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A deep learning method 
for automatic segmentation 
of the bony orbit in MRI and CT 
images
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David Alonso‑Caneiro1*

This paper proposes a fully automatic method to segment the inner boundary of the bony orbit in two 
different image modalities: magnetic resonance imaging (MRI) and computed tomography (CT). The 
method, based on a deep learning architecture, uses two fully convolutional neural networks in series 
followed by a graph-search method to generate a boundary for the orbit. When compared to human 
performance for segmentation of both CT and MRI data, the proposed method achieves high Dice 
coefficients on both orbit and background, with scores of 0.813 and 0.975 in CT images and 0.930 and 
0.995 in MRI images, showing a high degree of agreement with a manual segmentation by a human 
expert. Given the volumetric characteristics of these imaging modalities and the complexity and time-
consuming nature of the segmentation of the orbital region in the human skull, it is often impractical 
to manually segment these images. Thus, the proposed method provides a valid clinical and research 
tool that performs similarly to the human observer.

The bony orbit (or eye socket) is the section of the skull containing the eyeball and surrounding ligaments and 
muscles. The orbit is not a single contiguous bone, instead consisting of seven bones and five openings. Clinically, 
the complex four-sided pyramidal configuration is divided into orbital roof, medial and lateral wall, and orbital 
floor1. The growth of the orbit correlates with ocular growth in foetuses2 and its shape is generally static in adults, 
with the exception of trauma such as fractures. This anatomical region can be imaged with magnetic resonance 
imaging (MRI)3,4, however computed tomography (CT) is the preferred modality for imaging5,6 because it is 
faster, cost effective, and provides better sensitivity to fractures7 which are the most common form of trauma 
associated with the orbit3,8. MRI and CT are both forms of non-invasive imaging that allow for measurement 
of internal structures in living subjects, and can be used to image the eye and surrounding ocular structures7. 
MRI uses magnetic fields to produce images, while CT uses ionising x-rays, hence the same structure will appear 
different in the corresponding images, even in scans of the same subject. Both modalities can be used to image 
a variety of structures, with MRI providing better imaging of soft-tissue, and CT providing better imaging of 
bones3. Acquisition times also differ, with MRI scans taking longer to acquire images3. Despite differences 
between the imaging modalities, the bony orbit region has been shown to be comparable when segmented in MRI 
and CT of the orbit. However, small but statistically significant shape differences were present between the MRI 
and CT volumes, with MRI models underestimating the size of orbit region when compared to the CT models3. 
Figure 1 shows an example of a cross-section CT and MRI image through a similar region of the bony orbit of 
the same subject, with the subplot showing a zoomed region with a delineation of the bony intraorbital surface.

Given the volumetric nature of these imaging modalities, segmentation of the complex orbital region in the 
human skull can be a time-consuming task. Manual segmentation and/or correction of CT images by an experi-
enced clinician takes in the order of 30 min1, while segmentation from MRI can take up to 4 h for an intact orbit3 
and 4–8 h for an orbit with fractures9. Thus, automatic or semi-automatic methods of segmentation are of great 
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value for clinical and research applications. MRI and CT imaging modalities are widely used as diagnostic tools 
to assess ocular conditions, traumatic injuries, to visualize benign, malignant, and inflammatory processes in 
the orbit, as well as creating the basis for producing patient-specific physical models for pre-bending of orbital 
reconstruction plates7,9–12. Therefore it is important to develop methods for image segmentation, like those 
proposed in this study, since the structural information will support and complement clinical decision making.

In recent years, machine learning methods are commonly used for medical image analysis, especially for seg-
mentation tasks, as they provide state of the art performance. Within the domain of medical image analysis, fully 
convolutional networks, a subtype of neural networks focused on working on the whole of a 2D cross-sectional 
image at once, are often used for segmentation or labelling tasks. Neural networks are commonly used for vari-
ous tasks associated with MRI imaging, and show state of the art performance on a range of image analysis tasks 
including denoising13,14, super-resolution analysis of specific types of scans15–17, and synthesis of images for data 
augmentation18. Machine learning has been used for segmentation of MRI scans, with brain segmentation being 
a common application of these models19–22 as well as other soft tissues segmentation tasks such as the lungs23, 
abdominal organs24, or pelvic organs25. Similarly, a range of studies have proposed the use of machine learning 
in the analysis of CT images, where common applications include bone26,27 and organ segmentation28,29. Addi-
tionally, there has been research into image modality translation, converting MRI images to their equivalent CT 
representation, using neural networks30.

Broadly speaking, deep learning segmentation methods can be performed with fully convolutional networks 
or patch-based classification techniques. The former works on the entire image to make a per-pixel decision in 
a single run through the trained network, while the latter works on small sections of the image (patches) to pre-
dict the likelihood that this patch belong to a particular region (i.e. class) of interest. After this, the patch travels 
through the network to construct the prediction for the entire image. Fully convolutional networks take less time 
to process an image than the patch-based methods when tasked with whole image segmentation or labelling, 
and present comparable or superior performance in common accuracy metrics31. One of the most popular fully 
convolutional neural networks for image segmentation is U-Net32 which was proposed for use of in cell histology 
segmentation and has since been used in many other automatic methods for segmentation and labelling. U-Net 
has been used to localise and segment intervertebral discs in MRI images33 and to segment tissues in CT images 
such as livers and tumours34,35 or various organs in the chest36.

While commercial software applications (iPlan CMF: Brainlab AG, Munich, Germany; Bonelogic CMF 
Orbital: Disior, Helsinki, Finland) are available for the automated segmentation of the orbit from CT images, 
there does not appear to be any prior use of fully automatic methods for the segmentation of the orbit with MRI 
scans. At the time of writing, the reported studies used either fully manual segmentation, or combined manual 
segmentation with a thresholding based method, for delineating the bony orbital surface3,37. In this work, a 
novel two-stage deep learning segmentation method that extracts the intra-orbital bony contour in MRI and 
CT images is proposed. The proposed fully automatic method can be adapted to segment both imaging modali-
ties, which allows to directly compare the network performance with MRI and CT images. The organization 
of the paper is as follows: “Methods” presents the proposed method and describes the data set and metrics for 
evaluation. “Results and discussion” compares the performance of the automated technique in the CT and MRI 
imaging modalities versus the manual segmentation by an experienced observer, while concluding remarks are 
provided in “Conclusion”.

Figure 1.   An example of a coronal plane image from the dataset for both T1-weighted 3 T MRI (A) and CT 
(B). Images belong to the same subject and represent approximately the same cross-section. A subplot of the 
region of interest (right orbit) for both imaging modalities is shown without (C upper panel MRI, lower panel 
CT) and with (D upper panel MRI, lower panel CT) the boundaries of the intraorbital bony contours in green.
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Methods
A three-stage process is proposed for segmentation of the orbit and Fig. 2 provides an overview of the stages 
used to extract the boundary of interest. In the first stage, a full semantic neural network is used to localise a 
coarse estimate of the centroid of the orbit, which is later used for further analyses. This localisation is done 
at the image level by taking the centroid of all the largest single connected components after post-processing. 
The second step also uses a fully semantic neural network to extract the boundary probability map of the orbit 
in a local area of the image around the centroid proposed in stage one. The final stage is a segmentation of the 
proposed boundary within the probability map using a graph-search technique.

In this work, two independent networks are used to maximise the performance of each step, although both 
networks could be trained simultaneously to both localise and segment, here the two networks are kept independ-
ent to separately optimise the performance for each task (this is shown in the results section). Stages one and 

Figure 2.   A diagram of the general image analysis process, with each row representing one of the three 
proposed stages. In order (top to bottom), the initial stage is the global extraction of the region of interest, 
followed by the local segmentation of the orbit boundary, and finally the boundary extraction. The first two 
stages use deep learning methods to produce a boundary likelihood map, while the final processing step use 
image processing techniques to extract the boundary.
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two have the same network architecture, which is used for different purposes (the first stage performs a region 
location and the second stage performs a boundary segmentation). Thus, here the network is first introduced, 
before going into the specifics of the method. The network architecture used in this method is shown in Fig. 3. 
This neural network architecture uses a variant of a CNN called an “encoder-decoder” network. The encoder uses 
a number of convolutional layers for feature extraction and pooling layers for reducing spatial resolution and 
increasing context. The decoder is used to learn patterns and extract features to iteratively increase the spatial 
resolution and construct the output. For this study, an updated version of U-Net was used. The modification of 
the network includes the addition of batch norm layers38 in every encoder and decoder block, and a dropout 
layer39 at the bottleneck. Both batch norm and dropout are commonly used to improve neural network training 
and performance but were not included in the original U-Net implementation. Due to the fully convolutional 
nature of U-net, the same network can function on images of multiple sizes, provided the dimension of the 
original image can be pooled the required number of times.

Stage 1: Global extraction of the orbit region.  This initial step aims to localize the region of the orbit 
within the image. The ideal truth generated by this network would be a perfect labelling of the inner volume 
of the orbit, however in practice there is an uncertainty in the probability maps generated by this network. It is 
likely that the class imbalance in the data (i.e. boundary pixels represent a small portion of the whole image) 
may negatively impact the segmentation performance, even if the network is trained with a loss function that 
can handle data imbalance. Visual assessment of the network output demonstrates that in nearly all cases it man-
ages to label the correct area, but the delineation tends to be coarse and not always to an acceptable quality for 
segmenting the orbit. Thus, this initial step is used to extract the region of the orbit. To aid in better localisation 
of the orbit, the output of this network is post-processed, first by filling all holes within the image, and then by 
discarding all but the largest single connected component. The centroid of this component is then calculated and 
used as the region’s proposed central value of the orbit for stage 1. The region extracted has constant dimensions 
of 128 pixels by 128 pixels in both imaging modalities.

The global network was trained with the Adam optimiser with a default initial learning rate of 0.001 and no 
learning rate change during training. The loss function is a cross-entropy loss and was trained for 100 epochs 
with the network with the best validation accuracy chosen as the final network, the mini-batch used for each 
training iteration was set to 128. The training data is shuffled before each training epoch.

Stage 2: Segmentation of orbit boundary.  Similar to the first step, the local network utilizes a modi-
fied version of the U-net architecture presented in Fig.  3. This network takes the local region of the image 
containing the orbit and generates a probability map where high values correspond to a pixel being a boundary 
pixel between the orbit and surrounding tissue. The truth generated by this network is a boundary rather than 
a filled-in shape, with the ideal results being a probability map that activates where the orbit transitions to the 
cavity. Unlike the global network, there is no post-processing of the network output.

The network is trained with different parameters to the global network. Specifically, a stochastic gradient 
descent with momentum, an initial learning rate of 0.01, and no learning rate change during training. The loss 
function is a cross-entropy loss, and a 500 epoch training time with the network, with the best validation accuracy 

Figure 3.   Diagram of the fully semantic neural network (U-net) used in for stages 1 and 2 of the method. An 
example of the MRI image for the stage 2 (boundary prediction task) is shown. The prediction maps use grey 
colour scale, where values close to white indicate a high likelihood of a boundary being present. Conv indicates 
convolutional layer, BN the batch normalization and ReLU the rectified linear activation unit.
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chosen as the final network, the mini-batch used for each training iteration was set to 128. The training data is 
shuffled before each training epoch.

Step 3: Boundary extraction.  The third and final step of the method involves segmenting the boundary 
from the proposed prediction map estimated by the local network. The boundary is essential for generating 
virtual and physical 3D models, which facilitate preoperative planning, pre-bending of orbital reconstruction 
plates, surgical navigation, and postoperative assessment3,9,11,40. This provides important information for clini-
cians and researchers and can be used to plan surgical intervention, and 3D reconstruction of the tissue. The 
probability maps produced in Step 2 appear as a ring representing the location of the boundary of interest. 
Although a method such a circular Hough transform could be used to fit a circle to each slice of a scan, the orbit 
becomes irregular in shape (triangular) at smaller sizes (i.e. back of the eye) and this approach can fail or provide 
suboptimal region extraction. For the efficiency of using a single segmentation method for every scan within the 
volumetric acquisition, a graph-search segmentation was used. Given that a roughly circular boundary proves 
slightly difficult to segment by a graph-search, the image is transformed from Cartesian into Polar coordinates. 
This is similar to unwrapping the image around the centre and converts the ring shape into a curved line. The 
transformed image is segmented as a single path then the resulting boundary is transformed back from Polar to 
Cartesian coordinates.

To extract the path, a Dijkstra’s graph-search algorithm was used. This methods has been widely used and 
described in a range of ocular applications to extract boundary information34,41. In brief, the method finds the 
shortest path from one side of the image to the other. The pixel within the image representing nodes of the graph. 
The connection between nodes (pixels) is weighted inversely to the probability of them being a boundary, as 
shown by the equation below

where Wab is the weight of the edge between nodes (pixels), a and b, Pa is the probability node a is a boundary, 
and Pb is the probability node b is a boundary. The starting and finishing points of the path are automatically 
selected at opposite corners of the image. Two additional columns of pixels are added each side of the image with 
low weights. This encourages the graph-search to quickly connect with the path of interest and these additional 
columns are removed after the algorithm has terminated.

In practice, the segmentation has a tendency to vary in radius when nodes were connected diagonally, so 
the node (graph) connections were restricted to only horizontal (left to right) and vertical movements (up and 
down) in polar coordinates. This has the effect of reducing the node connections along solely radius or solely 
angular degree (polar) directions while not limiting connections along both radius and angular degree direc-
tions at the same time.

Post‑processing.  Post-processing of the image is performed after the 3-step process is completed, with 
each image being averaged with its preceding and succeeding scans to prevent any outlying regions of confusion 
from decreasing performance. Given the ocular orbit is monotonically decreasing in width and height away 
from the medial slice, this serves to constrain any cases where a single under- or over-estimation would lower 
performance. Due to the lack of preceding and succeeding scans respectively, the first and last scans are omitted 
from the subsequent analysis.

Data.  A dataset that contains images from the two different scanning modalities (CT and MRI) from the 
same group of subjects was used to assess performance of the method. CT and MRI scans, available from a 
previous study3, were collected and the bony orbits were manually extracted from 11 subjects (9 male), with 
the patients mean age of 30 years. The CT dataset was retrieved from various routine clinical CT scanners that 
image the bony orbit, the data was acquired using a standard protocol of 120 kVp and a 0.5 to 1.0 mm slice 
thickness. The MRI was performed on a clinical 3-T MRI scanner (Trio Tim, Siemens, Erlangen, Germany) with 
a standard head coil to obtain adequate bone soft tissue contrast and the following specifications: T1-weighted 
multiplanar resolution sequence; repetition time of 2.030 ms, echo time of 4.16 ms, average of 1, frequency of 
123.26 Hz, flip angle of 9 degree, pixels size 0.5 mm and slice thickness of 0.5 mm. This study was approved by 
the human research and ethics committees at the Royal Brisbane and Women’s Hospital and at the Queensland 
University of Technology. All participants were over 18 years old and signed an informed consent agreement. 
All participants were treated according to the tenets of the declaration of Helsinki. In this dataset, only a single 
bony orbit, which was free from fracture, was manually segmented within each scan and that half of the image 
was fed to the network for image analysis. It is worth noting that both image modalities produce a volumetric 
scan for each subject, however in this study the coronal images are treated as individual images for the purpose 
of processing and training the network. Thus, in this work the terms ‘image’ or ‘slice’ refer to a coronal slice of 
the volumetric data. Analysis is performed both for the individual image (slice of the volumetric scan) and the 
volumetric level for completeness.

All MRI scans had the same digital resolution of 352 × 512 pixel 16-bit tiff files, however the number of images 
per subject differed. All MRI scans were taken with a voxel size of 0.5 × 0.5 × 0.5 mm. The MRI data was broadly 
split into a training set of 6 subjects consisting of 366 scans and a testing set of 5 subjects consisting of 340 images 
with the orbit present. Images from CT scans were also collected as 16-bit tiff files, however the image size and 
resolution of the scans differed from subject to subject. The CT scan voxel sizes ranged between 0.3 mm to 
0.51 mm in width, 0.3 mm to 1 mm in height, and all had an axial plane spacing of 0.5 mm. The full acquisition 
parameters for both datasets has been described previously3. The CT scans were resized, cropped, or interpolated 
as necessary to be of an identical resolution as the MRI (0.5 mm in all image planes) since standardization is 

Wab = 2− (Pa + Pb)
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necessary for performance comparisons across the different imaging modalities. The CT data was divided the 
same way as the MRI data, resulting in a training set of data from 6 subjects consisting of 443 scans, and a testing 
set of data from 5 subjects consisting of 363 scans.

For stage 1 and 2, Data augmentation techniques were included to improve data diversity. During training, 
images were reflected horizontally with 50% probability, and a + /- 10 degrees rotation angle was chosen randomly 
from a continuous uniform distribution to rotate the images. This enhances the diversity of the data and has a 
positive effect on the learning and performance of the network.

For both datasets, only frontal plane images with the orbit present as a closed contour were included in the 
final dataset. Thus, the orbit is treated in this paper as a bounding structure by closing off all openings. For the 
sake of comparing both methods, the split of the data (in terms of subjects) was the same across methods. The 
slightly different number of total images per group, is due to the different instruments’ image resolution.

In both cases, a K-fold cross-validation was used with k = 6 and each subject serving as the validation data set 
once, while keeping the testing set fixed. The training was performed for each imaging modality (MRI and CT) 
independently. For each fold, the training set contains 5 participants data and the validation set 1 participants 
data. In this way, all 6 participants data were used at least once within the validation. This technique uses multiple 
splits within the data to reduce the effects of randomness of the split42. This approach results in multiple trained 
models and allows us to also evaluate the effect of ensemble, which is the combination of multiple outputs of 
machine learning models to improve stability of the final prediction and it can also improve the overall perfor-
mance of the model. The ensemble method uses majority voting, thus it takes the predictions from all networks 
and it computes the majority vote to provide a final boundary prediction map, and finally segments the single 
resulting prediction map.

Prior to input to either network, all image pixel intensities were normalised to fall between the range of 0 
and 1 (both inclusive). Additionally, the CT images for the global network were pre-processed to increase the 
contrast of the image, this is done by saturating the bottom 1% and the top 1% of all pixel values, which reduces 
the effect of extreme outliers influencing the intensities of the input images.

Metrics for image evaluation.  Manually segmented images, available from a previous study3, were used 
as the ground truth for training as well as performance comparison. For the first stage of the method (extrac-
tion of the orbit region), the evaluation of performance was done by calculating the centroid errors by taking 
the Euclidean distance between the true centroid and proposed centroid (this metric is reported in pixels). For 
the second stage (boundary detection), the performance was compared by evaluating the Dice coefficient, also 
known as F1 score, for both background and orbit classes within the region extracted around the orbit (128 × 128 
pixels). Background indicates any pixel that does not belong to the orbit boundary. This evaluation shows the 
accuracy for both positive predictive power and negative predictive power, which a 1-class Dice coefficient may 
fail to fully explain. Average Dice coefficients are calculated for both the per-slice (per-image) as well as for the 
entire volume.

where TP is the number of true positives, FP is the number of false positives, and FN is the number of false nega-
tives, all calculated in a per-pixel basis. Values for each fold, the mean of all folds, and the ensemble are presented. 
A boundary error calculation is performed by calculating the difference between the truth and prediction, this 
provides the boundary errors as the mean absolute error. Similarly, the Hausdorff distance (the greatest of all 
the distances from a point in one set to the closest point in the other set) was extracted as an additional metric 
to extract the boundary error.

Results and discussion
This study explores the performance of a custom developed multi-step deep learning method to extract the orbit 
in two different imaging modalities. Given that the image appearance of MRI and CT image modalities is very 
different, the proposed method is applied to both imaging modalities separately, which should improve perfor-
mance. Tables 1, 2 and 3 present the results for the MRI and CT datasets. Figure 4 shows some representative 
images to demonstrate the performance across the two imaging modalities. The technique shows differences in 
performance across the dataset, which are worth investigating. For the MRI dataset the ensemble performance 
did not show a clear improvement across the different Dice metrics in comparison to the mean of the individual 
folds. For this MRI dataset, the maximum volumetric Dice (best performance) is found in the individual fold with 
0.917 for orbit and 0.989 for the background, or 0.825 and 0.987 if the per-slice Dice is considered (Table 2). For 
the CT dataset, the ensemble performance did show a significant improvement in performance when compared 
to the mean of the individual folds. The volumetric Dice ensemble performance is 0.930 for orbit and 0.995 for 
the background, or 0.887 and 0.995 if the per-slice Dice is considered (Table 3). The inferior values of the per-
slice Dice compared to the volumetric Dice are due to the anatomical shape of the region. As the posterior orbit 
region becomes smaller, small pixel classification errors have a big impact on the Dice metric and subsequently 
on the per-slice Dice.

When comparing the method for the two imaging modalities, the CT results show a slightly superior perfor-
mance to the MRI for the bony orbit, and marginally superior for the background. This superior performance 
with the CT is not surprising since this instrument provides a clearer imaging of the bony region of interest, 
showing a greater contrast between background and bone that greatly facilitates the segmentation process. This 
superior performance with the CT data is also observed in the initial centroid detection which shows an error 
of 20 pixels for the MRI and 3.05 for the CT. Considering the square ROI size of 128 pixels, this corresponds to 

Dice =
2× TP

2× TP + FP + FN
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a 15% and 3% error in the centroid localization for the MRI and CT respectively. Similarly, when calculating the 
boundary error, the method used with the MRI data shows slightly higher absolute errors (MAE = 2.45) than 
with the CT data (MAE = 1.20) in the ensemble model.

For individual folds, a negative correlation between centroid error and orbit Volumetric Dice was found, 
with r2 = − 0.81 and r2 = − 0.85 for the MRI and CT dataset, respectively. Thus, indicating that the localisation 
network (stage 1) may have an impact on the subsequent output of the centroid position computed from stage 
2 (centroid accuracy).

To assess the effect on performance of a single stage versus the 2-stage method, and to demonstrate the 
importance of localizing the area of interest, an additional analysis was performed on two different versions of 
the dataset. The first dataset contained half of the image (to avoid the detection of the unlabelled eye), while the 
second dataset contained images that were cropped on a region of interest around the label. Both used the ensem-
ble mode and the same training specifications as stage 2. Across the testing dataset the mean Dice coefficient 
improved by 10% and over 30% for the MRI and CT dataset respectively when segmenting the second dataset 
with the smaller regions of interest. The use of 2-stage architecture has also been applied in other ophthalmic 
studies to segment the regions of interest43,44.

Table 1.   Results summary with the mean ± standard deviation for centroid and boundary errors for the MRI 
and CT datasets. MAE indicates the mean absolute error. The values for the individual folds are presented 
along with their mean and the ensemble (based on majority voting).

Fold

MRI dataset CT dataset

Centroid errors (pixels) Boundary MAE (pixels) Centroid Errors (pixels) Boundary MAE (pixels)

1 18.69 ± 24.73 2.10 ± 0.67 4.00 ± 1.73 2.04 ± 0.93

2 19.47 ± 29.46 2.40 ± 0.52 6.02 ± 2.75 2.77 ± 1.45

3 15.72 ± 13.45 2.85 ± 1.59 5.45 ± 0.43 1.39 ± 0.64

4 18.24 ± 25.74 1.68 ± 0.34 2.04 ± 1.11 1.07 ± 0.30

5 11.87 ± 15.60 1.91 ± 0.31 8.27 ± 3.00 2.17 ± 0.80

6 23.64 ± 31.89 2.26 ± 1.24 2.36 ± 1.55 1.06 ± 0.41

Fold Mean 17.93 ± 23.47 2.20 ± 0.78 4.69 ± 1.76 1.75 ± 0.76

Ensemble 20.43 ± 26.48 2.45 ± 0.74 3.05 ± 1.42 1.20 ± 0.53

Table 2.   Results summary with the mean ± standard deviation for volumetric and per-slice Dice for the MRI 
dataset. The values for the individual folds are presented along with their mean and the ensemble (based on 
majority voting).

Fold Vol. dice (bony orbit) Vol. dice (background) Per-slice dice (bony orbit) Per-slice dice (background)

1 0.878 ± 0.052 0.983 ± 0.007 0.781 ± 0.133 0.982 ± 0.014

2 0.889 ± 0.016 0.985 ± 0.002 0.771 ± 0.147 0.986 ± 0.010

3 0.912 ± 0.052 0.988 ± 0.007 0.789 ± 0.095 0.986 ± 0.007

4 0.880 ± 0.027 0.984 ± 0.003 0.795 ± 0.147 0.984 ± 0.015

5 0.917 ± 0.027 0.989 ± 0.003 0.825 ± 0.067 0.987 ± 0.008

6 0.881 ± 0.056 0.984 ± 0.007 0.789 ± 0.166 0.983 ± 0.015

Fold Mean 0.893 ± 0.078 0.986 ± 0.010 0.791 ± 0.126 0.985 ± 0.012

Ensemble 0.813 ± 0.069 0.975 ± 0.008 0.768 ± 0.160 0.982 ± 0.011

Table 3.   Results summary with the mean ± standard deviation for volumetric and per-slice Dice for the CT 
dataset. The values for the individual folds are presented along with their mean and the ensemble (based on 
majority voting).

Fold Vol. dice (bony orbit) Vol. dice (background) Per-slice dice (bony orbit) Per-slice dice (background)

1 0.888 ± 0.052 0.992 ± 0.004 0.812 ± 0.089 0.992 ± 0.004

2 0.782 ± 0.154 0.983 ± 0.013 0.761 ± 0.081 0.982 ± 0.014

3 0.911 ± 0.033 0.994 ± 0.002 0.847 ± 0.076 0.994 ± 0.002

4 0.927 ± 0.023 0.995 ± 0.002 0.883 ± 0.060 0.995 ± 0.002

5 0.841 ± 0.088 0.987 ± 0.008 0.749 ± 0.093 0.987 ± 0.008

6 0.930 ± 0.029 0.995 ± 0.002 0.887 ± 0.069 0.995 ± 0.002

Fold mean 0.887 ± 0.058 0.991 ± 0.004 0.842 ± 0.071 0.991 ± 0.004

Ensemble 0.930 ± 0.032 0.995 ± 0.002 0.864 ± 0.090 0.995 ± 0.002
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Additionally, to compare the performance of the model versus other deep learning methods, the proposed 
2-stage method was used, substituting the U-net model for a different deep learning architecture. Particularly 
three models were tested, all are based on a DeepLab v3 + convolutional neural network for semantic image 
segmentation with different pretrained models, including ResNet 18, MobileNet v2 and ResNet 50. To facilitate 
comparison, results are provided only for the final ensemble model (Table 4). Similar to the previous results, the 
overall Dice metrics showed higher values for the CT than the MRI dataset. For the CT, the proposed method 
showed a sightly superior performance to the ResNet 18 and the MobileNet v2, while the difference is larger with 
the ResNet 50, which shows the worst performance. Similar for the MRI dataset, the ResNet 50 performance 
was worse than the other models. The difference from ResNet 18 or MobileNet v2 with the proposed model are 
small, with the proposed method outperforming ResNet 18 and MobileNet v2 in three out of the four reported 

Figure 4.   A visual comparison of the performance of the proposed method for examples from CT (left A, C 
and E) and T1-weighted 3 T MRI (right B, D and F) imaging modalities. Images belong to the same subject and 
represent approximately the same cross-section. The subplots show different cross-sections (depths) from the 
same orbital volume. Green dotted line represents the proposed automatic method and the dotted magenta is 
the ground truth. The dice include the orbit (left) and background (right) values.
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metrics. The poorer performance of ResNet 50 across both imaging modalities may be associated with the ResNet 
50 model’s complexity. ResNet 50 has 23 million trainable parameters while ResNet 18 and MobileNet v2 have 
11 and 3.4 million parameters respectively. A larger image dataset may be needed to train and improve ResNet 
50 performance.

Table 5 provides a summary of the results while assessing the Hausdorff distance (the greatest of all the dis-
tances from a point in one set to the closest point in the other set, in here the ‘set’ represents the segmentation 
points). Similar to overall metrics, a superior performance (lower distances) can be observed for the CT dataset, 
which is expected since the orbital boundary is better defined in this imaging modality. The difference across 
the different tested models is only marginal. For the MRI dataset, the differences are more pronounced with the 
proposed model and MobileNet v2 showing a superior performance. Based on the comparison with different 
deep learning methods, the proposed technique based on the U-net network seems to compare favourably for the 
image segmentation tasks, providing comparable or sightly superior performance across the reported metrics. 
However, other DL architectures may also be applicable to this image segmentation task.

Since we do not have access to the implementation of previously published methods or access to previously 
used datasets, comparison with results from the literature is limited. The results are not directly comparable with 
the findings of clinical studies as they typically report orbital segmentation accuracy in terms of surface-based 
deviations or orbital volumes. The only comparable study1, reports a mean Dice coefficient of 0.881 ± 0.035 for 
the automated model-based segmentation of orbital volumes from clinical cone beam CT (CBCT) scans, which 
has slightly lower performance than the proposed method. Using the same automated model-based method for 
the segmentation of orbital volumes from CBCT scans of 30 patients, Wagner et al. 2016 found no significant 
differences between manually segmented (ground truth) and automatically segmented orbital volumes45. As Dice 
coefficients of the proposed are only slightly higher, this would suggest that the accuracy of the presented method 
is in the clinically acceptable range. The obtained MAEs appear to confirm this. While the MRI dimensional 
MAE of 1.2 mm is double that of the corresponding CT error of 0.6 mm, both are below the acceptable 2 mm 
tolerance for surgical reconstruction of the orbital bony anatomy46.

In terms of processing time, the proposed method can fully segment the orbit in an entire volumetric scan 
in around 1.5 min for the MRI dataset and 3 min for the CT dataset. While commercial software applications 
can segment an entire orbit from CT within the same timeframe, the proposed method presents a significant 
step forward for the automated segmentation of MRI data. Even in its present form, the method could augment 
manual segmentation of the orbit from MRI, which should significantly reduce the current manual segmenta-
tion times which can be up to 4 h3. The prohibitively long segmentation times of the orbit from MRI compared 
to CT are currently the limiting factor for MRI to be routinely used as a first-line imaging modality for orbital 
trauma3,9,37, which would otherwise be attractive due to its non-ionising radiation.

Table 4.   Results summary with the mean ± standard deviation for volumetric and per-slice Dice scores for the 
CT and MRI datasets. The values represent the final ensemble deep learning model and are based on majority 
voting. Models with an asterisk (*) are based on a DeepLab v3 + convolutional neural network for semantic 
image segmentation with a specific pretrained model.

Method Vol. dice (bony orbit) Vol. dice (background) Per-slice dice (bony orbit) Per-slice dice (background)

CT

Proposed 0.930 ± 0.032 0.995 ± 0.002 0.864 ± 0.090 0.995 ± 0.002

ResNet 18* 0.913 ± 0.029 0.986 ± 0.002 0.840 ± 0.094 0.970 ± 0.002

MobileNet v2* 0.911 ± 0.032 0.987 ± 0.001 0.845 ± 0.089 0.972 ± 0.002

ResNet 50* 0.886 ± 0.039 0.964 ± 0.002 0.828 ± 0.102 0.937 ± 0.003

MRI

Proposed 0.813 ± 0.069 0.975 ± 0.008 0.768 ± 0.160 0.982 ± 0.011

ResNet 18* 0.822 ± 0.058 0.934 ± 0.012 0.709 ± 0.277 0.924 ± 0.013

MobileNet v2* 0.855 ± 0.041 0.947 ± 0.009 0.730 ± 0.232 0.959 ± 0.012

ResNet 50* 0.818 ± 0.057 0.936 ± 0.011 0.721 ± 0.236 0.917 ± 0.013

Table 5.   Results summary with the mean ± standard deviation for the Hausdorff distance for the CT and 
MRI datasets. The values represent the final ensemble deep learning model and are based on majority voting. 
Models with an asterisk (*) are based on a DeepLab v3 + convolutional neural network for semantic image 
segmentation with a specific pretrained model.

Method CT (pixels) MRI (pixels)

Proposed 3.121 ± 1.442 4.737 ± 2.600

ResNet 18* 2.933 ± 1.123 6.443 ± 2.925

MobileNet v2* 3.113 ± 1.205 4.933 ± 2.260

ResNet 50* 3.549 ± 1.250 7.173 ± 2.966
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A limitation of the proposed method is that it does not generalise to segment the orbit’s entrance as the 
data was modelled as a closed boundary. The hyperbolic paraboloid shape of the orbital entrance47 results in 
discontinuous boundaries of the bony anatomy in the frontal plane images. For the same reason, segmentation 
of a fractured orbit in MRI and CT images is not yet feasible with this method. We intend to include the seg-
mentation of the orbit’s entrance as a future extension to the method, however, certain aspects of the process 
may have to be changed.

Despite the promising results, the small available training dataset is another limitation in the current study 
that may affect performance. It is reasonable to expect that a larger dataset would improve the accuracy of the 
method. While considering the dataset, it is worth noting that MRI images contain a lot more detail (i.e. tissue 
detail) than the CT, which have a more uniform feature distribution (Fig. 4). This may further emphasize the 
importance of having extra data for model training, particularly in the case of MRI. Exploring deep learning 
strategies that can generate synthetic medical images such as data augmentation techniques48, or generative 
adversarial networks49,50, may be required.

Conclusion
This paper presents a novel method for automatically segmenting the bony orbit within scans from two clinical 
imaging modalities (MRI and CT). The proposed method is an end-to-end two-stage deep framework that first 
localizes the region of interest, followed by a fully semantic segmentation on this region of interest and shows 
a high level of agreement with human manual segmentation across both modalities. The method is also signifi-
cantly faster than manual segmentation, with a single volume fully segmented in around one and a half minutes 
for the MRI, and three minutes for the CT, while an expert may take hours to manually segment the same volume 
for a single subject. The performance demonstrated that the proposed method provides a tool that can be useful 
for both clinical and research purposes.

Data availability
The datasets analysed during the current study are currently not publicly available. However, the algorithms 
developed in this work are available from the corresponding author on reasonable request.
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