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Abstract: Various lengths of time window have been used in feature extraction for electroencephalo-
gram (EEG) signal processing in previous studies. However, the effect of time window length on
feature extraction for the downstream tasks such as emotion recognition has not been well examined.
To this end, we investigate the effect of different time window (TW) lengths on human emotion
recognition to find the optimal TW length for extracting electroencephalogram (EEG) emotion signals.
Both power spectral density (PSD) features and differential entropy (DE) features are used to evaluate
the effectiveness of different TW lengths based on the SJTU emotion EEG dataset (SEED). Different
lengths of TW are then processed with an EEG feature-processing approach, namely experiment-level
batch normalization (ELBN). The processed features are used to perform emotion recognition tasks
in the six classifiers, the results of which are then compared with the results without ELBN. The
recognition accuracies indicate that a 2-s TW length has the best performance on emotion recog-
nition and is the most suitable to be used in EEG feature extraction for emotion recognition. The
deployment of ELBN in the 2-s TW can further improve the emotion recognition performances by
21.63% and 5.04% when using an SVM based on PSD and DE features, respectively. These results
provide a solid reference for the selection of TW length in analyzing EEG signals for applications in
intelligent systems.

Keywords: brain–computer interaction; emotion recognition; time window length; electroencephalogram
(EEG); experiment-level batch normalization

1. Introduction

Human emotion recognition is a critical research topic in brain–computer interaction
(BCI) [1–4]. Most of the current human emotion recognition approaches are based on
facial expression images from cameras [5]. However, the real emotion may be hidden
behind facial expressions consciously or unconsciously, which would make the camera-
based approaches invalid. Moreover, the effectiveness of these approaches would also be
limited in poor environments with low illumination or rapidly changing light distributions
on human faces (e.g., in nighttime driving). Therefore, using physiological signals to
directly recognize human emotions without environmental effects or fake facial expressions
is essential.

Among the various physiological signals, electroencephalogram (EEG) has been fre-
quently reported to be closely and directly related with human emotions in previous
studies [6–10]. George et al. [11] applied fast Fourier transformation (FFT) and frequency
bandpass to extract features from EEG signals and performed emotion recognition in va-
lence and arousal dimensions with a support vector machine (SVM). Asghar et al. [12]
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proposed a bag of deep features (BoDF) model to reduce the EEG feature dimensionality
and adopted an SVM and k-nearest neighbors (KNN) to perform EEG-based emotion recog-
nition. Pan et al. [13] applied the logistic regression (LR) algorithm with Gaussian kernel
and Laplacian prior for EEG-based emotion recognition by comparing with Gaussian naive
bayes (GNB) and SVM classifiers.

However, most of these studies use the complete EEG samples with different time
durations as inputs for model training. This treatment would make the trained model
not suitable to be applied for online or real-time emotion recognition because the learned
knowledge of the trained model is all about the characteristics of the complete samples
for post-detection which is not suitable for online or real-time applications [14]. Moreover,
mixing the samples with different durations together would also make the trained model
not aware of the changing characteristics of EEG signals in temporal sequences [15,16].

To this end, various time windows (TWs) have been developed and used in signal
analysis of EEG temporal sequences. Abtahi et al. [17] used a 20-millisecond TW with
10-millisecond offset to cut EEG signals into a time sequence to determine the suitable
analysis model for EEG signals. Lin et al. [18] applied a 1-s TW without overlapping
on channels of the EEG data to compute the EEG spectrogram which would be used to
investigate the relationship between emotional states and brain activities with machine-
learning algorithms. Zheng et al. [19] used a non-overlapped 4-s TW with short-time Fourier
transform for extracting EEG features to perform emotion recognition tasks with feature
level fusion strategy and decision level fusion strategy, respectively. Zhuang et al. [20] took
EEG data in every 5-s TW as material for empirical mode decomposition (EMD), which
was beneficial for EEG-based emotion recognition performance. It can be observed that
various TW lengths were used in the signal processing of EEG signals. However, there is
currently no criterion or prior knowledge on the temporal scale (i.e., TW length) to measure
EEG data for emotion recognition.

Moreover, in the development of emotion recognition with EEG data, a significant
problem is the negative influence of individual differences [15,16] which leads to diversified
EEG response patterns to affect the generalization capabilities of classifiers across subjects.
Gianotti et al. [21] reported the neural signatures underlying individual participants when
they were being looked at. Matthews et al. [22] found that differences existed in EEG signal
responses through an experiment on 150 patients who were asked to perform two signal
detection tasks in a complex and simulated operational environment. Meanwhile, many
other studies have proposed various data processing methods for subject-independent
emotion recognition [15,23,24], but they process EEG data without considering differences
among experimental groups.

Therefore, this paper aims to examine the effectiveness of different TW lengths on
emotion recognition based on batch normalized EEG signals for better individualized emo-
tion recognition performance. The main contributions of this paper are two-fold. Firstly,
the best TW length to extract features for EEG-based emotion recognition is determined.
This would fill the research gap on the selection of TW for feature extraction to facili-
tate EEG-based emotion recognition. Secondly, an experiment-level batch normalization
(ELBN) method is newly applied in EEG feature processing to alleviate the negative impact
caused by individual differences in different experiments. This method can help extract
useful features without being greatly affected by human behavioral differences across
experiments, which would greatly improve emotion recognition performances in online or
real-time applications.

2. Related Work
2.1. Characteristics of EEG Signals

EEG signals are non-stationary, non-linear, and non-Gaussian [25]. Recorded as
time sequences from multi-channels, EEG signals have high spatial-temporal complexity
especially when an enormous amount of EEG data is recorded [26]. In addition, the
characteristics of EEG signals related to some specific events will change over time, making
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EEG-based recognition more difficult and requiring calibration before application [27]. EEG
signals also have a relatively low signal-to-noise ratio (SNR) and are susceptible to distortion
from artificial interference (e.g., eye movement) [28]. To remove these artifacts and make
EEG signals more correlated to the target events, EEG signals are usually calculated in five
frequency bands, i.e., delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz), and
gamma (31–50 Hz) [27]. Useful features can be extracted from these five frequency bands
of EEG signals for detailed analysis on specific tasks [29,30].

Another significant characteristic of EEG signals is that EEG is highly subject to various
individual differences, which brings difficulties when the pre-trained model is applied
on a new subject directly. To address this problem, previous studies have proposed a
variety of approaches for EEG data processing. Li et al. [23] proposed a normalization
method where EEG signals in each electrode channel of each person was normalized into
the range of [0, 1]. Another study [15] presented a domain adaptation method where
task-invariant features and task-specific features integrated in unified framework models
were adopted to eliminate individual differences. Lu et al. [24] also developed a dynamic
entropy-based pattern for subject-independent emotion recognition. However, most of
these previous studies take EEG data from different subjects and different experimental
batches as an integral whole without considering the influence of both inter-subjects
and inter-experiments difference, meaning subject-independent emotion recognition still
faces challenges. To further diminish the effect of individual difference, the inter-subjects
and inter-experiments differences should be taken into consideration when processing
EEG data.

2.2. EEG Features

To analyze EEG signals from different perspectives, various features have been ex-
tracted to describe brain activity information. Unde et al. [31] used power spectral density
(PSD), which was defined as the distribution of signal power over frequency, to show the
strength of energy in a frequency domain. Shi et al. [32] applied differential entropy (DE),
which was obtained by calculating the entropy of a continuous EEG sequence, to measure
the complexity of EEG signals. Frantzidis et al. [33] used amplitude and latency of event-
related potentials (ERPs) as features in their research. However, detecting emotion-related
ERPs is difficult in online applications as the onset is usually unknown. Kroupi et al. [34]
employed the non-stationary index (NSI) to measure the inconsistency of EEG signals,
which is defined as the standard deviation of all the means from the EEG signal pieces.
Petrantonakis et al. [35] introduced higher order crossings (HOC)-based features to capture
the oscillatory pattern of EEG signals [36].

Among these various EEG features, PSD and DE are two commonly used and well-
accepted features used to analyze human’s EEG activities. PSD features are used to repre-
sent the distribution and energy strength of signal power over a frequency [8,9]. DE are
efficient numerical features employed to measure the signal complexity in EEG analysis [37],
and they perform well in differentiating EEG signals between low and high frequency
energies [7]. It has been demonstrated that PSD and DE features could effectively describe
EEG signals to achieve high accuracies for emotion recognition [37]. Therefore, we used
PSD and DE features for emotion recognition in this study.

3. Dataset and Experiments

The SJTU emotion EEG dataset (SEED) [29] is a popular publicly available EEG dataset
for various purposes on emotional analysis. The data collection work was performed by the
BCMI laboratory in Shanghai Jiao Tong University in 2015. The ESI NeuroScan system was
used to record the EEG data with a sample rate of 1000 Hz. There was a total of 62 electrode
channels according to the international 10–20 system for EEG collection.

Researchers usually elicit specific emotions of subjects by audio or video clips and
extract the corresponding EEG data for analysis [17,29,38]. Similarly, film clips were
used for emotion induction in SEED. To elicit the different target emotions (i.e., positive,
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neutral and negative), 15 Chinese film clips were selected following the criterion as follows:
(a) the length of the whole experiment should be limited in a reasonable range (e.g., 2–5 min)
to avoid fatigue, (b) the content of the films should be easily understood without extra
explanation, and (c) only one single target emotion can be elicited through the film content.
The film clips were edited so that the selected video content for emotion elicitation could be
effective during the approximately 4 minutes’ watching. The selected film clips for emotion
induction in our experiments are listed in Table 1. There are five film clips for each emotion
type. More details of the dataset and experiments can be found in [39].

Table 1. The selected film clips used to elicit target emotions in the SEED dataset.

No. Emotion Film Clip Sources #Clips

1 negative Tangshan Earthquake 2
2 negative Back to 1942 3
3 positive Lost in Thailand 2
4 positive Flirting Scholar 1
5 positive Just Another Pandora’s Box 2
6 neutral World Heritage in China 5

The 15 film clips in Table 1 were separately presented to subjects in 15 trials for one
experiment (see Figure 1). In each trial, a starting hint was given 5 s before the start of
each clip. When the film clip was finished, 45 s were given for each subject to complete the
questionnaire reporting their immediate emotional reactions to the film clip that they had
just watched. Details of the questionnaire can be found in [6]. Subsequently, another 15 s
were provided for rest before the start of the next trial. The order of emotions presented
in the experiments was 1, 0, −1, −1, 0, 1, −1, 0, 1, 1, 0, −1, 0, 1, −1 (1 for positive, 0 for
neutral, −1 for negative). According to the presented emotion order, the distribution of the
three emotion categories is balanced in each experiment (i.e., each emotion category has
5 corresponding trials in each experiment, and these trials are distributed following the
order above). The collected EEG data were downsampled to 200 Hz and filtered with a
0–75 Hz frequency band to filter the noise and remove the artifacts.
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Figure 1. The protocol of the experiments in the SEED dataset [29].

There were 15 young subjects (7 males and 8 females; age: 23.27 ± 2.37 years) par-
ticipating in the experiments in the SEED dataset. Each subject repeated the experiment
three times with an interval of one week or longer. Therefore, in the SEED dataset, there
were 45 experiments across the 15 subjects. Since each experiment had 15 trails, there were
675 trials in total across the 15 subjects. For each emotion category (i.e., positive, neutral,
or negative), there were 225 trials, which means that the emotions were balanced in the
SEED dataset.

4. Feature Extraction
4.1. Power Spectral Density (PSD) and Differential Entropy (DE)

PSD and DE features [7,37,40] were used to analyze human’s EEG activities in this
study. The 64-channel Biosemi Active Two system was applied [7], where 58 channels in the
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SEED dataset were included with the other 4 channels (PO5, PO6, CB1, CB2) not involved.
The positions of the 58 selected channels on the EEG topo map are shown in Figure 2. Each
channel was divided into 1-s epochs without overlapping. In each epoch, PSD features
and DE features were separately calculated in the delta (1–3 Hz), theta (4–7 Hz), alpha
(8–13 Hz), beta (14–30 Hz), and gamma (31–50 Hz) frequency bands, respectively. It has
been well reported in previous studies that linear dynamic system (LDS) is a commonly
used approach to filter out irrelevant components in EEG data [29,41]. Therefore, LDS was
also used in this study.
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4.2. Extracting Features Based on TW

The minimum duration of the collected trials was about 180 s; hence, each channel of
the EEG signals can be segmented into 180 1-s epochs without overlapping. Therefore, there
would be 58 × 180 epochs from the collected EEG signals in each trial. PSD features and
DE features were calculated in each epoch in the five given frequency bands, respectively.
Therefore, the format of features in each trial was defined as (58, 5, 180), where 58 represents
58 channels, 5 represents 5 frequency bands, and 180 represents the total number of features
extracted from the epochs in the corresponding trial. In total, there were 675 trials in all
the 45 experiments. A total of 11 different lengths of TW were examined to investigate the
optimal TW length for EEG data extraction in this study. See Table 2. Both PSD features
and DE features were separately calculated and averaged across the epochs in each TW.
To compare the effectiveness of the examined features from different TW lengths, six
classical classifiers were used for emotion recognition, including KNN, LR, SVM, GNB,
Multilayer Perceptron (MLP), and Bootstrap Aggregating (Bagging). These classifiers are
the most frequently ones used with high accuracies and strong adaptabilities to different
classification tasks [15,42,43]. A machine learning module in Python called sklearn was
used to construct models, and the relevant parameter settings are listed in Table 3.
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Table 2. The detailed information of TW lengths in each trial. N is the number of calculated features
in each trial for frequency band of a selected channel.

TW Length (s) Number of TWs
in Each Trial

Epochs Contained
in Each TW

Feature Format
(58 × 5 × N)

180 1 180 58 × 5 × 1
90 2 90 58 × 5 × 2
60 3 60 58 × 5 × 3
30 6 30 58 × 5 × 6
20 9 20 58 × 5 × 9
10 18 10 58 × 5 × 18
5 36 5 58 × 5 × 36
4 45 4 58 × 5 × 45
3 60 3 58 × 5 × 60
2 90 2 58 × 5 × 90
1 180 1 58 × 5 × 180

Table 3. Parameter settings of the examined classifiers in sklearn. Those parameters that are not
listed in this table are set as the default values, while “\” represents that all the used parameters are
the default values.

Classifier Parameter Setting

KNN n_neighbors = 5, p = 2, metric = ‘minkowski’
LR solver = ‘liblinear’, random_state = 10

SVM random_state = 10
GNB \
MLP solver = ‘lbfgs’, alpha = 1e−5, hidden_layer_sizes = (100, 3), random_state = 1, max_iter = 1e5

Bagging
base_estimator = lr, n_estimators = 500, max_samples = 1.0, max_features = 1.0,

bootstrap = True, bootstrap_features = False, n_jobs = 1, random_state = 1
(lr = sklearn.linear_model.LogisticRegression(solver = ‘liblinear’, random_state = 1))

4.3. Experimental-Level Batch Normalization (ELBN)

To reduce the impact of individual difference on EEG-based emotion recognition [23],
an experiment-level batch normalization (ELBN) method was applied on the obtained PSD
features and DE features, respectively. The definition of ELBN is shown as follows:

FBNi =
Fi − Fmin

Fmax − Fmin
(1)

where Fi and FBNi represent the original value of a specific feature and the value of the fea-
ture with ELBN in an experiment, respectively, while Fmin and Fmax represent the minimum
and maximum values of the corresponding feature in the same experiment, respectively.
Features extracted from one frequency band in one channel are calculated in each trial, and
the features from all 15 trials in the same experiment are normalized following Formula (1).
The normalization occurred across 15 trials in one experiment. Each trial can provide one
feature from one frequency band in one channel when using a selected TW, and then the
15 trials contribute to the 15 features for normalization. As for the 180 s TW where there
is just one TW, the normalization will be performed one time in one experiment with the
minimum and maximum values across the 15 trials. Our proposed ELBN is conducted
within an experiment to avoid interference or noise from other factors (e.g., change of
body status in different experiments), which is newly developed to solve the individual
difference and baseline deviation problems in the collected data from different subjects on
different days. The protocol of ELBN is shown in Figure 3. Although this idea seems simple,
to the best of our knowledge, it has never been used in the previous emotion recognition
studies based on EEG signals.
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5. Results and Discussion
5.1. The Effect of TW Length on Emotion Recognition without ELBN

Processed PSD features and DE features with different TW lengths were separately
fed into the six classifiers. The training data contain features extracted from 12 trials in each
experiment, while the testing data contain features extracted from the other 3 trials from
the same experiment. Both training data and testing data are evenly distributed across the
three different emotions. A total of 10 random sets (see Table 4) of possible combinations of
training data and testing data were selected, and their averaged accuracies in each classifier
were used as final recognition results. Although there are some replacement trials in the 10
randomized sets, the distribution of trials for training (or testing) has been randomized as
evenly as possible. K-fold is not applied because the order of emotions presented in one
experiment across the 15 trials is disordered (i.e., 1, 0, −1, −1, 0, 1, −1, 0, 1, 1, 0, −1, 0, 1, −1
with 1 for positive, 0 for neutral, and −1 for negative). Traditional procedure of k-fold is
not suitable for this case when we try to divide 15 trials into a training set and a test set to
ensure that the emotions are evenly distributed. If there are no positive, neutral, or negative
emotions in the test set, the trained model will not be reliable because of the unbalanced
training data, or the testing results for a specific emotion type cannot be computed, making
the averaged accuracies not reasonable.

Table 4. Details of the 10 sets used for training and testing. Please note that the 15 trials are numbered
from 0–14.

Set # The Trials Used for Training The Trials Used for Testing

1 [0, 1, 2, 4, 5, 6, 9, 10, 11, 12, 13, 14] [3, 7, 8]
2 [0, 1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 14] [4, 5, 11]
3 [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14] [0, 2, 12]
4 [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14] [2, 12, 13]
5 [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14] [6, 8, 12]
6 [0, 1, 2, 5, 6, 7, 9, 10, 11, 12, 13, 14] [3, 4, 8]
7 [0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13] [5, 10, 14]
8 [0, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14] [1, 6, 8]
9 [0, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14] [1, 2, 9]
10 [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13] [7, 9, 14]

The recognition results of PSD features and DE features when using different TW
lengths are shown in Tables 5 and 6, respectively. The accuracies were calculated using
separate EEG frequency bands. The results show that the highest accuracy is achieved
when using the LR classifier. The best accuracies when using PSD features or DE features
are 67.85% and 78.67%, respectively. The maximum differences across different TW lengths
are 3.56% when using PSD features and 2.59% when using DE features. Furthermore,
though the number of features increases with the decreasing TW length, the recognition
accuracies are barely growing, indicating that the number of features has little influence on
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recognition results. These results show that the emotion recognition accuracies are limited
when using the classical classifiers based on either PSD or DE features, and the accuracy
differences when using different TW lengths are not large.

Table 5. The recognition results (mean accuracy and standard deviation) of PSD features extracted
from separate frequency bands when using different classifiers under different TW lengths without
ELBN. The highest and second-highest accuracies of each classifier are highlighted in bold red and
bold blue, respectively.

TW Length (s) KNN LR SVM GNB MLP Bagging

180 54.22(3.18) 66.81(5.81) 49.48(6.32) 39.63(5.42) 62.59(5.52) 66.30(5.72)
90 55.33(2.64) 67.85(6.05) 51.78(4.96) 39.85(6.36) 67.78(4.77) 68.07(6.37)
60 56.37(2.43) 67.70(6.13) 52.89(4.19) 39.70(6.84) 66.67(5.17) 68.67(5.76)
30 56.67(3.24) 67.41(7.53) 53.04(4.21) 39.56(6.75) 66.81(5.77) 68.15(6.37)
20 56.37(2.78) 67.63(6.50) 52.89(4.01) 39.56(6.94) 66.52(4.63) 67.78(5.51)
10 56.15(2.77) 66.37(6.34) 52.74(4.08) 39.41(6.99) 63.63(5.32) 68.30(5.61)
5 56.07(2.86) 65.70(6.12) 52.81(4.01) 39.48(6.98) 65.26(4.99) 67.63(5.40)
4 56.00(2.84) 65.41(6.10) 52.81(4.01) 39.56(6.98) 66.22(4.99) 67.26(5.28)
3 56.00(2.84) 65.63(5.93) 52.81(4.01) 39.56(6.98) 64.96(5.10) 67.19(5.52)
2 56.00(2.84) 65.63(5.15) 52.81(4.01) 39.56(6.98) 61.85(7.59) 66.96(5.76)
1 56.00(2.84) 65.78(4.70) 52.81(4.01) 39.56(6.98) 65.04(4.34) 67.19(6.04)

Table 6. The recognition results (mean accuracy and standard deviation) of DE features extracted
from separate frequency bands when using different classifiers under different TW lengths without
ELBN. The highest and second-highest accuracies of each classifier are highlighted in bold red and
bold blue, respectively.

TW Length (s) KNN LR SVM GNB MLP Bagging

180 65.78(4.81) 77.19(7.45) 70.00(4.09) 48.30(2.91) 66.30(8.91) 76.74(6.35)
90 66.59(5.53) 76.81(7.62) 71.48(5.90) 48.96(2.93) 72.67(5.35) 77.41(7.11)
60 66.37(5.21) 76.22(7.65) 71.56(6.23) 48.96(2.82) 76.15(6.97) 77.70(7.11)
30 66.22(5.06) 76.81(7.25) 71.93(6.21) 48.96(2.87) 74.81(6.76) 78.00(6.40)
20 65.85(5.04) 78.67(6.61) 72.07(6.25) 48.96(2.87) 75.70(6.16) 78.30(6.52)
10 66.15(4.91) 78.67(5.37) 72.22(6.44) 49.19(3.03) 72.07(8.17) 78.30(5.73)
5 66.30(4.85) 78.59(5.21) 72.59(6.56) 49.26(3.24) 73.48(7.52) 78.52(5.59)
4 66.30(4.85) 78.30(5.41) 72.59(6.56) 49.26(3.24) 74.67(5.79) 78.74(5.72)
3 66.30(4.85) 78.15(5.04) 72.59(6.56) 49.26(3.24) 75.11(8.21) 78.74(6.09)
2 66.30(4.85) 77.70(5.08) 72.59(6.56) 49.26(3.24) 68.59(5.12) 78.81(6.19)
1 66.30(4.85) 77.19(5.69) 72.59(6.56) 49.26(3.24) 73.11(7.96) 78.89(6.15)

5.2. The Effect of TW Length on Emotion Recognition with ELBN

PSD features and DE features with ELBN were separately fed into the six classifiers.
Features from the 10 given random sets were used as inputs and their averaged accuracies
in each classifier were used as the final recognition results. The recognition results of PSD
features and DE features are shown in Tables 7 and 8, respectively. The results indicate
that ELBN performs well on improving emotion recognition accuracies based on EEG
features. Compared with the emotion recognition performance when using the same
features without ELBN in Tables 4 and 5, the emotion recognition accuracies when using
features with ELBN are greatly improved. The best accuracy of PSD features is up to 79.48%
which is 11.53% higher than that without ELBN, and the best accuracy of DE features is up
to 82.96% which is 4.29% higher than the number without ELBN. The increased accuracy
by ELBN for PSD features is more than 10% for all the examined classifiers, and the greatest
improvement (i.e., 21.63%) is achieved when using an SVM. When using DE features,
the greatest contribution of our proposed ELBN is 20.67%. These significant accuracy
improvements show that our proposed ELBN method can effectively retain more temporal
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characteristics of the fluctuation trends of EEG signals, contributing to the improvement of
emotion recognition based on classical features and classifiers.

Table 7. The recognition results (mean accuracy and standard deviation) of PSD features extracted
from separate frequency bands when using different classifiers under different TW lengths with
ELBN. The highest and second-highest accuracies of each classifier are highlighted in bold red and
bold blue, respectively.

TW Length (s) KNN LR SVM GNB MLP Bagging

180 64.89(4.06) 73.33(6.87) 72.59(3.94) 56.44(5.94) 72.37(4.76) 74.37(5.55)
90 65.85(3.80) 77.93(6.56) 73.41(3.86) 59.78(6.01) 73.04(4.58) 78.37(6.56)
60 67.48(3.55) 77.04(6.93) 73.70(4.64) 60.44(5.95) 74.30(8.73) 77.78(6.20)
30 67.56(2.94) 77.48(5.94) 74.37(4.94) 60.37(6.01) 71.26(7.97) 77.78(5.26)
20 67.26(3.06) 77.85(6.09) 74.37(4.97) 60.44(6.30) 74.30(5.14) 78.67(5.13)
10 67.63(3.16) 79.04(6.03) 74.44(5.18) 60.30(6.02) 69.93(5.19) 78.67(5.52)
5 67.70(3.11) 79.04(6.29) 74.44(5.13) 60.37(6.13) 73.41(6.56) 79.41(5.79)
4 67.78(3.07) 79.04(6.17) 74.44(5.13) 60.37(6.13) 73.26(4.25) 79.33(5.76)
3 67.78(3.07) 79.48(5.82) 74.44(5.13) 60.37(6.13) 72.96(6.96) 79.41(5.56)
2 67.85(3.03) 79.48(5.81) 74.44(5.13) 60.37(6.13) 70.59(7.61) 79.33(5.51)
1 67.85(3.01) 79.11(5.72) 74.44(5.13) 60.37(6.13) 73.85(6.53) 79.56(5.30)

Table 8. The recognition results (mean accuracy and standard deviation) of DE features extracted
from separate frequency bands when using different classifiers under different TW lengths with
ELBN. The highest and second-highest accuracies of each classifier are highlighted in bold red and
bold blue, respectively.

TW Length (s) KNN LR SVM GNB MLP Bagging

180 70.67(5.63) 75.78(8.55) 75.70(5.47) 67.48(6.22) 73.33(7.50) 77.70(7.21)
90 74.15(4.91) 79.70(8.02) 77.41(6.01) 69.26(6.98) 75.70(6.82) 80.89(7.79)
60 72.37(5.93) 79.04(8.29) 77.78(5.80) 69.41(6.84) 75.78(7.16) 80.22(7.65)
30 73.19(5.47) 81.56(7.10) 77.26(4.94) 69.41(6.98) 73.70(7.28) 81.48(7.37)
20 72.96(5.31) 81.56(7.74) 77.48(5.32) 69.63(6.94) 76.15(7.84) 81.26(7.73)
10 73.26(5.41) 82.37(6.50) 77.56(5.13) 69.48(6.89) 76.22(6.72) 82.15(6.64)
5 73.41(5.31) 82.59(6.34) 77.56(5.13) 69.41(6.74) 78.37(7.47) 82.30(6.67)
4 73.41(5.22) 82.44(6.60) 77.63(5.24) 69.41(6.74) 77.04(7.40) 82.37(6.57)
3 73.41(5.22) 82.81(6.82) 77.63(5.24) 69.41(6.74) 76.00(6.50) 82.30(6.42)
2 73.48(5.22) 82.96(6.94) 77.63(5.24) 69.41(6.74) 77.19(6.76) 82.22(6.55)
1 73.33(5.16) 82.52(7.13) 77.63(5.24) 69.41(6.74) 76.30(6.44) 82.15(6.81)

When using different TW lengths for emotion recognition, the results shown in
Tables 6 and 7 show that the differences between TW lengths are more obvious than the
results in Tables 3 and 4. The emotion recognition accuracy when using the 2-s or 3-s TW is
6.15% higher than the number when using the 180-s TW for the LR classifier based on PSD
features. The highest accuracy when using the 2-s TW based on DE features is 7.18% higher
than the accuracy when using the 180-s TW for the LR classifier. By comparing the results
from different TW lengths, it can be observed that the best emotion recognition accuracy
is achieved when using the 2-s TW together with the LR classifier, hence this TW length
together with the LR classifier is used for the following online recognition.

Our results show that the 2-s TW with ELBN has the best emotion recognition perfor-
mance. In general, a longer length of TW will lead to fewer amounts of input, which is
beneficial for reducing computational cost [44], while a shorter length will expand the input
scale of features from the temporal dimension, which is capable of capturing EEG transient
changes [45]. However, employing a longer length of TW will undermine reading temporal
EEG data, while using a shorter length will extend the computing time that is inconvenient
to online affective computing. Given that different lengths of TW have different advantages
and disadvantages, a suitable TW length that can balance the contradiction between them
is required, and our results show that the 2-s TW is an optimal choice with the highest
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recognition accuracy. As shown in Table 2, compared with the original 1-s TW length, the
scale of input features is halved when using the 2-s TW, contributing to decreasing the com-
putational cost. Meanwhile, as shown in Tables 5 and 6, the 2-s TW is able to keep emotion
recognition accuracy at a relatively high level, indicating that temporal characteristics of
EEG signals can be effectively extracted for emotion recognition.

ELBN performs well on improving EEG-based emotion recognition according to the
results in Tables 7 and 8. To explore its mechanism for accuracy improvement, samples
were randomly selected from the SEED dataset to demonstrate the changes of EEG features
after ELBN. Given that differences across EEG-based emotions contribute to emotion
recognition [46], significance analysis of PSD features and DE features among the three
emotions was conducted on the five frequency bands to explore the sensitivities of features
for emotion discrimination before and after applying ELBN. The nonparametric Kruskal–
Wallis test was applied on mean values of features in each trial, and the significance analysis
results are shown in Table 9. The results show that there are more features with statistical
significances among the examined emotions after applying ELBN, indicating that feature
sensitivities to human emotions increase after applying ELBN. This would probably be the
reason for recognition accuracy improvement after applying ELBN.

Table 9. The recognition results (mean accuracy and standard deviation) of DE features with different
TW lengths. The red color highlights the results with statistical significance (p ≤ 0.05).

Feature Frequency
Band Processing Fp1 Fpz Fp2 AF3 AF4 C3 C1 Cz C2 C4 C6 P1 Pz P2 P4 P8 PO7 PO3

PSD

Delta

Without
ELBN

.000 .000 .000 .000 .000 .003 .019 .712 .066 .002 .000 .301 .086 .109 .085 .000 .036 .156
Theta .017 .022 .030 .029 .325 .024 .235 .798 .513 .129 .001 .036 .008 .019 .005 .000 .001 .013
Alpha .582 .632 .671 .367 .767 .334 .482 .994 .673 .623 .172 .484 .439 .484 .449 .046 .149 .406
Beta .437 .252 .497 .398 .539 .000 .020 .814 .082 .001 .000 .326 .216 .368 .092 .000 .000 .001

Gamma .218 .032 .246 .064 .457 .000 .000 .454 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000

Delta

With
ELBN

.000 .000 .000 .000 .000 .000 .000 .038 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
Theta .000 .000 .000 .000 .000 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
Alpha .001 .002 .005 .000 .278 .005 .009 .515 .032 .001 .000 .000 .000 .000 .000 .000 .000 .000
Beta .076 .000 .041 .014 .022 .000 .000 .045 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Gamma .009 .000 .016 .014 .050 .000 .000 .011 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

DE

Delta

Without
ELBN

.008 .003 .349 .567 .266 .577 .442 .756 .965 .827 .770 .004 .008 .079 .628 .386 .141 .109
Theta .013 .000 .894 .003 .218 .000 .000 .098 .071 .509 .061 .431 .000 .000 .211 .059 .000 .000
Alpha .000 .000 .000 .000 .061 .352 .728 .143 .000 .003 .030 .000 .000 .013 .000 .013 .002 .068
Beta .000 .001 .056 .476 .494 .000 .002 .000 .011 .000 .000 .114 .000 .013 .063 .466 .000 .007

Gamma .202 .243 .000 .000 .007 .126 .005 .000 .001 .018 .120 .000 .054 .000 .000 .001 .086 .000

Delta

With
ELBN

.000 .000 .000 .053 .001 .014 .000 .010 .212 .061 .186 .000 .000 .000 .000 .000 .016 .000
Theta .000 .000 .095 .000 .000 .000 .000 .001 .000 .000 .000 .000 .000 .001 .000 .000 .000 .000
Alpha .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
Beta .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Gamma .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

5.3. Online Emotion Recognition

A 2-s sliding TW with a 1-s step was used for online emotion recognition with the
LR classifier. The 10 random sets were used with 540 × 10 samples for training and
135 × 10 samples for testing, where 540 and 135 are the numbers of samples for training
and testing, respectively, in one random set, and the number 10 means that there are
10 random sets. In total, 675 × 10 × 179 TWs (i.e., total samples in one random set × total
number of sets × TWs used in one sample) were used to examine the online emotion
recognition performance, and the mean accuracy of the testing samples was used as
the final output. The results when using PSD features or DE features are illustrated in
Figures 4 and 5, respectively. The obvious distance between the red area and blue/green
areas in Figure 4a indicate that the positive emotion samples can be correctively recognized
without being mistakenly recognized as neural or negative emotion samples. Larger gaps
can be found in Figure 4b,c indicating that the neural and negative emotion samples can be
more easily recognized without confusing them with the other emotion samples. Similar
trends can be found in the results on DE features in Figure 5. These results show that the
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2-s TW can be successfully used for online emotion recognition based on EEG signals with
ELBN.
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Figure 4. Online emotion recognition results when using PSD features. The legends are described as
“ground truth emotion _ online predicted emotion” (e.g., positive _ positive means that the ground
truth emotion and online predicted emotion are both positive, while positive _ negative means
that the ground truth emotion is positive, but the online predicted emotion is negative.). The solid
lines represent the median values of probabilities for online predicted results and the boundaries of
the shadow areas illustrate the 25th percentile and 75th percentile values: (a) online recognition of
positive emotion samples; (b) online recognition of neutral emotion samples; (c) online recognition of
negative emotion samples.
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Figure 5. Online emotion recognition results when using DE features: (a) online recognition of
positive emotion samples; (b) online recognition of neutral emotion samples; (c) online recognition of
negative emotion samples.

As a common sense, human emotion usually lasts much longer than 10 s and can even
last several minutes [47]. Using a short TW to continuously recognize human emotion can
support online emotion monitoring applications. Given a reasonable range of TW length, a
shorter TW is beneficial for a more time-efficient solution for online applications because
the recognition would be delayed if a longer TW is used, particularly at the beginning
of EEG signal recording where the first recognition result will only be output when the
EEG signal sequence with the required time length is collected. However, there is a lack
of evidence on the appropriate TW length for EEG-based emotion recognition from a
psychological perspective because EEG signals are easily affected by various factors which
may differ across individuals [25]. Therefore, it is difficult to determine the best TW length.
To simplify this problem, we used recognition accuracy as the evaluation index for TW
selection. Even shorter TW was used in previous studies for EEG data processing. For
example, Abtahi et al. [17] used EEG data from a 20-millisecond TW to train long-short-term
memory (LSTM) and deep belief network (DBN) for emotion analysis.

5.4. Influence of TW Length on Emotion Recognition

The selection of TW length mainly affects emotion recognition accuracy as well as
model complexity caused by the number of input features. As shown in Table 2, a longer
TW corresponds to fewer input features, which means that the model complexity would
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be lower. However, fewer input features when using a longer TW may lead to a lower
recognition accuracy. The SVM classifier results in Tables 5 and 6 show that the highest
recognition accuracy is achieved when the TW length is 30 s and 5 s for PSD and DE features
without ELBN, respectively. However, the recognition accuracy reaches a bottleneck and
would not continuously increase with the shortening TW length. The results with ELBN in
Tables 7 and 8 show similar trends.

Given that a shorter TW can capture more features with a higher model complexity,
but the recognition accuracy would not continuously increase with the shortening TW
length, a balanced TW length selection strategy should be considered, which would be
another interesting topic for further investigation. Although the LR results in Tables 7 and 8
show that the highest accuracy is achieved when using the 2-s TW, using a slightly longer
TW (e.g., 3-s) would also be a good choice due the generally stable accuracy performance
with a lower model complexity. Determining which TW is the best choice would rely
on the selection criteria. In this paper, we do not focus on the balance strategy between
recognition accuracy and model complexity but just use the recognition accuracy as the
selection criteria. In future work, how to reasonably select a TW by comprehensively
considering recognition accuracy and model complexity needs deeper analysis.

Another problem is that different frequency bands with different characteristics have
different sensitivities to emotions [48], leading to the result that different bands may
have different optimal TW lengths. In our experiments, to evaluate the comprehensive
performance of TWs, features extracted from different frequency bands are put together for
training or testing, making it impossible to investigate the selection of TW length for each
frequency band. We will further investigate this interesting topic in our future work.

6. Conclusions

The effectiveness of different time window (TW) lengths on emotion recognition is
examined based on EEG signals before and after applying experiment-level batch normal-
ization (ELBN). The results show that the highest recognition accuracy is achieved when
using the 2-s TW for feature extraction. The highest accuracies when using PSD features
and DE features are 79.48% and 82.96%, respectively. The developed ELBN increases the
feature sensitivities to emotion discrimination, which greatly contributes to the recognition
accuracy improvement. A limitation of this study is that only the classical classifiers are
used for emotion recognition. Advanced algorithms based on neural networks and deep
learning have been extensively developed for emotion recognition in recent years [48–51].
Our future work will focus on deploying the explored sensitive features after ELBN in
the 2-s sliding TW for emotion recognition using advanced algorithms and analyzing the
selection of TW length for each frequency band.
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