heterogeneity information, a problem which is
overcome by single-cell RNA sequencing technology, since it can
detect heterogeneity among individual cells. The workflow of
single-cell sequencing involves isolating a single cell from a group
of cells, studying cell heterogeneity, molecular mapping, and
tracking immune infiltration and epigenetic changes. The
ongoing research interests on single-cell sequential analysis
includes identification of existing and novel types of cells,
depiction of cells, cell fate prediction, classification of several
types of tumor, investigation of heterogeneity in different cells
(Huh et al., 2020). Single-cell clustering plays a crucial role in
conducting such analysis. In single-cell sequencing analysis, cell
clustering is required for detection and examination of cluster-
specific gene signatures, reconciliation of cell type configuration
to mark the gene signature as differentially expressed, and
simplification of the bulk RNA-seq expression data by
removing noise. Due to its importance, many scRNA-seq
clustering methods are available in scientific literature.
However, different clustering methods employs distinct
strategies to improve the accuracy of clustering results, such
as, importing various types of distance metrics, and using
different techniques for dimension reduction and calculating
number of clusters. Every clustering method has its own
strengths as well as its drawbacks. For cell clustering, it is
recommended to use two or more clustering techniques to
increase accuracy and comprehensive overviews. However, it is
critical to select the best clustering method, especially when
cluster labels are unknown. In 2020, Huh et al. (2020)
provided a mixture model based probabilistic framework for
single cell clustering by deploying multiple clustering methods
or aggregate clustering like t-SNE + k-means with ADPclust, an
automated method capable of computing number of clusters and
centroids of clusters. The authors claimed that their model has
improved clustering performance for labeling individual single-
cells, as well as the accurate estimation of number of clusters.

However, their method faces several analytical and technical
challenges in the analysis of large-scale single cell data due to
high dimensionality, sparse matrix computation, and rare cell
detection (Feng et al., 2020). Specifically, the high dimensionality
and sparse matrix creates the curse of dimensionality. As a result,
several techniques like quality control, mapping, quantification,
dimensionality reduction, clustering, finding trajectories, and
identifying differentially expressed genes etc. needs to be
included for the computational analysis of scRNA-seq data.
The two most important techniques among these are
dimensionality reduction and clustering, which play effective
roles on downstream analysis.

Cluster identification in high dimensional single-cell
sequencing data struggles with high dimensionality. To solve
this problem and other undesirable properties of high-
dimensional space, dimensionality reduction models in various
research fields are needed. Unsupervised dimensionality
reduction methods are efficient to discover natural grouping of
a set of samples in high-dimensional feature space. The k-means
algorithm, a renowned widely clustering algorithm in data
mining (Wu et al., 2008), is used in the Monocle scRNA-seq
toolkit (Qiu et al., 2017). BackSPIN (Zeisel et al., 2015) and
pcaReduce (Zurauskiene and Yau, 2016) are an extension of
hierarchical clustering by importing the mechanism of dimension
reduction after each split or merge. This procedure improves the
accuracy of small size cluster identification. Two main categories
of dimensionality reduction are feature selection and extraction.
Feature selection involves selecting a subset of features from the
original dataset. Feature extraction derives information from the
original set of features and builds a new subspace of features.
Principal Component Analysis (PCA) is a commonly used
algorithm for unsupervised feature extraction. PCA is
normally applied on linear models which map high-
dimensional data to low dimensional space (Bartenhagen
et al., 2010).

In the last 2 decades, dimensionality reduction and clustering
has gathered increasing research interest for single-cell RNA
sequencing data analysis. In this article, we provide a
dimensionality reduction integrated clustering model for
detecting cluster-specific biomarkers in single-cell sequencing
data. We applied it in a single-cell RNA sequential dataset for
a rare intestinal cell type in mice (NCBI accession ID:GSE62270)
(Grün et al., 2015). We pre-filtered the features with fewer
number of cells and the cells with fewer number of features.
After that, we create a Seurat object to store data and analysis
together for the dataset. Then we use quality control metrics for
discarding low quality or dying cells. Subsequently, we applied
global-scaling normalization method “LogNormalize” for data
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normalization. Next, we compute cell-to-cell highly variable
features from our dataset and performed a linear
transformation and linear dimensionality reduction technique,
PCA to project high dimensional data to an optimal low-
dimensional space. After identifying fifty “significant” principal
components (PCs) based on strong enrichment of low p-value
features, we implemented a graph-based clustering on the cell of

top 10 “significant” PCs using the modularity optimization
agglomerative clustering algorithm, Louvain. After detecting
the cell clusters, we identified cluster-specific biomarkers using
an expression feature extraction statistical tool for single-cell
sequencing data, Model-based Analysis of Single-cell
Transcriptomics (MAST). We further performed degree hub
gene network analysis using Cytoscape and found the five top

FIGURE 1 | Flowchart of the proposed framework.
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degree markers (Rps4x, Rps18, Rpl13a, Rps12 and Rpl18a). After that,
we performed Gene Set Enrichment Analysis (GESA) to determine
enriched KEGG pathways and Gene Ontology (GO) terms including
Biological Process (BP), Cellular Component (CC), and Molecular
Function (MF) on the set of clusters specified markers using David
6.8 software tool (Dennis et al., 2003). In summary, our proposed
integrated framework using dimensionality reduction and
hierarchical agglomerative clustering efficiently discovers cluster-
specific frequent biomarkers, i.e. overlapping biomarkers from
single-cell RNA sequencing data.

2 MATERIALS AND METHODS

The steps of our proposed framework are demonstrated as follow,
as well as in Figure 1.

2.1 Data Collection
In this study, we used a single-cell RNA sequential dataset for the rare
intestinal cell type inmice (NCBI accession ID: GSE62270) which has
23,630 features and 1872 samples (cells) (Grün et al., 2015).

2.2 Preprocessing of Single-Cell RNA
Sequencing Data
In this article, we provided an extensive analysis by integrating
dimensionality reduction technique and clustering algorithm for
detecting cluster-specific frequent biomarkers in single-cell RNA
sequencing (scRNAseq) data. In the following subsections, we
describe procedures to preprocess a scRNA-seq dataset.

2.2.1 Data Preprocessing
Data preprocessing is an important step for further analysis. First,
we discarded features and cells that do not have minimum
number of cells and features respectively. Afterwards, we
created a Seurat object to store our data matrix, allowing us to
store both data (like input feature sample matrix) and analysis
(like PCA, or clustering results) together for a single-cell dataset
(Butler et al., 2018; Stuart et al., 2019a).

2.2.2 Compute Quality Control Metrics and Cell
Filtration
In this step, we explored QC metrics based on user defined
criteria for the selection and filtration of cells. We first filtered out
empty cells. Filtering low-quality or dying cells is an important
preprocessing strategy for scRNAseq data (Ilicic et al., 2016).
Generally, the cells having a few genes is considered low-quality
cells, or dying cells. Choosing appropriate thresholds to keep high
quality cells without removing biologically relevant cell types is an
important factor. We defined a threshold range (200–2,500) for a
number of unique features in a cell and filtered out the cells that
does not meet the criteria. To avoid removing biologically
relevant cell types, we computed mitochondrial QC metrics to
calculate the mitochondrial count percentage from the set of
features. We also defined an upper bound threshold for the
percentage of mitochondrial count (5%) and filtered out the
cells above the upper bound.

2.2.3 Data Normalization
After the cell filtration, data normalization was performed using
the global-scaling normalization method “LogNormalize” which
divides the specific feature counts of each cell by the total counts
of that cell and multiplies it by a scaling factor (104) and then
performs natural log-transformation. In scRNAseq context, a
Z-scoring metric indicates howmuch the frequency of one cell for
a given feature deviates from the mean of the frequencies of all
cells for that feature. It is Z-scores are calculated from the log-
normalized counts. Suppose, the transcription value Trijwhere i =
feature (gene) and j = cell. Let, Nj be the total counts for the cell j.
We can formulate this normalization procedure by log10
{(Trij/Nj)p10

4} for each feature i in respect to each cell j.

2.3 Highly Variable Features Identification
Next, we computed cell-to-cell highly variant features from our
dataset. The feature which are highly expressed in some cells and
lowly expressed in others cells is noted as “highly variable”
features. Such highly variable genes play an important role in
downstream analysis in single-cell datasets through highlighting
the biological signal (Brennecke et al., 2013). In this work, we used
a mean-variance relationship model, i.e., variance stabilizing
transformation (vst) to identify highly variable features (Stuart
et al., 2019b). Mean-variance relationship is inherent to scRNA-
seq. To determine this relationship from the data, first we
evaluated the means and variances of each feature. Afterwards,
to predict the variance of each feature as a function of its mean, we
fixed a curve and calculated a local fitting of polynomials of
degree 2. The global fit is defined by a regularized estimator of
variance, where the mean of a feature is already given. This may
be used for standardizing feature count, to prevent discarding
higher-than-expected variations. Since the expected variance is
already given, we define the transformation as,

yij � pij − �pi

σ i
(1)

where, yij is the standardized value of feature i in cell j and pij
denotes the raw value of feature i in cell j, pi is the mean value of
feature i and σi is the expected standard deviation of feature i
derived from the global mean-variance fit. In order to decrease
the effect of technical outliers, we fixed the maximum
standardized value as

��
M

√
, where M is the total number of

cells. The variances of standardized values across all cells are
computed for each feature. This variance constitutes a measure of
single cell dispersion after controlling for mean expression, which
helps us in ranking features. After ranking, we choose the 2,000
top features which have the highest standardized variance as
“highly variable” features.

2.4 Linear Transformation and Linear
Dimensionality Reduction
Linear dimensionality reduction is a keystone step for
downstream analysis of high dimensional data (Cunningham
and Ghahramani, 2015). Linear dimensionality reduction
methods accept high dimensional data as input and project
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them to an optimal low-dimensional space. There are various
methods that capture several feature interests like covariance,
dynamical structure, correlation between data sets, input-output
relationships, and margin between data classes etc. Feature
selection and feature extraction is a part of linear
dimensionality reduction. We used the well-known linear
dimensionality reduction technique, PCA which captures
covariance as feature interest. PCA selects and extracts data
based on increasing variance. The features with the maximum
variance are marked as “Principal Component”. Before applying
PCA, we performed a linear transformation to standardize the
data. As a result, weight was equally distributed which prevents
the highly-expressed features from being dominant. Then we
performed PCA technique on the scaled data and considered the
computed 2000 “highly variable” features as a feature subset. PCA
technique maximized interpretability and minimized
information loss simultaneously (Jolliffe and Cadima, 2016).
To determine the dimensionality of a dataset, we implemented
a resampling test through JackStraw procedure through which we
obtained a subset of the data. A random permutation (taken 1% as
default) and PCA were conducted on the subset. To construct a
null distribution of feature scores, we rerun the PCA technique
and repeats the procedure. Here, we identified fifty ‘significant’
principal components (PCs) based on a strong enrichment of low
p-value features (Macosko et al., 2015).

2.5 Cell Cluster
In this step, we applied graph-based clustering on our data and
considered the first 10 PCs for cluster analysis. First, we have
obtained a K-nearest neighbor (KNN) graph by the Euclidean
distance in PCA space. We calculated the edge weight between
two cells through the Jaccard similarity which is defined by shared
overlap between cells. Suppose, there are two cells C1 and C2,
Jaccard similarity is defined by

J C1, C2( ) � |C1 ∩ C2|
|C1 ∪ C2| × 100 (2)

Cells with maximum similar features have high Jaccard similarity
percentage.

Next, we applied modularity optimization agglomerative
clustering technique, Louvain algorithm (Blondel et al., 2008),
for cell clustering. Modularity is a strong QC step for community
detection (clustering), invented by M.E.J Newman in 2006
(Newman, 2006). The modularity of a graph partition is
measured by the comparison between the number of
interactions inside the clusters and the number of interactions
between clusters. The modularity value lies within the range
[-1,1]. The value of modularity (Q) is formulated by

Q � 1
2e

∑
i,j

Adjij − wiwj

2e
[ ]δ Cli, Clj( ) (3)

where, Adjij denotes weight of the edge between i and j of our
KNN graph, i.e. adjacency matrix, wi =∑jAdjij is the total weights
of the edges attached to vertex (here, cell) i, Cli is the cluster to
which cell i is assigned, δ-function is derived as δ(x.y) = 1 when
x = y, otherwise it is 0 and e � 1

2∑ijAdjij (Blondel et al., 2008).

The objective of modularity optimization is to maximize the
average modularity of computed clusters. Blondel et al. (2008)
(Blondel et al., 2008) developed a modularity optimization
algorithm, Louvain Algorithm. The prime workflow of this
method is executed in two phases, which are repeated
iteratively (Kirianovskii et al., 2016). In phase 1, they
maximized the local modularity by moving each node to
neighbor’s communities. In details, for each node i, authors
found the neighbors j of i and evaluated the modularity gain
of removing i from its assigned community and by assigning it in
the community (cluster) of j (Clj). The node i is placed in the
community (cluster) which gives maximum modularity gain.
Modularity gain should be positive. The Modularity gain ΔQ
is computed by

ΔQ �
∑

Clj,Clj

+ ∑
i,Clj

2e
−

∑
Clj

+∑
i

2e
⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠

2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
∑

Clj,Clj

2e
−

∑
Clj

2e
⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠

2

−
∑
i

2e
⎛⎜⎜⎝ ⎞⎟⎟⎠

2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where, ∑Clj,Clj denotes the weights sum of the links which lie in Clj,∑i,Clj refers the weights sum of the links from node i to nodes in Clj,∑Clj denotes the sum of the weights of the links incident to nodes in
Clj, ∑i refers the weights sum of the links incident to node i and e
denotes the sum of the weights of all the links in the graph.

When the modularity gain reaches local maximum, it is
proceeded to the next phase. In the second phase, authors built a
new network by assigning communities found in the first phase as
nodes and incorporating the fact that the weights of the links
between new nodes are nothing but weight sum of the links
between nodes of corresponding two communities. The Links
between nodes of a same community, are considered the self-
loops in the new network. Two steps are repeated until there are
no more variation in modularity gain and modularity maximum is
retained. We applied the community detection algorithm in our
work for clustering the cells by using R tool FindCluster () with the
parameter “resolution” for setting the granularity of downstream
analysis, which controls the number of clusters. Increasing the value
of resolution parameter, more clusters were found. According to the
benchmark, fixing this parameter to the range 0.4–1.2 typically
returns significant results for single-cell datasets containing around
3,000 cells. We also applied non-linear dimensional reduction
technique, Uniform Manifold Approximation and Projection
(UMAP), to visualize the similar cells of graph-based clusters in
low-dimensional space by considering the same number of PCs we
found during cluster analysis (Myasnikov, 2020).

2.6 Finding the Cluster-Specific Biomarkers
We describe how we found differentially expressed genes from
each cluster, i.e., detecting cluster specified biomarkers. For
detecting differentially expressed features (markers) we applied
commonly used distinct expression feature extraction statistical
tool for single-cell sequencing data, Model-based Analysis of
Single-cell Transcriptomics (MAST) (Finak et al., 2015). We
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FIGURE 2 | Visualize QC metrics as a violin plot.

FIGURE 3 | FeatureScatter plot to visualize feature-feature relationships.
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FIGURE 4 | Variable features with labels.

FIGURE 5 | DimPlot of two principal components (PC1 Vs PC2).
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considered each cluster as one group (Experimental Group) and
all rest clusters as another group (Control Group) and repeated
the procedure for all clusters to find differentially expressed genes
from each cluster. MAST modeled the gene expression matrix by
a two-part generalized regression model. To model the gene

expression rate, it developed logistic regression and to apply
condition on a cell expressing the gene, it used Gaussian
distribution model at the expression level (Finak et al., 2015).
MAST model is highly applicable in bimodal expression
distributions where expression is either strongly non-zero or

FIGURE 6 | DimHeatMap for principal components. (A) DimHeatMap for first principal component. (B) DimHeatMap for fifteen principal components.

FIGURE 7 | Visualization of strong enrichment of features with low p-values.
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non-detectable (Dal Molin et al., 2017). MAST model is
developed by (Finak et al., 2015). The authors denoted Y =
[Yig] as the rate of expression and the level of expression for
an independent gene g and cell i. They used an indicator Z = [zig]
to indicate whether the gene g is expressed in the cell i or not
(i.e., zig = 0 if yig = 0 and zig = 1 if yig > 0). The Authors formulated
a logistic regression model for the discrete variable Z and a
Gaussian linear model for the continuous variable (Y|Z = 1) as
follow (Finak et al., 2015; Dal Molin et al., 2017):

logit Pr Zig � 1( )( ) � Xiβ
D
g (5)

Pr � Yig � y|Zig � 1( ) � N Xiβ
C
g , σ

2
g( ) (6)

Xi is the design matrix. Fraction of genes being expressed and
detectable in each cell, is termed as cellular detection rate (CDR).
The CDR for cell i is formulated as:

CDRi � 1
N

∑N
g�1

zig (7)

CDR variability is modelled by a covariate variable (a column in
the design matrix Xi), in the discrete and continuous models.
CDR covariate is important because the discrete analog of global
normalization, which can detect genuine gene co-expression by
decreasing background correlation between features.N is the total
number of genes in a cell. The parameters of this model are fitted
by an empirical Bayesian framework that improves the inference
for genes with sparse expression. Likelihood ratio test is used for

testing differential expression. β is the likelihood estimator, σ
denotes variance.

In our method, besides MAST model, we set the logarithm of
fold change with base 2 (log 2FC) threshold (which measure how
much a feature to be differentially expressed) to 0.25 and
considered the up-regulated differentially expressed genes of
all clusters as markers. Simultaneously, we set another
parameter min.pct to 0.25, which holds a minimum
percentage of a feature detection in either of the two groups,
Control group and Experimental group, (i.e., 25%). We detected
cluster-specific biomarkers based on p-value and Bonferroni
corrected adjusted p-value, which is called as False Discovery
Rate (FDR). Our main goal was to find frequent cluster markers,
which are overlapping markers.

2.7 Hub Gene Finding
In the next step, we applied Spearman’s correlation analysis on
the cluster-specific and most frequent biomarkers identified by
our method. This step aims to obtain the active edges among
genes having correlation value ≥ 0.5 or ≤ − 0.5. After obtaining
the set of active edges, we performed degree centrality analysis
through Cytoscape online tool (Shannon et al., 2003) and
determined degree scores for each marker. We marked top 20
markers (hubs) by degree.

2.8 Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GESA) is used to assess the
potential function, biological significance, and disease

FIGURE 8 | Visualization of clusters.
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TABLE 1 | Top 30 cluster specified frequent biomarkers.

Marker namea Frequency Specified clusters FDR

Atp5j2 5
10

Group1: Cluster0 vs. Group2: Rest all clusters 1.82 × 10–06

Group1: Cluster1 vs. Group2: Rest all clusters 7.12 × 10–03

Group1: Cluster3 vs. Group2: Rest all clusters 2.49, ×, 10–07

Group1: Cluster6 vs. Group2: Rest all clusters 1.00, ×, 10–00

Group1: Cluster7 vs. Group2: Rest all clusters 1.00, ×, 10–00

ERCC_00009 5
10

Group1: Cluster2 vs. Group2: Rest all clusters 8.69, ×, 10–28

Group1: Cluster3 vs. Group2: Rest all clusters 2.08 × 10–02

Group1: Cluster6 vs. Group2: Rest all clusters 4.82 × 10–05

Group1: Cluster7 vs. Group2: Rest all clusters 3.24 × 10–01

Group1: Cluster8 vs. Group2: Rest all clusters 1.14 × 10–04

Nedd4 5
10

Group1: Cluster0 vs. Group2: Rest all clusters 1.07 × 10–8

Group1: Cluster3 vs. Group2: Rest all clusters 3.45 × 10–07

Group1: Cluster4 vs. Group2: Rest all clusters 2.29, ×, 10–04

Group1: Cluster5 vs. Group2: Rest all clusters 6.97 × 10–01

Group1: Cluster9 vs. Group2: Rest all clusters 4.97 × 10–03

Abhd17a 4
10

Group1: Cluster1 vs. Group2: Rest all clusters 6.52 × 10–02

Group1: Cluster2 vs. Group2: Rest all clusters 4.45 × 10–05

Group1: Cluster6 vs. Group2: Rest all clusters 1.00, ×, 10–00

Group1: Cluster7 vs. Group2: Rest all clusters 8.31 × 10–02

Actn1 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 1.29, ×, 10–02

Group1: Cluster4 vs. Group2: Rest all clusters 1.50, ×, 10–06

Group1: Cluster5 vs. Group2: Rest all clusters 8.56 × 10–05

Group1: Cluster9 vs. Group2: Rest all clusters 8.12 × 10–05

Arpc1b 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 1.04 × 10–05

Group1: Cluster1 vs. Group2: Rest all clusters 3.00, ×, 10–04

Group1: Cluster3 vs. Group2: Rest all clusters 1.69, ×, 10–05

Group1: Cluster8 vs. Group2: Rest all clusters 4.63 × 10–03

Atp5b 4
10

Group1: Cluster0 Vs Group2: Rest all clusters 7.59, ×, 10–11

Group1: Cluster3 vs. Group2: Rest all clusters 2.34 × 10–05

Group1: Cluster6 vs. Group2: Rest all clusters 9.96 × 10–05

Group1: Cluster7 vs. Group2: Rest all clusters 1.00, ×, 10–04

B2m 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 6.49, ×, 10–15

Group1: Cluster1 vs. Group2: Rest all clusters 1.14 × 10–15

Group1: Cluster3 vs. Group2: Rest all clusters 8.88 × 10–11

Group1: Cluster9 Vs Group2: Rest all clusters 5.56 × 10–03

B4galnt2 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 9.46 × 10–16

Group1: Cluster1 vs. Group2: Rest all clusters 9.37 × 10–04

Group1: Cluster3 vs. Group2: Rest all clusters 1.41 × 10–02

Group1: Cluster4 vs. Group2: Rest all clusters 5.64 × 10–07

Calm1 4
10

Group1: Cluster1 vs. Group2: Rest all clusters 6.53 × 10–18

Group1: Cluster3 vs. Group2: Rest all clusters 8.54 × 10–04

Group1: Cluster5 vs. Group2: Rest all clusters 1.28 × 10–05

Group1: Cluster9 vs. Group2: Rest all clusters 1.65 × 10–01

Cox5b 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 1.72 × 10–14

Group1: Cluster3 vs. Group2: Rest all clusters 9.78 × 10–07

Group1: Cluster6 vs. Group2: Rest all clusters 5.75 × 10–01

Group1: Cluster7 vs. Group2: Rest all clusters 1.18 × 10–03

Dhcr24 4
10

Group1: Cluster1 vs. Group2: Rest all clusters 3.35 × 10–10

Group1: Cluster6 vs. Group2: Rest all clusters 3.83 × 10–03

Group1: Cluster7 vs. Group2: Rest all clusters 1.15 × 10–04

Group1: Cluster8 vs. Group2: Rest all clusters 4.44 × 10–01

Dpysl2 4
10

Group1: Cluster4 vs. Group2: Rest all clusters 3.26 × 10–05

Group1: Cluster5 vs. Group2: Rest all clusters 2.29, ×, 10–05

Group1: Cluster8 vs. Group2: Rest all clusters 8.48 × 10–08

Group1: Cluster9 vs. Group2: Rest all clusters 6.19, ×, 10–01
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TABLE 1 | (Continued) Top 30 cluster specified frequent biomarkers.

Marker namea Frequency Specified clusters FDR

Dst 4
10

Group1: Cluster1 vs. Group2: Rest all clusters 1.34 × 10–06

Group1: Cluster5 vs. Group2: Rest all clusters 8.44 × 10–03

Group1: Cluster8 vs. Group2: Rest all clusters 4.38 × 10–03

Group1: Cluster9 vs. Group2: Rest all clusters 3.29, ×, 10–02

Eef1a1 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 2.84 × 10–36

Group1: Cluster4 vs. Group2: Rest all clusters 1.85 × 10–03

Group1: Cluster5 vs. Group2: Rest all clusters 4.43 × 10–02

Group1: Cluster9 vs. Group2: Rest all clusters 6.96 × 10–01

ERCC_00003 4
10

Group1: Cluster1 vs. Group2: Rest all clusters 8.53 × 10–07

Group1: Cluster2 vs. Group2: Rest all clusters 6.58 × 10–10

Group1: Cluster3 vs. Group2: Rest all clusters 3.11 × 10–07

Group1: Cluster8 vs. Group2: Rest all clusters 4.55 × 10–19

ERCC_00043 4
10

Group1: Cluster1 vs. Group2: Rest all clusters 3.14 × 10–09

Group1: Cluster2 vs. Group2: Rest all clusters 4.50, ×, 10–10

Group1: Cluster3 vs. Group2: Rest all clusters 5.90, ×, 10–03

Group1: Cluster8 vs. Group2: Rest all clusters 2.37 × 10–27

ERCC_0007 4
10

Group1: Cluster1 vs. Group2: Rest all clusters 1.04 × 10–06

Group1: Cluster2 vs. Group2: Rest all clusters 7.88 × 10–02

Group1: Cluster3 vs. Group2: Rest all clusters 9.58 × 10–12

Group1: Cluster8 vs. Group2: Rest all clusters 6.17 × 10–18

Fdps 4
10

Group1: Cluster1 vs. Group2: Rest all clusters 4.45 × 10–04

Group1: Cluster2 vs. Group2: Rest all clusters 6.28 × 10–01

Group1: Cluster6 vs. Group2: Rest all clusters 1.91 × 10–08

Group1: Cluster7 vs. Group2: Rest all clusters 8.40, ×, 10–05

Glud1 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 9.60, ×, 10–05

Group1: Cluster3 vs. Group2: Rest all clusters 3.21 × 10–01

Group1: Cluster5 vs. Group2: Rest all clusters 2.70, ×, 10–11

Group1: Cluster9 vs. Group2: Rest all clusters 2.21 × 10–07

Hsp90b1 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 2.48 × 10–03

Group1: Cluster4 vs. Group2: Rest all clusters 8.20, ×, 10–04

Group1: Cluster5 vs. Group2: Rest all clusters 7.20, ×, 10–01

Group1: Cluster9 vs. Group2: Rest all clusters 3.15 × 10–06

Malat1 4
10

Group1: Cluster1 vs. Group2: Rest all clusters 2.38 × 10–12

Group1: Cluster2 vs. Group2: Rest all clusters 1.91 × 10–02

Group1: Cluster5 vs. Group2: Rest all clusters 2.98 × 10–06

Group1: Cluster9 vs. Group2: Rest all clusters 2.76 × 10–07

Rpl17 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 1.34 × 10–39

Group1: Cluster3 vs. Group2: Rest all clusters 1.00, ×, 10–00

Group1: Cluster4 vs. Group2: Rest all clusters 1.16 × 10–02

Group1: Cluster9 vs. Group2: Rest all clusters 8.70, ×, 10–01

Rpl4 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 3.65 × 10–35

Group1: Cluster3 vs. Group2: Rest all clusters 7.05 × 10–02

Group1: Cluster4 vs. Group2: Rest all clusters 9.36 × 10–03

Group1: Cluster9 vs. Group2: Rest all clusters 1.00, ×, 10–00

Rpl7 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 5.36 × 10–29

Group1: Cluster4 vs. Group2: Rest all clusters 3.64 × 10–01

Group1: Cluster6 vs. Group2: Rest all clusters 3.68 × 10–01

Group1: Cluster9 vs. Group2: Rest all clusters 1.00, ×, 10–00

Rps6 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 1.39, ×, 10–29

Group1: Cluster4 vs. Group2: Rest all clusters 5.02 × 10–03

Group1: Cluster6 vs. Group2: Rest all clusters 1.00, ×, 10–00

Group1: Cluster9 vs. Group2: Rest all clusters 3.52 × 10–01

Sox9 4
10

Group1: Cluster0 Vs Group2: Rest all clusters 3.56 × 10–06

Group1: Cluster4 vs. Group2: Rest all clusters 1.63 × 10–10

Group1: Cluster5 vs. Group2: Rest all clusters 1.81 × 10–01

Group1: Cluster9 vs. Group2: Rest all clusters 1.19, ×, 10–03
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relevance of a list of signature genes. After detecting cluster-
specific biomarkers and differentially expressed genes, we used
KEGG pathways and Gene Ontology (GO) annotations (three
domains: Biological Process (BP), Cellular Component (CC), and
Molecular Function (MF)) by DAVID 6.8 software (Dennis et al.,
2003). We obtained all KEGG pathways and Gene Ontology
(GO) terms along with the number of genes in that pathway
or GO-term, enriched adjusted p-value and FDR. We kept
KEGG pathways or GO terms whose FDR were less than or
equal to 0.05.

3 RESULT AND DISCUSSION

In this study, we used a single-cell RNA sequential dataset for
the rare intestinal cell type in mice (GEO ID: GSE62270) which

has 23,630 features and 1872 samples. We preprocessed our
scRNA-seq data for further analysis. We first filtered out
features that have less than three cells and cells that have
less than 200 features and stored the resulted dataset as a
Seurat object. The resulted dataset contained 15,235 features
and 1644 samples. We followed some quality control (QC)
metrics to filter out low-quality or dying cells which create
mitochondrial pollution. We also calculated QC metrics with
PercentageFeatureSet function, a function that can compute
the percentage of mitochondrial feature count from a set of all
types of features. Here we considered a set of all genes starting
with “MT” as the set of mitochondrial genes. We filtered out
the cells which have unique feature counts over 2,500 or less
than 200 and the cells that have mitochondrial features count
over 5%. After these preprocessing steps, our dataset contained
818 cells (samples) with 15,235 features. Figure 2 visualizes

TABLE 2 | Top 20 hub genes ranked by degree centrality.

Gene symbol Degree Average
shortest

path length

Betweenness
centrality

Closeness
centrality

Clustering
coefficient

Rps4x 32 1.800 0.056 0.556 0.536
Rps18 32 1.861 0.065 0.537 0.566
Rpl13a 31 1.877 0.021 0.533 0.596
Rps12 29 1.892 0.018 0.528 0.640
Rpl18a 29 1.923 0.012 0.520 0.662
Gnb2l1 29 1.923 0.036 0.520 0.589
Rps8 28 1.862 0.034 0.537 0.600
Rps7 28 1.661 0.099 0.602 0.587
Rpl23 28 1.646 0.170 0.607 0.582
Rpl39 27 1.877 0.032 0.533 0.587
Rps17 25 1.985 0.008 0.504 0.740
Rps6 24 1.923 0.018 0.520 0.677
Rps9 24 2.000 0.011 0.500 0.688
Rpl3 23 2.015 0.005 0.496 0.794
Rpl7 23 1.969 0.010 0.508 0.735
Eef1a1 22 1.785 0.142 0.560 0.420
Gm13826 22 2.046 0.004 0.489 0.770
Rplp1 22 2.323 0.007 0.430 0.675
Gm6402 21 2.000 0.018 0.500 0.628
Rplp0 21 2.338 0.008 0.428 0.652

TABLE 1 | (Continued) Top 30 cluster specified frequent biomarkers.

Marker namea Frequency Specified clusters FDR

Tkt 4
10

Group1: Cluster1 vs. Group2: Rest all clusters 1.24 × 10–05

Group1: Cluster2 vs. Group2: Rest all clusters 5.81 × 10–05

Group1: Cluster6 vs. Group2: Rest all clusters 1.68 × 10–02

Group1: Cluster7 vs. Group2: Rest all clusters 2.44 × 10–01

Tm9sf3 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 1.42 × 10–03

Group1: Cluster4 vs. Group2: Rest all clusters 2.90, ×, 10–14

Group1: Cluster5 vs. Group2: Rest all clusters 1.98 × 10–02

Group1: Cluster9 vs. Group2: Rest all clusters 1.77 × 10–03

Ywhae 4
10

Group1: Cluster0 vs. Group2: Rest all clusters 3.64 × 10–09

Group1: Cluster3 vs. Group2: Rest all clusters 3.75 × 10–08

Group1: Cluster5 vs. Group2: Rest all clusters 9.12 × 10–05

Group1: Cluster9 vs. Group2: Rest all clusters 2.26 × 10–02

aSee Supplementary Table S2 for details.
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QC metrics as a violin plot and Figure 3 displays the
visualization of feature-feature relationships.

After discarding unwanted cells, we applied log normalization
method to normalize our dataset and applied feature selection
method “vst” to identify highly variable features. The 2,000 highly

variable features to conduct further downstream analysis were
obtained. Figure 4 shows 2,000 highly variable features with some
feature labels.

Our next step is to perform PCA, a linear dimensional
reduction technique, where we used 2000 highly variable

FIGURE 9 | Visualization of Hub gene network of strongly correlated frequent markers.
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features as input. First, we applied linear transformation as
standard pre-processing step of dimensional reduction
technique. Through linear transformation, equal weights are
assigned in downstream analysis, and the possibility of
domination by highly expressed features is diminished. Then
we performed PCA on the scaled data. We obtained fifty principal
components (PC) with several positive and negative features.
Supplementary Figure S1 shows the dimension reduction plot
for two components, and Figure 5 refers to Dim Plot of first
principal component vs. second principal component.
DimHeatMap for principal components is shown in Figure 6

(Figure 6A; Figure 6B represent DimHeatMap for PC1 and for
PC1-PC15 respectively). The PCs which have strong enrichment
of features with low p-values are denoted as “Significant” PCs.
Figure 7 shows fifteen “Significant” PCs with their respective
p-values.

Subsequently, we constructed a K-nearest neighbor (KNN)
graph based on the Euclidean distance in PCA space and
computed the edge weights between any two cells through the
Jaccard similarity. We considered first 10 PCs as the
dimensionality of the dataset. Our KNN graph contained 818
nodes and 20,511 edges. For cell clustering, we applied a

TABLE 3 | Top significant KEGG Pathways (FDR sorted).

KEGG pathway namea #genes Enriched Adjusted p-value FDR

mmu03010:Ribosome 112 7.54 × 10–40 5.17 × 10–40

mmu01100:Metabolic pathways 477 3.97 × 10–33 1.36 × 10–33

mmu01130:Biosynthesis of antibiotics 124 5.34 × 10–25 1.22 × 10–25

mmu00190:Oxidative phosphorylation 89 3.77 × 10–22 2.58 × 10–22

mmu05016:Huntington’s disease 111 1.50, ×, 10–20 2.05 × 10–21

mmu05012:Parkinson’s disease 90 2.79, ×, 10–19 3.19, ×, 10–20

mmu05010:Alzheimer’s disease 100 1.19, ×, 10–18 1.16 × 10–19

mmu04932:Non-alcoholic fatty liver disease (NAFLD) 86 1.14 × 10–14 9.74 × 10–16

mmu01200:Carbon metabolism 70 1.50, ×, 10–14 1.14 × 10–15

mmu03040:Spliceosome 74 9.63 × 10–13 6.57 × 10–14

aSee Supplementary Table S3 for details.

TABLE 4 | Top significant GO-BP term enriched (FDR sorted).

GO-BP term namea #genes Enriched Adjusted p-value FDR

GO:0006 412 translation 195 1.04 × 10–39 1.02 × 10–39

GO:0006 810 transport 529 6.16 × 10–28 3.02 × 10–28

GO:0055 114 oxidation-reduction process 241 2.04 × 10–23 6.69 × 10–24

GO:0098 609 cell-cell adhesion 93 1.04 × 10–17 2.55 × 10–18

GO:0015 031 protein transport 198 4.07 × 10–15 7.99, ×, 10–16

GO:0006 397 mRNA processing 127 6.55 × 10–15 9.33 × 10–16

GO:0008 380 RNA splicing 104 6.66 × 10–15 9.33 × 10–16

GO:0016 192 vesicle-mediated transport 93 2.03 × 10–13 2.48 × 10–14

GO:0006 629 lipid metabolic process 155 2.15 × 10–11 2.17 × 10–12

GO:0008 152 metabolic process 156 2.22 × 10–11 2.17 × 10–12

aSee Supplementary Table S4 for details.

TABLE 5 | Top significant GO-CC term enriched (FDR sorted).

GO-CC term namea #genes Enriched Adjusted p-value FDR

GO:0070 062 extracellular exosome 1045 1.09, ×, 10–171 9.37 × 10–172

GO:0005 739 mitochondrion 632 6.43 × 10–82 2.76 × 10–82

GO:0030 529 intracellular ribonucleoprotein complex 209 7.92 × 10–76 2.26 × 10–76

GO:0005 737 cytoplasm 1669 1.38 × 10–74 2.96 × 10–75

GO:0005 829 cytosol 609 2.06 × 10–64 3.53 × 10–65

GO:0005 840 ribosome 131 2.87 × 10–51 4.10, ×, 10–52

GO:0016 020 membrane 1646 9.62 × 10–49 1.18 × 10–49

GO:0005 634 nucleus 1453 2.65 × 10–47 2.84 × 10–48

GO:0005 654 nucleoplasm 590 2.30, ×, 10–43 2.19, ×, 10–44

GO:0005 743 mitochondrial inner membrane 192 2.92 × 10–43 2.50, ×, 10–44

aSee Supplementary Table S5 for details.
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modularity optimization technique (Louvain algorithm). This
clustering function uses a parameter, resolution, for setting
“granularity” of the downstream clustering. If we increase the
value of resolution parameter, it leads to a greater number of
clusters. According to benchmark, fixing this parameter to the
range 0.4–1.2 typically returns significant results for single-cell
datasets containing around 3000 cells. For our analysis, the
parameter is set as 0.5, and we obtained 10 clusters with
maximum modularity 0.885 1. After cell clustering, we used a
non-linear dimensional reduction technique, UMAP, to visualize
the similar cells of graph-based clusters in low-dimensional space
(referred Figure 8). We considered the same PCs which were
found in the cluster analysis.

Our final step is finding cluster specified biomarkers,
i.e., differentially expressed features. For every cluster, we
considered the cluster as one group and rest clusters as
another group. To identify differentially expressed features
between two groups of cells, we applied the statistical test
“MAST”. “MAST” uses a hurdle model tailored to scRNA-seq
data. In this procedure, we set the log 2FC threshold, measuring
how much a feature is differentially expressed, to 0.25 and
considered the up-regulated differentially expressed genes of
all clusters as markers. Another parameter, min.pct which
holds a minimum percentage of a feature detection in either
of the two groups, is set to 0.25. We identified 6394 cluster-
specific markers with their respective clusters of which 3871
markers are unique. There were some overlapping markers
lying in more than one cluster. These markers are termed as
“frequent marker”. We observed 1892 frequent biomarkers in our
analysis. Thirty top frequent biomarkers are presented in Table 1,
accompanied by frequency and corresponding adjusted p-values
based on Bonferroni correction using all genes in the dataset. This
adjusted p-values also termed as false discovery rate (FDR)
adjusted p-value. We provided the list of all frequent
biomarkers in a Supplementary Table S2.

Further, we applied Spearman’s correlation analysis on our
cluster-specific most frequent markers or overlapped markers to
detect edges among genes having correlation value greater than or
equal to 0.5 (highly positively correlated) or, less than or equal to (
− 0.5) (highly negatively correlated). Then, we performed degree
centrality hub gene network analysis using Cytoscape (Shannon
et al., 2003). In our analysis, five genes with the highest degree

values were Rps4x, Rps18, Rpl13a, Rps12 and Rpl18a, see Table 2.
We illustrated a detailed hub gene network structure in Figure 9.

In the corresponding literature survey, most of the top hub genes
detected by our method played an important role of highly expressed
markers or transcripts in exceptional nature of cell detection. Rps4x
marker was considered as a highly expressed transcript in the study of
An et al. (2014). and also played an important role to detect
exceptional nature of the X chromosome by (Balaton et al., 2018).
identified (Matarin et al., 2015)Rps18 as the variant forminimizing the
pairwise variation in gene expression through the hippocampal tissues
from various mice. Rpl13a marker was found as housekeeping gene
which is highly expressed in all types of cells by Wright et al. (2019)
and also was identified as an up-regulated marker to recover the rare
CD 34 + cells in the study of Fa et al. (2021). The marker Rps12 was
found in the study of Wisdom et al. (2020) as the antibody increased
expressed proliferation genes. Basak et al. (2018) established Rpl18a as
a cluster-specific overlapping marker which lies in three clusters.

Furthermore, we performed Gene Set Enrichment Analysis
with David 6.8 software using our 3871 cluster-specific markers
(Dennis et al., 2003). We applied DAVID database on our cluster-
specific markes to obtain all KEGG pathways and Gene Ontology
(GO) terms [Biological Process (BP), Cellular Component (CC)
andMolecular Function (MF)], accompanied by number of genes
in that pathway or GO-term, enriched Bonferroni corrected
p-value and FDR. We import our input dataset in the
prescribed format of DAVID 6.8 software, i.e., list of gene
name in one column, select OFFICIAL_GENE_SYMBOL as
Identifier, select Mus musculus as Species. Significant pathways
and GO-terms were described in below and more details are
provided in Tables 3–6 mmu03010:Ribosome had a top
significant KEGG pathway which has minimum FDR value
(5.17 × 10–40). A total of 112 genes were associated in this
pathway with enriched Bonferroni corrected p-value 7.54 ×
10–40. Table 3 contains rest of the top ten significant KEGG
pathways. We provided a list of all KEGG pathways in a
Supplementary Table S3. Similarly, GO:0006 412 translation
was one of the top significant GO-BP terms with FDR value
1.02 × 10–39. 195 genes were associated with this GO-BP term
having enriched corrected p-value 1.04 × 10–39. Table 4 contains
the remaining terms. We provided the list of all GO-BP terms in a
Supplementary Table S4. Furthermore, we found GO:0070 062
extracellular exosome as one of the top significant GO-CC terms

TABLE 6 | Top significant GO-MF term enriched (FDR sorted).

GO-MF term namea #genes Enriched Adjusted p-value FDR

GO:0044 822 poly(A) RNA binding 538 2.94 × 10–120 2.82 × 10–120

GO:0098 641 cadherin binding involved in cell-cell adhesion 158 6.77 × 10–43 3.25 × 10–43

GO:0005 515 protein binding 1046 1.15 × 10–36 3.68 × 10–37

GO:0003 735 structural constituent of ribosome 137 2.83 × 10–31 6.29 × 10–32

GO:0003 723 RNA binding 285 3.28 × 10–31 6.29 × 10–32

GO:0000 166 nucleotide binding 551 8.93 × 10–28 1.43 × 10–28

GO:0019 899 enzyme binding 143 3.90 × 10–15 5.34 × 10–16

GO:0016 491 oxidoreductase activity 196 5.39 × 10–14 6.46 × 10–15

GO:0032 403 protein complex binding 131 7.38 × 10–13 8.61 × 10–14

GO:0019 904 protein domain specific binding 111 4.18 × 10–12 3.95 × 10–13

aSee Supplementary Table S6 for details.
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with FDR value 9.37 × 10–172. A total of 1045 genes were
associated with this GO-CC term having enriched corrected
p-value 1.09, ×, 10–171. The rest of the terms are shown in
Table 5. We provided the list of all GO-CC terms in a
Supplementary Table S5. Lastly, GO:0044 822 poly(A) RNA
binding was one of the top significant GO-MF terms with
minimum FDR value 2.82 × 10–120. A total of 538 genes were
associated with this GO-MF term having the enriched corrected
p-value 2.94 × 10–120. For details, see Table 6. We provided the
list of all GO-MF terms in a Supplementary Table S6.

4 CONCLUSION AND FUTURE WORK

In this article, we provided a framework using dimensional reduction
and cell clustering for identifying cluster-specific frequent biomarkers
in single-cell sequencing data. To develop the framework, we first
filtered our single-cell RNA sequencing dataset by discarding the
features with a few numbers of cells and the cells with a few numbers
of features. Then, we stored data and the result of analysis as a Seurat
object and conductedmany steps of the analysis such as using quality
control metrics for cells filtration, discarding low quality or dying
cells, computing cell-to-cell highly variable features from the dataset,
and applying linear transformation and linear dimensionality
reduction technique, PCA to project high dimensional data to an
optimal low-dimensional space. We identified fifty “significant”
principal components (PCs) based on strong enrichment of low
p-value features and applied graph based clustering, modularity
optimization agglomerative clustering algorithm, Louvain, on the
cell of first 10 PCs and got 10 clusters with maximum modularity
0.885. Then we identified 3871 cluster specified biomarkers using
downstream analysis through statistical test “MAST” by considering
only up regulated differentially expressed genes (DEGs) as cluster
marker with log 2FC threshold 0.25 and minimum percentage of
feature detection 25%. From these cluster specified biomarkers, we
found 1892 most frequent markers, i.e., overlapping biomarkers.

Afterwards, we performed degree hub gene network analysis using
Cytoscape (Shannon et al., 2003) and reported the five highest degree
genes (Rps4x, Rps18, Rpl13a, Rps12 and Rpl18a). Interestingly, our
top hub genes are mainly composed of ribosomal protein genes. The
biological explanation of ribosomal protein genes in the top hub
genes are in single cell analysis, ribosomal protein genes are the most
highly expressed genes in most cell types. Ribosomal protein genes
play an efficient role for cell growth and proliferation (Petibon et al.,
2021). Furthermore, we used pathway analysis on cluster specified
markers using David 6.8 software (Dennis et al., 2003). In conclusion,
our framework is useful for biological interpretation of the single-cell
sequencing data analysis and efficiently identifying the cluster-specific
overlapping biomarkers. As an advantage of our work, we can
mention that due to the growing field of single cell sequencing
analysis, some new approaches are encountered recently. Every
technology has different strengths and weaknesses, and
measurements are only based on some particular aspects of
cellular identity, motivating the need to leverage information in
one dataset to improve the interpretation of another. As an

example, single cell ATAC-seq (scATAC-seq) can uniquely reveal
enhancer regions and regulatory logic, but it is not possible to
currently achieve the same power for unsupervised cell type
discovery as transcriptomics (Lake et al., 2018). In other hand,
STARmap method enables the measurement of more than 1,000
genes in spatially intact tissue, however forecast this number of genes
as an upper limit for such approaches without super-resolution
microscopy or the physical expansion of hydrogels (Wang et al.,
2018). In our framework, we have tried to develop effective tools for
single cell datasets which can enable similarly transformative
advances in our ability to analyze and interpret single cell data.

The shortcoming of our framework is, here we have used raw data
matrix in the place of imputed matrix. In our future study, we will
improve our framework by using imputed data matrix. Besides, we
will extend our current work by importing multi-objective
optimization technique in clustering procedure to obtain a better
clustering result. It can be applied on big data analysis, rare cell
detection in single-cell RNA sequencing data analysis.
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