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Abstract

Repurposing of existing drugs and drug candidates is an ideal approach to identify new potential therapies for
SARS-CoV-2 that can be tested without delay in human trials of infected patients. Here we applied a virtual
screening approach using Autodock Vina and molecular dynamics simulation in tandem to calculate binding
energies for repurposed drugs against the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). We thereby
identified 80 promising compounds with potential activity against SARS-Cov2, consisting of a mixture of antiviral
drugs, natural products and drugs with diverse modes of action. A substantial proportion of the top 80 compounds
identified in this study had been shown by others to have SARS-CoV-2 antiviral effects in vitro or in vivo, thereby
validating our approach. Amongst our top hits not previously reported to have SARS-CoV-2 activity, were eribulin, a
macrocyclic ketone analogue of the marine compound halichondrin B and an anticancer drug, the AXL receptor
tyrosine kinase inhibitor bemcentinib. Our top hits from our RdRp drug screen may not only have utility in treating
COVID-19 but may provide a useful starting point for therapeutics against other coronaviruses. Hence, our
modelling approach successfully identified multiple drugs with potential activity against SARS-CoV-2 RdRp.

Keywords: RNA-dependent RNA polymerase, SARS-CoV-2, Drug repurposing, Molecular dynamics, Molecular
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Introduction
SARS-CoV-2 (severe acute respiratory syndrome corona-
virus 2) is the virus responsible for the COVID-19 pan-
demic that first appeared in 2019 and has caused major
morbidity and mortality worldwide. At the end of May
2021, there had been more than 170 million reported
cases and 3.5 million deaths due to COVID-19. The
world has faced unprecedented challenges in managing
COVID-19, triggering a major effort to find vaccines and
drugs effective against SARS-CoV-2. Given the

immediacy of the problem, the fastest approach is to
identify existing drugs or natural products that could be
quickly repurposed for treatment of COVID-19. Such
agents can be rapidly deployed into human trials as their
safety and pharmacokinetics in man are already well
known.
Computational methods offer considerable promise for

rapid screening for potential drugs against SARS-CoV-2
protein targets. For example, recent work demonstrated
the ability to undertake computational de novo drug de-
sign based on the recently identified structure of Mpro,
the main SARS-CoV-2 protease [1]. Another interesting
but less studied target for SARS-CoV-2 drug develop-
ment is its RNA-dependent RNA polymerase (RdRp).
Zhu et al. recently reviewed the biochemical properties
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of RdRp and described cell-based assays suitable for
high-throughput screening of RdRp drug candidates [2].
RdRp plays a crucial role in the SARS-CoV-2 replicative
cycle with its active site being highly conserved and ac-
cessible, making it an ideal drug target. Furthermore, all
DNA and RNA viruses employ RdRp proteins for repli-
cation and transcription of viral genes, suggesting that
similar computational techniques could be broadly ap-
plicable to find drugs against other viruses [2]. RdRps
share several sequence motifs and tertiary structures
between all RNA virus types: positive-sense RNA;
negative-sense RNA; and dsRNA. The core structure of
RdRp resembles a right-hand, with palm, thumb, and
finger domains. Five of the seven classical catalytic RdRp
motifs (A – E) are in the most conserved palm domain,
while the remaining two (F and G) are in the finger do-
mains. The structurally conserved RdRp core and related
motifs are important for the catalytic role of viral RdRp
and thus represent potential targets for drug interven-
tion. While the criteria for substrates differ, all known
RdRps share the same catalytic mechanism. After host
cell infection viral RdRp participates in formation of the
molecular machinery for genome replication by com-
plexing with other transcription factors. It initiates and
regulates the elongation of the RNA strand, which in-
volves the addition of hundreds to thousands of nucleo-
tides. When incorporated into the newly synthesised
RNA chain, nucleotide analogues, such as remdesivir,
will block the RNA elongation catalysed by RdRp.
Computational methods can quickly identify drugs for

repurposing in pandemics where speed is of utmost im-
portance. There are two main ways of using computa-
tional methods to predict the activities of drugs –
ligand-based and structure-based. Ligand-based methods
use statistical and machine learning methods to generate
mathematical relationships between the drug structures
and their biological activity and are trained on large ex-
perimental data sets. The paucity of experimental data
on drugs active against RdRp make ligand-based
methods impractical, leaving structure-based methods as
the only viable computational approaches. Structure-
based methods use a 3D structure of the target protein
(from x-ray, nuclear magnetic resonance (NMR) or in
silico homology modelling) together with computational
docking methods to estimate the energy of interactions
of ligand molecules with the protein binding site. The
compounds with the most favourable interactions (dock-
ing scores) are then subjected to molecular dynamics
(MD) simulations to calculate more accurate binding
poses and binding energies.
Here we show how our in silico drug discovery pipe-

line (Fig. 1) consisting of molecular docking followed by
high-throughput molecular dynamics (MD) simulations,
can screen a large number of existing drugs to generate

a candidate list of RdRp inhibitors. Subsequently, MD
calculations were used to predict the binding energies
and optimal binding poses for the 80 best scoring RdRp
hits. We describe the properties of the top candidates
based on binding affinity and novelty. The paper is orga-
nized as follows: the Introduction outlines the rationale
for selection of RdRp and the selected screening meth-
odology; the Results section lists the identified repur-
posed drugs with predicted highest affinity for RdRp and
provides details on the molecular interactions between
key drug candidates and the active site of RdRp; the Dis-
cussion compares the findings with relevant experimen-
tal research from the literature; and the Materials and
Method section provides complete details on how the
computational studies were conducted to allow our re-
sults to be replicated.

Results
RdRp ligand docking followed by molecular dynamics
simulations
Many computational studies have attempted to predict
which existing drugs may inhibit the SARS-CoV-2 main
protease, Mpro, but far fewer studies have targeted the
viral polymerase, RdRp. The computational workflow
used for estimating the binding affinities of candidate
drugs for the RdRp binding pocket is shown in Fig. 1.
Substantial improvements in protein-ligand docking re-
sults can be achieved through MD simulation [3]. Hence
we used Vina docking with MD simulation to yield more
accurate results over docking alone. The RdRp binding
free energies for the top 80 hits (Supplementary Table
S1) as calculated by either of two methods (see Methods
section) correlated very well (r2 = 0.84), and the free en-
ergies calculated by the thermodynamic cycle correlated
with the Vina docking scores (r2 = 0.64). The large RdRp
binding pocket (area 2920 Å2 and volume 5335 Å3) pre-
fers larger ligands, many of which are quite flexible.
Binding energy penalties due to ligand entropy were
likely to be significant. Hence, substantial correlation be-
tween the Vina scores and the binding energies from
MMPBSA and thermodynamic cycle was important be-
cause these algorithms treat ligand entropy approxi-
mately and in different ways [4].
The 20 drugs with the highest predicted binding to the

RdRp active site together with their molecular mechan-
ics Poisson-Boltzmann surface area (MMPBSA), a
method to estimate interaction free energies, and
thermodynamic cycle binding energies are summarized
in Table 1. Most of the drugs in the top 20 had relatively
large complex structures and substantial ligand flexibil-
ity. Antiviral drugs accounted for half of the top 20 list
with their structures and plots showing the interactions
of the drugs with residues in the active site of RdRp
(ligplots) are shown in Supplementary Fig. S1. The
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remaining compounds in the top 20 hits included many
natural products or their derivatives; their ligplots are
summarized in Supplementary Fig. S2).

Correlations of model predictions with in vitro
measurements of virus activity
Many of the top antiviral drug hits had already been ex-
perimentally assessed for activity against SARS-CoV-2
and other coronaviruses such as SARS and MERS CoV.
The antiviral drug database at www.drugvirus.info allows
users to select antiviral drugs and particular viruses and
then generates a matrix table detailing which drugs have
been shown to be active against which of the selected vi-
ruses. A search of our top hits against this database
confirmed several had known -coronavirus activity, in-
cluding some against SARS-CoV-2 (Fig. 2). Remdesivir
showed the broadest activity having been shown in cell
cultures to be active against HCoV-229E, HCoV-OC43,
MERS, and SARS as well as SARS-CoV-2. When we per-
formed a more extensive search of the literature using

PubMed and Google Scholar, we identified more than
100 studies relating to our top 80 hits, with descriptions
of in vitro and/or in vivo data supporting activity of
these drugs against SARS CoV-2 (Supplementary Table
S1). Notably, the calculated binding energy of the top
antiviral drugs we identified as RdRp targets, e.g., parita-
previr and beclabuvir, were very similar to published
binding affinity data. This provides validation that our
computational methods yielded results comparable with
other published studies.

Comparing our model with other docking studies of
known antiviral drugs
We sought to compare the data generated by our model
with other RdRp docking study results. Beg and Athar
used AutoDock Vina with a homology modelled struc-
ture for RdRp and similarly found paritaprevir, beclabu-
vir, and favipiravir to have high docking scores [5].
Cozac et al. used a combined docking and machine
learning approach to identify inhibitors of RdRp

Fig. 1 Computational workflow for in silico screening of existing drugs and natural compounds for potential activity against SARS-Cov-2
RdRp protein
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polymerases from HCV, poliovirus, dengue virus, and in-
fluenza virus. They identified faldaprevir, vedroprevir,
beclabuvir and remdesivir as having good docking scores
with predicted RdRp IC50/EC50 values below 5 μM [6].
Dutta et al. used a homology model to identify antiviral
drugs against COVID-19 and predicted beclabuvir to

have an IC50 of 50 nM, with many antiviral agents hav-
ing docking scores higher than remdesivir (− 7.4 kcal/
mol) or radalbuvir (− 7.4 kcal/mol), e.g. beclabuvir (− 10
kcal/mol), tegobuvir (− 9.7 kcal/mol), dasabuvir (− 9.4
kcal/mol), lomibuvir (− 11 kcal/mol), setrobuvir (− 10.5
kcal/mol) [7]. Unlike our approach, none of these studies

Table 1 Top 20 ranked SARS-CoV-2 RdRp-active drugs based on binding energy by MMPBSA score

Fig. 2 Anti-coronavirus activity. Results of a search at www.drugvirus.info. A colour code is used to indicate the level of evidence of anti-viral
activity for a particular drug. The relevant viruses searched are shown in the red bar at the top of the figure
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used MD refinement of docked compounds to improve
the accuracy of the binding free energy predictions. Not-
ably, remdesivir was predicted to be active against
SARS-CoV-2 RdRp in several studies but its in vitro ac-
tivity is low (IC50 3.7 μM in Vero cells), consistent with
recent clinical studies showing only limited efficacy in
treating COVID-19 infection in man [8–10]. This is in
accord with our study results which predicted remdesivir
to have relatively low RdRp binding. Elfiki used Auto-
Dock Vina docking and MD simulations (50 ns runs) to
model RdRp and predicted antiviral drugs sofosbuvir, ri-
bavirin, galidesivir, remdesivir, favipiravir, cefuroxime,
tenofovir, setrobuvir, and hydroxychloroquine to bind to
RdRp [11]. Ahmed et al. used docking and 100 ns MD
simulations on 76 antiviral drugs, predicting remdesivir,
raltegravir, and simeprevir as having the best binding
free energies, ranging from − 32 to − 38 kcal/mol [12].
Aouldate et al., undertook virtual screening of 50,000
chemical compounds from the CAS Antiviral COVID19
database to identify one compound (833463–19-7) pre-
dicted to bind well to RdRp [13]. Banerjee et al. used
protein modelling and computational docking to investi-
gate the effects of common mutations in RdRp, 3CLpro,
and PLpro sequences and identified two RdRp mutations
in the Indian population with prevalence > 5% with
docking using Autodock Vina and predicted elbasvir
followed by remdesivir and methylprednisolone as the
most active against Indian RdRp mutants [14]. Overall,
the above studies used less rigorous methods than ours
and more limited drug libraries and chiefly identified

already known antiviral compounds such as remdesivir.
Notably, the antiviral drugs in our own top 80 RdRp hits
had a high degree of overlap with the more limited hits
of these other in silico antiviral drug studies.

Identification of natural products as potential RdRp drug
candidates
Amongst drugs for COVID-19 repurposing, the natural
products in our top 20 hits were of high interest given
their relative novelty and molecular diversity. The drug
we identified as having the second highest binding affin-
ity to RdRp (after paritaprevir) was the natural product,
ivermectin. Invermectin fitted snugly into the RdRp
binding pocket forming a hydrogen bond with Asp623
of RdRp (Fig. 3). Ivermectin and other avermectins and
milbemycins are broad spectrum antiparasitic macro-
cyclic lactones derived from the bacterium Streptomy-
ces avermitilis. Ivermectin’s anti-parasitic mode of
action is to enhance inhibitory neurotransmission by
binding to glutamate-gated chloride channels. It has
been shown to be effective against several positive-
sense single-strand RNA viruses including SARS-CoV-
2, and has been proposed as a strong COVID-19 drug
candidate [15–17]. It inhibits replication of SARS-
CoV-2 in monkey kidney cell culture with an IC50 of
2.2–2.8 μM [9, 15]. Similarly, Janabi et al. predicted
favourable binding energies of ivermectin and several
milbemycins for RdRp using AutoDock Vina, without
subsequent simulation of the protein-ligand com-
plexes [18]. Several trials of ivermectin in COVID-19

Fig. 3 LigPlot and hydrophobic protein surface representation of the main interactions between ivermectin and RdRP
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are already in progress (www.ClinicalTrials.gov
-NCT04390022, NCT04602507).
Another natural product we predicted to have high ac-

tivity against RdRp was digoxin. Digoxin is a widely used
cardiac drug used to treat heart arrythmias and cardiac
failure and has a large complex structure that fitted well
into the RdRp binding pocket, forming multiple hydro-
gen bonds with Ser682, Arg553, Arg624 and Cys622.
(Fig. 4). Interestingly, digoxin was also predicted to in-
hibit the interaction of SARS-CoV-2 with ACE2 by Kal-
hor et al. [19]. No previous studies have reported
potential inhibition of RdRp by digoxin. Very recently,
digoxin was shown to have potent in vitro antiviral ef-
fects against SARS-CoV-2 in Vero cells (IC50 37 nM) by
Cho et al. and also by Jeon et al. (IC50 of 190 nM) [20,
21]. Notably, the activity of digoxin against SARS-CoV-2
in these cellular assays was substantially higher than
seen with chloroquine or remdesivir.
Another natural product predicted to have high binding

for RdRp was silibinin, which formed multiple hydrogen
bonds to Asp623, Tyr619, Asp760, Trp617 and Asp761
(Fig. 5). Silibinin is a flavonolignan that is the major active
constituent of silymarin, a standardized extract of the milk

thistle seeds, with potential roles as an antioxidant, anti-
neoplastic drug, and hepatoprotectant. Silibinin was also
predicted to be a potential inhibitor of RdRp by two other
computational docking studies and is the subject of
planned clinical trials [22].
Rapamycin (sirolimus) was another natural product we

predict to have high activity against RdRp, forming a
hydrogen bond with Asp761 (Fig. 6). Rapamycin was
also identified as an RdRp target by another modelling
study [23]. Rapamycin is a macrolide antifungal metabol-
ite that has immunosuppressant activity and is used to
prevent organ transplant rejection. Rapamycin is in
COVID-19 clinical trials (https://clinicaltrials.gov/ct2/
show/NCT04461340).
Carbetocin was also in our top 20 hits (Supplementary

Fig. S2). Carbetocin is a synthetic analogue of the natural
product oxytocin in which the labile disulfide bond in
the macrocycle is replaced by a thioether. Carbetocin
was predicted to be in the top 10 RdRp inhibitors by
Ahmad et al. [24]. It is an approved drug for uterine
contraction and control of postpartum bleeding, and it
has a transcriptomic signature suggestive of anti-
inflammatory and immune stimulatory effects [25].

Fig. 4 LigPlot and hydrophobic protein surface representation of the main interactions between digoxin and RdRP
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Fig. 5 LigPlot and hydrophobic protein surface representation of the main interactions between silibinin and RdRP

Fig. 6 LigPlot and hydrophobic protein surface representation of the main interactions between rapamycin and RdRP
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Eribulin, a fully synthetic macrocyclic ketone analogue
of the marine natural product halichondrin B and potent
anti-mitotic anticancer agent was another of our top 20
hits, forming 4 hydrogen bonds with RdRp (Supplemen-
tary Fig. S2). Although eribulin is active against other
viral RdRps, there are no previous reports of it having
activity against SARS-CoV-2 RdRp [26]. Hence eribulin
might be an interesting candidate to be screened for ac-
tivity against SARS-CoV-2.
Novobiocin, an aminocoumarin antibiotic that is pro-

duced by the actinomycete Streptomyces niveus, was also
identified in our RdRp screen. Novobiocin targets DNA
gyrase, a bacterial type IIA topoisomerase. It was identi-
fied by another study as a high binder to RdRp using
MoleGro virtual docker software [27].
Our screen also identified ergotamine as a potential

natural product RdRp inhibitor. Ergotamine and related
ergot alkaloids were predicted by others to bind several
SARS-CoV-2 molecular targets, including the main pro-
tease, Mpro. There are literature reports of ergotamine
binding to SARS-CoV-2 RdRp and another in silico
study predicted ergotamine had an IC50 of 190 μM for
RdRp [28, 29].

Other RdRp drug candidates of interest
Our screen also identified bemcentinib as a potential
RdRp binder (Supplementary Fig. S2). Bemcentinib se-
lectively inhibits AXL receptor tyrosine kinase activity
and is under development as an anti-cancer drug.
COVID-19 has been shown to use AXL to enter into
some cells, with bemcentinib profoundly inhibiting virus
entry into those cells [30]. Bemcentinib exhibits in vitro
activity against SARS-CoV-2 with Liu et al. reporting
10–40% inhibition at 50 μM in Vero cells [31]. It exhib-
ited an IC50 of 100 nM and CC50 of 4.7 μM in human
Huh7.5 cells and an IC50 was 470 nM and CC50 of
1.6 μM in Vero cells [32]. It is currently undergoing tri-
als for COVID-19 treatment.

Discussion
Overall, the top 80 RdRp hits predicted by our docking
studies were strongly populated by particular classes of
drugs, notably antivirals but also kinase inhibitors (e.g.
imatinib, ponatinib, rebastinib, lonafarnib, tivantinib,
entrectinib), antibiotics (e.g novobiocin, quinupristin,
dalfopristin, rifapentine, erythromycin, itraconazole, bafi-
lomycin A1) and anti-cancer drugs (e.g. eribulin, etopo-
side, quarfloxin, epirubicin, brequinar, idarubicin,
midostaurin). Other diverse drugs in the top 80 hits in-
cluded eltrombopag (thrombocytopenia drug), dutaste-
ride (prostrate drug), telmisartan (anti-hypertensive),
conivaptan (hyponatremia drug), sertindole (anti-
psychotic), vapreotide (somatostatin analogue) and

bromocriptine (Parkinson’s disease drug). Although we
were not able to perform wet-lab validation of our hits,
we demonstrated from a search of the literature that a
substantial percentage (> 30%) of our hits had been
shown experimentally to inhibit RdRp and/or to have
in vitro SARS-CoV-2 antivirus activity (Supplementary
Table S1). For example, indinavir had been shown to
inhibit SARS-CoV-2 with an EC50 > 10 μM and CC50 >
50 μM in A549-hACE2 cells and EC50 of 59 μM and
CC50 > 81 μM in Vero cells [33, 34]. Another drug we
predicted, eltrombopag, had been shown to inhibit
SARS-CoV-2 with an IC50 of 8 μM and CC50 > 50 μM in
Vero cells and an IC50 of 8 μM Calu-3 cells [21, 35]. Yet
another drug we predicted, elbasvir, had been shown to
inhibit SARS-CoV-2 with an EC50 of 23 μM in Huh7-
hACE2 cells [36]. Similarly, ponatinib was active against
SARS-CoV-2 in HEK-293 T cells with an EC50 of 1 μM
and a CC50 of 9 μM and grazoprevir had an EC50 of
16 μM and CC50 of > 100 μM in Vero E6 cells [36]. Itra-
conazole had an EC50 of 2.3 μM in human Caco-2 cells
and an IC50 against M

pro of 110 μM [37, 38]. Ciclesonide
had an EC90 of 5 μM in Vero cells and EC90 of 0.55 μM
in differentiated human bronchial tracheal epithelial
cells, blocking viral RNA replication by > 90% and cur-
rently being in trials in COVID-19 patients [21, 39]. Bre-
quinar had an in vitro EC50 of 0.3 μM and CC50 > 50 μM
in Vero E6 cells [40]. Telmisartan, an antihypertensive
drug we predicted to inhibit RdRp, is already in COVID-
19 clinical trials (NCT04356495, [41]). This thereby pro-
vided independent validation of the ability of our RdRp
modelling approach to identify drugs active against
SARS-CoV-2.
Interestingly, several of our RdRp hits have been

shown to inhibit other SARS-CoV-2 protein targets.
Simeprevir, one of the drugs we predicted to inhibit
RdRp, was also shown to inhibit Mpro with an IC50 of
10 μM and reduced SARS-CoV-2 infectivity in vitro with
an EC50 of 4 μM and CC50 19 μM in Vero cells [42].
Imatinib, was shown to reduce Mpro activity at 10 μM
with an EC50 of 8 μM in A549 cells and inhibited SARS-
CoV-2 with an IC50 of 3-5 μM and CC50 > 30 μM [43,
44]. Conivaptan, was also shown to inhibit Mpro with an
IC50 of ~ 10 μM in 293 T cells and inhibited SARS-
COV-2 with IC50 of 10 μM in Vero cells and 4 μM in
ACE2-A549 cells [43, 45]. The fact that a considerable
number of our RdRp hits have also been shown to in-
hibit Mpro suggests that the active site of the RdRp poly-
merase and Mpro protease likely share common features
facilitating their inhibition by the same drugs. Drugs that
suppress a virus through multiple different mechanisms
could be advantageous, as this makes it harder for the
virus to mutate and become drug resistant, as to be
successful it would need to escape both antiviral
mechanisms.
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In addition to many of our top 80 hits having had
in vitro activity shown, several have already progressed
to clinical trials. Indeed, some of our top 80 hits could
have other beneficial effects for COVID-19 treatment
given their primary drug actions. For example, in
addition to a direct antiviral effect, rapamycin might use-
fully suppress inflammation and cytokine storms seen in
COVID-19.
In conclusion, our virtual screening approach used

molecular docking and MD simulations to calculate
binding energies to identify 80 compounds with poten-
tial activity against SARS-CoV-2 RdRp. The top hits
comprised antiviral agents, antibiotics, kinase inhibitors,
natural products and other drugs with diverse modes of
action. Strong support for our hits comes from pub-
lished studies that confirm that many of our hits have
promising activity against SARS-CoV-2.

Materials and methods
Protein structure preparation and grid preparation
The crystal structure of the SARS-CoV-2 RdRp was
downloaded from RCSB PDB (https://www.rcsb.org/
structure/6M71) with a reported resolution of 2.90 Å.
UCSF Chimera package (https://www.cgl.ucsf.edu/
chimera/) was used to prepare the protein by adding
hydrogen atoms and missing residues and loops and re-
moving non-essential and non-bridging water molecules
[46]. Autodock Vina requires a specific file format and
the assigning of hydrogen polarities and Gasteiger
charges to protein structures and conversion of protein
structures from the .pdb file format to .pdbqt format.
This was carried out automatically using the AutoDock
Tools (ADT) software [47].

Screening databases
A total of 8773 drugs were downloaded from the Drug-
bank database and 13,308 from the CHEMBL (FDA
approved) database. The drugs were converted from .sdf
format to .pdbqt format by Raccoon [47].

Docking methodology
We docked the small molecules from the drug database
against the RdRp protein structure using the widely-used
and robust AutoDock Vina (version 1.1.3) package [47].
This algorithm uses gradient-based conformational
searches and an empirical scoring function based on en-
ergies of interaction between the ligand and receptor.
The method is very flexible, extensively validated with
different proteins and ligands, easily scripted, and is de-
ployable on large multi-CPU or -GPU machines. Vina
can successfully dock extremely large, small molecule
drug libraries across a range of proteins with different
physicochemical properties, to discover new potent drug
leads. Vina is part of the Autodock package that includes

scripts for generating specific file formats required for
docking calculations and for establishing computational
grids around each protein automatically. It requires the
atom types in ligands and proteins to be set correctly, all
hydrogens to be removed except polar hydrogens, and
calculation of atomic partial charges required by Vina.
Vina generates a grid around and through each protein
and calculates energies of interaction of probe atoms at
each grid position, including those inside protein
pockets. We used a grid resolution of 1 Å, a maximum
of 10 binding modes to be docked, and an exhaustive-
ness level of 8. This specifies the number of independent
runs performed. The genetic algorithm option was
employed to optimize ligand binding conformations in
the RdRP active site. Thus, repurposing candidates were
each docked into the active site of SARS-CoV-2 RdRP
(refcode 6M71). The bash script vina_screen.sh (Supple-
mentary Information) was used to calculate the grid
centre and size. A python script script1.py (Supplemen-
tary Information) identified compounds with the stron-
gest binding interactions with the RdRP active site.
These were subsequently subjected to molecular dynam-
ics simulations to improve their docking poses and cal-
culated binding energies. UCSF Chimera was used to
analyse the docked structures and the hydrogen-bond
and hydrophobic interactions were plotted using Lig-
Plot+ software [46, 48]. Fifty compounds with the best
docking scores were selected from each of the Drugbank
and ChEMBL lists. As 20 compounds were common to
both databases, the list of highest scoring repurposing
candidates contained 80 molecules that were subse-
quently subject to MD simulations.

Molecular dynamics simulation
The complexes between RdRp and each of the 80 candi-
date drugs were first minimized using CHARMm force
field and used as starting geometries for MD simula-
tions.. We used Swissparam (http://www.swissparam.ch/
) to generate topology files for ligands [49]. MD simula-
tions used GROMACS2020 GPU-accelerated version
(http://www.gromacs.org/) and the periodic boundary
conditions from the CHARMm force field I in the OR-
ACLE server [50]. For the MD simulations of the docked
complexes, a truncated octahedral box of TIP3P water
molecules was used to solvate the complex. Na + or Cl −
counter ions were added to neutralize charges by the
tleap program. The Particle Mesh Ewald (PME) method
with a van der Waals (VdW) interaction cut-off distance
of 12.0 Å was used to calculate long-range electrostatic
interactions. The whole protein-ligand systems were
simulated without restraints. Two thousand five hun-
dred cycles of steepest descent minimization were ap-
plied followed by 5000 cycles of conjugate gradient
minimization. MD simulations heated each system from
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0 to 300 K, in the NVT ensemble, for 50 ps. A Langevin
thermostat with a force constant of 2.0 kcal/mol·Å2 and
a coupling coefficient of 1.0/ps were applied to the com-
plex. Subsequently, a 20 ns MD simulation production
run was performed with appropriate periodic boundary
conditions for each system in the NPT ensemble at a
constant temperature of 300 K. The SHAKE algorithm
was utilised during the MD simulations to constrain all
covalent bonds involving hydrogen atoms. All simula-
tions used a time step of 2 fs. Structural stability was
monitored by root-mean-square deviation (RMSD) and
RMSF values for the Cα atoms of the protein. We ran
MD simulations for up to 100 ns on several compounds
to make sure 20 ns was sufficient for convergence. Three
replicate runs starting from different random seeds were
used to estimate uncertainties in binding energy.
We calculated the binding free energies of the protein-

ligand complexes by two methods. The energies of sol-
vated small molecule ligands, the SARS-CoV-2 RdRp
protein, and the bound complex were used to calculate
the binding energy by subtraction.

ΔG ðbinding; aqÞ ¼ ΔG ðcomplex; aqÞ−ðΔG ðprotein; aqÞ þ ΔG ðligand; aqÞÞ: ð1Þ
The MMPBSA tool in GROMACS2020 was used to cal-

culate binding energies form the nonbonded interaction
energies of the complex. This was performed using the
GMXPBSA 2.1 package that uses Bash/Perl scripts to
streamline MMPBSA calculations of the structural en-
sembles generated from GROMACS trajectories [51]. It
also automatically calculates binding free energies for
protein–protein or ligand–protein complexes. It calcu-
lates the MMPBSA energy from molecular mechanics
(MM), electrostatic contributions to solvation (PB) and
the non-polar contributions to solvation (SA). Essen-
tially, it combines the Poisson–Boltzmann equation and
MD simulations to calculate solvation energy [52]. The
g_mmpbsa tool in GROMACS uses the single-trajectory
MMPBSA method to post-process binding free energies
from MD output files. It uses 100 frames at equal dis-
tances along the 20 ns trajectory files.
For non-covalent binding interactions in the aqueous

phase the binding free energy, ΔG (bind,aq), can be cal-
culated as: –.

ΔG bind; aqð Þ ¼ ΔG bind; vacð Þ þ ΔG bind; solvð Þ ð2Þ
where ΔG (bind,vac) is the binding free energy in

vacuum, and ΔG (bind,solv) was the binding induced
solvation free energy change: –.

ΔG bind; solvð Þ ¼ ΔG R : L; solvð Þ−ΔG R; solvð Þ−ΔG L; solvð Þ ð3Þ
where ΔG (R:L,solv), ΔG (R,solv) and ΔG (L,solv) are

solvation free energies for respectively, the bound com-
plex, receptor and ligand.
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