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Abstract: Mucopolysaccharidosis type I (MPS I) is a progressive lysosomal storage disease,
with neurological and visceral involvement, in which early diagnosis through newborn screening
(NBS) and early treatment can improve outcomes. We present our first 5 years of experience with
laboratory and clinical management of NBS for MPS I. Since 2015, we have screened 160,011 newborns
by measuring α-L-iduronidase (IDUA) activity and, since 2019, glycosaminoglycans (GAGs) in dried
blood spot (DBS) as a second-tier test. Positive screening patients were referred to our clinic for
confirmatory clinical and molecular testing. We found two patients affected by MPS I (incidence of
1:80,005). Before the introduction of second-tier testing, we found a high rate of false-positives due to
pseudodeficiency. With GAG analysis in DBS as a second-tier test, no false-positive newborns were
referred to our clinic. The confirmed patients were early treated with enzyme replacement therapy
and bone-marrow transplantation. For both, the clinical outcome of the disease is in the normal range.
Our experience confirms that NBS for MPS I is feasible and effective, along with the need to include
GAG assay as a second-tier test. Follow-up of the two positive cases identified confirms the importance
of early diagnosis through NBS and early treatment to improve the outcome of these patients.

Keywords: mucopolysaccharidosis type I; expanded newborn screening; lysosomal disorders;
second-tier test; tandem mass spectrometry; α-L-iduronidase; glycosaminoglycans; dermatan sulfate;
heparan sulfate

1. Introduction

Mucopolysaccharidosis type I (MPS I) is an autosomal-recessive lysosomal storage disease (LSD)
caused by a deficiency of the enzyme α-L-iduronidase (IDUA), involved in the degradation of two
glycosaminoglycans (GAGs), dermatan (DS) and heparan sulfate (HS) [1]. The deficiency leads
to progressive neurocognitive decline, short stature with bone deformities, hepatosplenomegaly,
cardiomyopathy and shortened life span [1–4]. Diagnosis is based on a pattern of urinary GAGs
(elevated HS and DS levels), enzyme deficiency (in dried blood spot (DBS), leukocytes or lymphocytes)
and genetic analysis [3]. Available treatments include enzyme replacement therapy (ERT) with
laronidase, allogenic hematopoietic stem cell transplantation (HSCT) and ex vivo gene therapy in
autologous hematopoietic stem cells. HSCT before age 1 to 2 years is the recommended treatment
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to prevent cognitive impairment in patients with the severe form of MPS I [5–7]. These treatments
can significantly improve the outcomes in patients with MPS I, but, due to the progressive nature
of this disease, an early diagnosis can change the natural history of the disease. Based on these
characteristics and the estimated incidence of approximately 1 in 100,000 live births [8], newborn
screening (NBS) for MPS I has been proposed since 2010. Two approaches to determine IDUA activity
in DBS have been used. The first method was a fluorometric assay that identifies samples with reduced
enzyme activity using a fluorescently labelled artificial substrate (4-methylumbelliferyl 4-MU) [7,9].
A limitation of this method is that it has restricted capacity for multiplex testing to assay multiple
lysosomal enzymes simultaneously, although this problem was partially overcome by the development
of digital microfluidic chip technology [10]. Tandem mass spectrometry (MS/MS) technology has been
proposed, because it allows the simultaneous quantification of several enzyme activities in a single DBS.
This procedure reduces times and costs and allows rapid screening of large populations. The most
important MPS I pilot studies and screening programs worldwide are summarized in Table 1.

Table 1. Worldwide newborn screening for Mucopolysaccharidosis type I (MPS I).

Years Region Methodology Screened Disorders Other
Than MPS I

Screened
Newborns

False-Positive
Rate Incidence

2008–2013
[9] Taiwan Fluorometric

enzymatic assay / 35,285 0.048% 1/17,643

2010–2012
[11] Italy Fluorometric

enzymatic assay
Pompe disease, Fabry disease,

Gaucher disease 3403 0.088% /

2012–2016
[12] Mexico 1 MS/MS

enzymatic assay

Pompe disease, Fabry disease,
Gaucher disease, Niemann Pick

type A/B, Krabbe disease
20,018 0.009% /

Since
2013 [13] Missouri

Digital
microfluidic
fluorometric

enzymatic assay

Pompe disease, Fabry disease,
Gaucher disease 308,000 0.040% 1/154,000

2013 [14] Washington 2 MS/MS
enzymatic assay Fabry disease, Pompe disease 106,526 0.006% 1/35,700

2015–2016
[15] New York MS/MS

enzymatic assay

Pompe disease, Fabry disease,
Gaucher disease, Niemann Pick

type A/B
35,816 0.036% /

2014-2016
[16] Illinois MS/MS

enzymatic assay

Pompe disease, Fabry disease,
Gaucher disease, Niemann Pick

type A/B
219,973 0.068% 1/219,973

2016 [17] Washington 2 MS/MS
enzymatic assay

Pompe disease, Fabry disease,
Gaucher disease, Niemann Pick

type A/B, Krabbe disease
About 43,000 0.014% /

2015–2017
[18] Italy MS/MS

enzymatic assay
Pompe disease, Fabry disease,

Gaucher disease 44,411 0.027% 1/44,411

2015–2017
[19] Taiwan MS/MS

enzymatic assay MPS II 294,196 0.004% 1/73,549

2015–2017
[20] Italy MS/MS

enzymatic assay Pompe disease, Fabry disease 64,907 0.012% /

2016–2017
[8]

North
Carolina

MS/MS
enzymatic assay / 62,734 0.028% 1/62,734

2016 [21] Kentucky MS/MS
enzymatic assay Pompe disease, Krabbe disease 55,161 0.002% 1/55,161

2017 [22] Brazil 3

Digital
microfluidic
fluorometric

enzymatic assay

Pompe disease, Fabry disease,
Gaucher disease 10,567 0.019% /

2017 [23] Georgia MS/MS
enzymatic assay Pompe disease 59,332 0.018% /

2017 [24] Japan GAGs on DBS
by MS/MS assay MPS II 18,222 / /

2018 [25] Brazil2
Fluorometric

enzymatic assay
MPS VI, Pompe disease, Fabry

disease, Gaucher disease 834 1.3% /

1 Petroleos Mexicanos Health Services; 2 deidentified dry blood spots (DBSs); 3 performed by a private laboratory.
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Some of them did not identify affected newborns. The first pilot program was conducted in Taiwan
from October 2008 to April 2013, using a fluorometric assay. Of 35,285 screened newborns, two positive
patients were found (incidence 1:17,643) [9]. In Missouri, a fluorometric assay was implemented in 2013
to screen for MPS I using a multiplex technology (digital microfluidic method) that assesses three other
lysosomal storage diseases (LSDs). Two affected newborns were identified among 308,000 screened
(incidence 1:154,000). Two patients with genotypes of uncertain significance were also identified [13].
Subsequently, several programs using multiplex MS/MS technology were established. In Illinois
between 2014 and 2016, one patient was diagnosed with MPS I out of 219,973 screened newborns [16].
Other studies involving a smaller number of newborns were conducted in North Carolina (estimated
incidence 1:62,734), Kentucky (1:55,161) and Washington (1:35,700) [8,14,21]. This last study was a
retrospective investigation using deidentified DBS. Of note, a second program in Taiwan conducted from
2015 to 2017 for MPS I and MPS II identified four patients with MPS I patients out of 294,196 screened
newborns (incidence 1:73,543), with a false-positive rate of 0.037%. An enzyme assay for IDUA and
iduronate 2-sulfatase was used [14]. Interestingly, another program in Japan used a GAG assay as a
first-tier test and, due to an elevated false-positive rate (0.03%), employed an enzyme activity assay as
a second-tier test to screen positive samples for MPS I and II. They did not find a false-positive for MPS
I after adding the second-tier test, but this may be due to the small number of newborns screened [24].
The MPS I incidence in these studies ranged from 1/17,643 in Taiwan to 1/219,973 in Illinois, also based
on geographical differences. Recently in the USA, MPS I and Pompe disease have been included in
the Recommended Uniform Screening Panel (RUSP) for metabolic diseases. In Italy, several different
studies have been conducted in the last ten years, revealing a high incidence of pseudodeficiency but
identifying no patients [11,20]. We reported previously on our first 2 years of experience with MPS I
newborn screening, which identified one patient among 44,411 screened newborn [18]. This paper
describes our results after 5 years and over 160,000 newborns screened for MPS I, follow-up data on
diagnosed patients, and discuss the role of second-tier testing.

2. Materials and Methods

2.1. Screening Population

In total, 160,011 consecutive newborn DBS samples were collected between September 2015 and
September 2020 at the Regional Center for Expanded Newborn Screening, University Hospital of
Padua. The study was reviewed by the Ethical Committee Board from University Hospital Padova
and deemed exempt, as it was not considered research. Following our NBS protocol, samples were
collected between 48 h–72 h of life on the same card on which the other NBS tests were performed
and shipped 6 days per week at room temperature to our laboratory. DBS were assayed for enzyme
deficiencies associated with MPS I, as well as Fabry disease, Gaucher disease, Pompe disease using
the NeoLSDTM kit (PerkinElmer, Turku, Finland) as previously described [18]. We chose cut-offs of
0.2 multiples of median (MOM) on the basis of a pre-pilot study (from more than 3500 de-identified
DBS samples) and in the first 9 months of screening. These cut-off values were chosen because they
enabled the detection of positive cases while avoiding too many recalls from the newborn screening
process. In 2019, GAGs quantification in DBS was a second-tier test for samples with low IDUA
activity. GAGs levels (HS and DS) were measured by LC-MS/MS after methanolysis, as previously
described [26]. Patients with low IDUA activity and elevated GAGs are referred to our unit for clinical
and biochemical evaluation including genetic analysis (Figure 1).
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Figure 1. Two-tier Newborn Screening Algorithm for MPS I. DBS: dried bloot spot, IDUA:α-L-iduronidase,
MOM: multiple of median, GAGs: glycosaminoglycans (dermatan sulfate, heparan sulfate).

2.2. Clinical and Biochemical Assessment

Newborns with positive MPS I screening results underwent confirmatory testing that
included clinical examination, IDUA activity in lymphocytes, urinary GAGs and genetic analysis.
DNA sequencing was carried out by next-generation sequencing (Illumia MiSeq, kit Agilent Haloplex),
according to the manufacturer’s instructions, and identified variants were further verified by Sanger
sequencing. Confirmed patients were evaluated with a neurological and psychomotor assessment,
abdominal ultrasound, electrocardiogram, echocardiography, full-body X-ray for bone deformities,
brain and spine MRN, audiometry and ophthalmologic assessment. Treatment decisions regarding
ERT and/or HSCT were based on these results, considering disease severity. Periodic follow-up with
clinical, biochemical and instrumental evaluations is shown in Table 2.

Table 2. Clinical follow-up of patients with confirmed MPS I.

Every 3 Months 1 Every 6 Months 1 Annually 1

Medical history X

Physical examination, including
neurological assessment X

Intellectual function (IQ) X

Routine biochemical tests X

Urinary GAGs X

Enzyme activity 2 and chimerism
Only after HSCT (2/month during the first 6 months, 1/month

during the following year)

Anti-ERT antibodies X

Abdominal ultrasound X

Cardiac assessment, including
electrocardiogram and echocardiogram X

Audiometry X

Ophthalmologic assessment X

Full-body X-ray X

Brain and spine MRN X
1 these frequencies refer to the most severe patients in the first years of life, to monitor therapy response and disease
progression. However, the follow-up program should be individualized. 2 if patients are also receiving ERT, samples
should be collected before infusions.

Family members were counselled and offered testing and medical assessments, in particular,
IDUA molecular testing to determine carrier status was performed on both parents.
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3. Results

3.1. MPS I Screening Results

Of the 160,011 newborns screened for MPS I, 27 (0.017%) had low enzyme activity in DBS
(range 0.1 to 2.21 µM/h) at mean age of 5.57 ± 1.95 days (Table 3).

Normal values: IDUA > 2.3 µM/h (recalculated monthly due to slight seasonal variations); Urinary
GAGs DS < 38.1 mg/mmol creatinine, HS < 4.6 mg/mmol creatinine; DBS GAGs DS < 2.7 mg/L,
HS < 3.2 mg/L; NA not available, NP not performed, VUS variant of uncertain significance.

MPS I was confirmed in two newborns by measuring IDUA activity in lymphocytes and GAGs
in DBS and urine, as well as genetic analysis (patients 2 and 4). Both patients had very low enzyme
activity in DBS (1.6% and 2.1% of the normal mean). This was confirmed by high excretion of GAGs in
urine (HS 148.9 mg/mMol creatinine; DS 172.0 mg/mMol creatinine and HS 121.9 mg/mMol creatinine;
DS 80.4 mg/mMol creatinine respectively, nv HS < 4.6mg/mMol creatinine; DS < 38.1 mg/mMol
creatinine); both patients had known pathogenic mutations in both alleles. We found an overall MPS I
incidence of 1 in 80,005 births. During the first 4 years of screening, when the only test was IDUA activity
in DBS, the recall rate was 0.055%, with a false-positive rate of 0.053%. The positive predictive value
(PPV) was 7.4%. This was due to the high incidence of pseudodeficient alleles. In the last 18 months,
we employed a second-tier test. When IDUA activity was below the cut-off (2.3 µM/L), GAG analysis
in DBS was performed. The recall rate during this period was 0.014% and no false-positives were
referred to the clinic. We also retrospectively analysed GAGs in DBS from 22 previously recalled
neonates with low IDUA screening values and found elevated GAGs only in two neonates with
confirmed MPS I, but none of the patients with pseudodeficiency; the predictive value was 100%.
Of the 27 recalled newborns, two were confirmed with MPS I (cases 2 and 4), two had mutations of
unknown clinical significance (cases 5 and 12), while the other neonates had pseudodeficient alleles
(two of them, cases 7 and 16, were compound heterozygotes with one pseudodeficient allele and one
pathogenic allele, case 27 carried only one pseudodeficient allele). Except for the two affected patients,
all others had normal clinical examinations and urinary GAGs. The most common pseudodeficient
allele was p.A79T (present in 16/17 cases, 21/34 alleles). Interesting, all newborns with pseudodeficiency
were of African origin, except for case 16, which was a compound heterozygote with the p.H82Q
pseudodeficiency variant and a known pathogenic mutation. IDUA enzyme activity on DBS of these
patients ranged from 0.1 to 2.21 mMol/hour, overlapping that of patients with MPS I. For newborns
with pseudodeficiency, no further follow-up was requested. None of the infants with variance of
uncertain significance (VUS) had early-onset MPS I. For these patients, we established a 12-month
follow-up appointment, although some parents refused to continue follow-up, as children were normal;
we thus informed paediatricians to be alert for abnormal clinical symptoms suggestive of the disease.

3.2. Clinical Follow-Up

Two patients showed biochemical and genetic characteristics of MPS I Hurler form and
Hurler/Scheie form:
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Table 3. Biochemical, molecular analysis and follow up of infants with positive NBS for MPS I.

Patient
No.

Year of
Birth Sex Ethnic

Origin

IDUA
Activity I

DBS
(µM/h) 1

IDUA
Activity
II DBS

(µM/h) 1

DBS
GAGs
DS/HS
mg/L

Genotype Phenotype

Urinary
GAGs
DS/HS

(mg/mmol
Creatinine)

Treatment Outcome

1 2016 M West Africa 0.10 0.13 1.52/1.13 p.A79T/p.A79T (pseudoMPS I) Not affected NP No Dismissed

2 2017 F European 0.17 0.34 8.84/10.42 p.S16_A19del/p.Y201X MPS I Hurler 80.4/121.9 ERT+HSCT
Progressive

improvement, very
mild features of MPS I

3 2018 M South Asia 0.20 0.23 2.86/2.35 NP 2 Not affected 37.9/4.1 No Failed to follow up

4 2017 F North Africa 0.22 0.20 7.38/4.88 p.P533R/p.P533R MPS I H/S 172.0/148.9 ERT

Progressive
improvement,

asymptomatic, except
for corneal clouding

5 2017 F North Africa 0.38 0.73 2.85/3.1 p.R628G/p.R628G (VUS) Uncertain
significance 6.8/2.0 No 12-month follow-up

appointment (refused)
6 2018 M West Africa 0.40 0.67 1.87/2.03 p.A79T/p.D223N (pseudoMPS I) Not affected 29.1/3.4 No Dismissed

7 2016 M North Africa 0.41 0.62 1.54/1.05 p.A79T+p.A361T/p.Y581X
(carrier- Pseudo MPS I) Not affected 14.4/2.1 No Dismissed

8 2019
(January) F West Africa 0.47 0.53 NA NP 2 Not affected 27.6/3.6 No Dismissed

9 2018 F West Africa 0.49 0.47 2.02/1.91 p.A79T/p.A79T (Pseudo MPS I) Not affected 19.6/3.4 No Dismissed
10 2017 F West Africa 0.53 0.57 1.75/2.03 p.A79T/p.D223N (Pseudo MPS I) Not affected NP No Dismissed

11 2016 M West Africa 0.54 0.61 1.52/1.52 p.A79T+p.T99I/p.D223N (Pseudo
MPS I) Not affected NP No Dismissed

12 2017 F European 0.55 0.56 1.62/1.72 p.L526P/p.L526P (VUS) Uncertain
significance 9.1/1.8 No 12-month follow-up

appointment (refused)
13 2016 F West Africa 0.58 0.56 2.06/1.63 p.A79T/p.A361T (Pseudo MPS I) Not affected NP No Dismissed
14 2017 F North Africa 0.59 1.02 1.56/1.25 p.R263W/p.P650L (Pseudo MPS I) Not affected 19.8/1.4 No Dismissed
15 2017 F West Africa 0.66 0.70 1.75/1.53 p.A79T/p.A79T (Pseudo MPS I) Not affected 35.0/5.3 No Dismissed

16 2016 F European 0.71 0.55 NA p.S16_A19del/p.H82Q (Carrier-
Pseudo MPS I) Not affected NP No Dismissed

17 2016 M West Africa 0.72 0.84 1.71/1.58 p.A79T/p.A79T (Pseudo MPS I) Not affected NP No Dismissed
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Table 3. Cont.

Patient
No.

Year of
Birth Sex Ethnic

Origin

IDUA
Activity I

DBS
(µM/h) 1

IDUA
Activity
II DBS

(µM/h) 1

DBS
GAGs
DS/HS
mg/L

Genotype Phenotype

Urinary
GAGs
DS/HS

(mg/mmol
Creatinine)

Treatment Outcome

18 2018 M North Africa 0.85 0.98 2.09/2.06 p.A79T/p.R263W (Pseudo MPS I) Not affected 13.8/1.7 No Dismissed
19 2018 M NA 0.88 0.79 NA NP 2 Not affected 21.0/1.8 No Dismissed
20 2018 F West Africa 0.92 1.01 2.01/1.77 p.A79T/p.V322E (Pseudo MPS I) Not affected 16.8/0.8 No Dismissed
21 2017 M West Africa 0.97 1.51 1.86/1.48 p.A79T/p.F501L (Pseudo MPS I) Not affected 9.9/1.7 No Dismissed
22 2018 M NA 1.07 1.21 1.6/1.67 p.A79T/p.R263W (Pseudo MPS I) Not affected 23.2/2.5 No Dismissed
23 2018 M West Africa 1.1 1.36 1.93/1.55 p.A79T/p.S586F (Pseudo MPS I) Not affected 13.6/1.3 No Dismissed
24 2017 F West Africa 1.14 1.39 2.75/2.37 p.A79T/p.A79T (Pseudo MPS I) Not affected 13.7/1.6 No Dismissed
25 2015 M Nord Africa 1.16 1.19 2.07/1.1 P.R263W/p.S586F (Pseudo MPS I) Not affected NP No Dismissed
26 2018 M European 1.26 1.56 1.89/1.53 NP 2 Not affected 19.4/1.6 No Dismissed
27 2017 F West Africa 2.21 2.30 1.46/1.67 p.A79T/wt (Pseudo MPS I) Not affected NP No Dismissed

1 values are the mean for duplicate runs of different punches from the same DBS. 2 Parents refused consent to perform the genetic analysis.
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-Patient A, a female of African origin (Morocco), is now 3.5 years old. She was asymptomatic
on initial evaluation at 15 days of age, but at confirmatory testing, she had elevated urinary GAGs
(HS 148.9 mg/mMol creatinine, nv < 4.6; DS 172.0 mg/mMol creatinine, nv < 38.1) and genetic testing
revealed that she was homozygous for the p.P533R mutation common in North African patients
and previously reported to be associated with the Hurler/Scheie phenotype [26]. The mutation
was confirmed in both parents, who were consanguineous. The results of further assessments are
summarized in Table 4A. The patient had diffuse corneal clouding at birth, oval-shaped lumbar
vertebral bodies, mild mitral insufficiency at echocardiogram and mild bilateral conductive hearing
loss. In the first months of life, she suffered from recurrent respiratory infections that required
hospitalization and oxygen therapy. She began ERT with laronidase (100 U/kg weekly) one month
after birth and responded very well to treatment. Her urinary GAGs had almost normalized after
1 month of therapy (HS 9.2 mg/mMol creatinine, nv < 4.6; DS 15.4 mg/mMol creatinine, nv < 38.1).
We continued her follow up, with clinical and biochemical evaluation every 3 months for the first
year and subsequently every 6 months, with periodical instrumental assessments. Currently, she is
asymptomatic, except for the persistence of diffuse corneal clouding, which is known to be stabilized
but not reversed by ERT [27]. Her hearing normalized and she has normal growth and psychomotor
development. Full body X-ray, abdominal ultrasound and brain MRI are normal. Cardiac assessment
with electrocardiogram and echocardiogram does not show abnormalities. Urinary GAGs pattern has
been consistently normal.

-Patient B, a female of Italian origin, is now 2.5 years old. Her characteristics are described
in Table 4B. On initial examination at 15 days of life, she had clinical features of a severe form of
disease: corneal clouding, coarse facial features, moderate sensorineural hearing loss, poor growth,
rounding of the iliac wings and large cisterna magna at brain MRI. This phenotype was confirmed
by elevated urinary GAGs (HS 121.9 mg/mMol creatinine, nv < 4.6; DS 80.0 mg/mMol creatinine,
nv < 38.1); genetic analysis of the IDUA gene revealed compound heterozygosity for two known
pathogenic mutations (c.46–57del12/p.Y201X) consistent with Hurler syndrome. The carrier status
of both parents was confirmed. ERT with laronidase (100 U/kg weekly) was started at 1 month
of life, with a good response. After 3 months of therapy, urinary GAGs had almost normalized
(HS 21.7 mg/mMol creatinine, nv < 27.9; DS 29.2 mg/mMol creatinine, nv < 14.7). Due to the severe
phenotype, at 6 months of age, she received an allogenic HSCT. She lacked a matched sibling
donor, thus she received a fully matched identical unrelated cord blood (UCB) transplantation
(12/12, high resolution), according to donor hierarchy, after conditioning with antithymocyte globulin,
fludarabine and busulfan. She received 1.17 × 108 /kg total nucleated cells and 6.3 × 105/kg CD34+

cells. The procedure was performed without complications and, after one month, the patient achieved
high donor chimerism (92% donor, 8% recipient) and normal IDUA levels (3.72 µM/h), that persist after
2 years (chimerism 97% donor, 3% recipient, enzyme activity 6.70 µM/h). GAGs remained normal after
suspension of ERT, 6 months after HSCT. Currently, she has no neurologic involvement and normal
psychomotor development. Her brain and spine MRIs are normal, except for mild thickening of the
tissues around the odontoid process that does not restrict the spinal canal. Growth has improved and
hearing normalized. Abdominal ultrasound shows no enlargement of liver or spleen, and cardiac
assessment with electrocardiogram and echocardiogram is normal for her age. Although GAG excretion
is normal, she has mild coarse facial features, a small umbilical hernia, some skeletal abnormalities
(rounded thoracic and lumbar vertebral bodies) and corneal clouding.
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Table 4. A. Patient A follow-up; B. Patient B follow-up.

A. Patient A Follow-Up

Pre-ERT Last Follow-Up

Physical examination, including
neurological assessment

Recurrent respiratory infections in the
first year, no neurological signs Regular growth, no neurological signs

Intellectual function (IQ)–Bayley
scale–III Ed. Not performed Developmental Quotient 100

Routine biochemical tests Normal Normal

Urinary GAGs HS 148.9 mg/mMol creatinine (nv < 4.6)
DS 172.0 mg/mMol creatinine (nv < 38.1)

HS 1.8 mg/mMol creatinine (nv < 1.2)
DS 6.7 mg/mMol creatinine (nv < 11.4)

Abdominal ultrasound Normal Normal

Cardiac assessment:
-Electrocardiogram
-Echocardiogram

Normal
Patent foramen ovale (normal for age)

and mild mitral insufficiency

Normal
Normal

Audiometry/auditory brainstem
response Mild bilateral conductive hearing loss Normal

Ophthalmological assessment Diffuse corneal clouding Diffuse corneal clouding, strabismus

Full-body X-Ray Oval shaped lumbar vertebral bodies Normal

Brain and spine MRI Normal Normal

B. Patient B Follow-Up

Pre-HSCT Last Follow-Up

Physical examination, including
neurological assessment Coarse facial features, poor growth

Coarse facial features, small umbilical ernia,
normal growth, subtle flexion contractures
of distal interphalangeal joints (reducible)

Intellectual function (IQ)–Bayley
scale–III Ed. Developmental Quotient 65 Developmental Quotient 90

Routine biochemical tests Normal Normal

Urinary GAGs

Initial values:
HS 121.9 mg/mMol creatinine (nv < 4.6)
DS 80.4 mg/mMol creatinine (nv < 38.1)

Post-ERT, pre-HSCT:
HS 21.7 mg/mMol creatinine (nv < 27.9)
DS 29.2 mg/mMol creatinine (nv < 14.7)

HS 4.2 mg/mMol creatinine (nv < 1.2)
DS 11.9 mg/mMol creatinine (nv < 11.4)

Enzyme activity 0.17 uM/h (nv 1.9–15) 6.70 uM/h (nv 1.9–15), max value 18 uM/h

Chimerism 3% recipient, 97% donor

Abdominal ultrasound Normal Normal

Cardiac assessment:
-Electrocardiogram
-Echocardiogram

Normal
Patent foramen ovale (normal for age)

Normal
Normal

Audiometry/auditorybrainstem
response

Mild-moderate bilateral sensorineural
and conductive hearing loss Normal

Ophthalmological assessment Diffuse corneal clouding Diffuse corneal clouding

Full body X-Ray Rounding of the iliac wings Rounded thoracic and lumbar vertebral
bodies

Brain and spine MRI Large cisterna magna Mild thickening of the tissues around the
odontoid process, normal spinal canal

4. Discussion

Newborn screening for LSDs has gained increasing importance as the number of therapeutic
options has expanded and the evidence base supporting improved outcomes with early intervention
has been clearly demonstrated for MPS I [28,29].

In North-East Italy, screening for MPS I, together with Pompe, Fabry and Gaucher, using the
multiplexed NeoLSDTM assay system (PerkinElmer) has been a feasible and effective element of
our expanded neonatal screening program since 2015. In our previous study, the incidence of MPS
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I was 1 in 44,411 neonates. That study identified 12 false-positive newborns (1:3700). This was due
to the high incidence of pseudodeficiency [18], characterized by low enzyme activity, but normal
urinary GAGs, no clinical findings and molecular mutations characterized by a high allele frequency
in the normal population [8,16,20]. This unexpectedly high number of false-positive for MPS I due to
pseudodeficiency prompted us to develop a second-tier test to quantify GAG levels in dried blood
spots [26]. In the present study, we report our first five years of experience with NBS for MPS I,
initially by measuring IDUA enzyme activity in DBS specimens and for the last 18 months with the
second-tier test for GAGs in DBS. The combined approach demonstrates its potential to reduce the
screen-positive samples if utilized prospectively by eliminating patients with only pseudodeficient
variants. Of the newborns, 2/27 with low IDUA activity were confirmed to have MPS I with pathogenic
variants consisting of a severe form of disease (Hurler syndrome, patient 2) and an intermediate form
(Hurler/Sheie syndrome, patient 4). Of the neonates, 25/27 with positive results on initial screening
subsequently underwent full diagnostic assessment including determination of IDUA activity in
lymphocytes, urinary GAGs by LC-MS/MS analysis and genotyping. All patients with genotypes that
were consistent with pseudodeficiency (n = 21), compound heterozygotes (n = 2), and variants with
unknown significance (n = 2) had normal results for GAGs in DBS. Pseudodeficient alleles for MPS I
are more prevalent in African and African-American populations (most common p.A79T, with an allele
frequency about 4% for the African population) [20,29,30] and this was confirmed in our study, in which
all except one case were of African ethnicity and carried at least one p.A79T allele (homozygous in five
cases). Only one newborn was Italian (case 16), and he carried the p.H82Q mutation, which has an
allele frequency of about 0.5% in European populations (Exome Aggregation Consortium database).
The large population with African ethnicity in Italy explains the high incidence of pseudodeficiency
that we found in our population (0.8% of positive newborns), which is more than originally estimated.
The high number of screen-positive specimens necessitated modification of the screening algorithm.
Because the range of residual enzyme activities in true-positive and pseudodeficient cases overlap
almost completely, this marker alone is not suited for differential diagnosis. Several strategies can be
used to reduce recall rates in MPS I screening, such as the use of post-analytical tools or second-tier
tests, including GAGs and genetic testing [8,21]. Recently, Taylor et coll. showed that sequencing of the
IDUA gene from a second DBS punch can be used as a second-tier test [8]. It reduced the screen-positive
samples by eliminating patients with only pseudodeficiency, but can be inconclusive when variants of
unknown significance are encountered. Moreover, genetic analysis is more expensive and requires
more time than biochemical assays. Since February 2019, we have used GAGs quantification on DBS as
our second-tier test. Accumulation of GAGs starts before birth (GAGs can be found in chorionic villi,
the foetus and amniotic fluid) and their levels tend to be highest from 0 to 6 months of age [31,32] so
that their quantification can be used in NBS programs [26]. Our two-test algorithm with the sequential
determination of enzyme activity and GAGs reduced false-positives and recall rates compared to the
first years of our program (0.014% vs. 0.055%). Our second-tier test was able to discriminate between
MPS I and pseudodeficiency in retrospective testing of patients that had been recalled for low IDUA
activity with a negative predictive value of 100%.

The follow-up of our two patients confirms the importance of early diagnosis and treatment.
Allogenic HSCT is the only treatment proven to prevent progressive neurodegenerative disease in
Hurler patients [33]. Our patient B shows that early transplantation can change the natural history of
the disease. While this procedure has been shown to prevent irreversible damage due to MPS, it is
also associated with a small risk of complications. Younger age at transplantation is associated with a
reduction of complications [34], further justifying NBS.

Patient B was treated with ERT and received a UCB transplantation at 6 months of age without
complications. She had no siblings, so we chose a UCB donor graft because they are readily accessible,
reducing the time for donor searching. Additionally, several studies indicate that UCB transplantation
leads to higher full donor chimerism rates, thereby predicting better enzyme levels in the long-term
compared with bone marrow and peripheral blood stem cells [33,34]. Our patient confirms this.
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She achieved high chimerism and IDUA activity that is maintained 2 years after the transplantation.
At 2.5 years of age, she has no neurologic involvement or psychomotor delay and has only mild
features of MPS I, in particular bone deformities. Long-term data on patients treated early with HSCT
do not support or exclude the need for ERT to treat bone lesions [35].

Patient A has an intermediate form of the disease. Although recent evidence suggests the
possibility of HSCT also in patients with Hurler/Scheie form [34], this patient had no matched family
donors and responded very well to ERT. After 3.5 years, she only suffers from corneal clouding,
already present at birth and known to be non-responsive to ERT [27]. No new symptoms have
developed. The importance of early diagnosis and treatment has been demonstrated by studies on
siblings. Gabrielli et al. reported a better outcome after a 12-year follow-up in a patient who initiated
ERT treatment at 5 months of age compared to a sibling who had started ERT at 5 years of age [36].
Similar conclusions were made by Laraway et al., who reported on three siblings with MPS I, of which
the younger, treated with ERT from 4 months of age, had a better outcome [37], and by Al-Sannaa et
al., who retrospectively analysed nine sibships affected by MPS I: older siblings were treated with ERT
after the development of significant clinical symptoms (median age 7.9 years), while younger siblings,
treated before significant symptomatology (median age 1.9 years), had a more notable improvement or
stabilization of somatic signs and symptoms [38]. Recently, Yamazaki et al. described a younger sibling
of a deceased Hurler patient. The younger sibling was diagnosed at 18 days of age, started ERT at
34 days, and underwent HSCT at 9 months of age. After 5 years, she had only mild signs of dysostosis
multiplex and mild cardiac valvular disease [39]. This patient had been identified because of an older
affected sibling; however, NBS allows early diagnosis and treatment for the entire population, not only
siblings of affected patients.

Our study has several limitations. The number of neonates tested is still limited for defining the
incidence of a rare disease, although our results are similar to the frequency of MPS I in the Italian
population reported by Dionisi Vici et al. [40]. The correct management of patients with VUS is still
unclear. Moreover, some patients with attenuated forms may have low urinary GAG levels [8] and
sufficient data on levels at birth in these patients are lacking [41], so we cannot exclude that milder
forms may be missed. Such patients may not be ascertained until they become symptomatic and
are diagnosed years later. However, Rujter et al. reported two patients with attenuated MPS I and
elevated GAGs in newborn DBS [42]. Moreover, the lack of identification of late-onset phenotypes may
not be a disadvantage. In effect, neonatal diagnosis of late-onset LSDs presents an ethical dilemma,
because decades can pass before the onset of symptoms, resulting in anxiety for patients and parents,
and unnecessary medical interventions. Medical management is complicated by clinical heterogeneity,
the inability to predict phenotype and the lack of consensus about when to begin treatment in mild
forms [20,30].

In conclusion, our 5-year experience confirms the importance of including MPS I in NBS programs.
Our protocol using an MS/MS assay system is feasible, effective and easily integrated into the workflow
of laboratories using MS/MS. Our algorithm including IDUA activity and a GAGs assay on DBS as a
second-tier test decreased the false-positive rate in newborns referred to our Clinic. Our experience also
outlines the importance of early diagnosis in improving disease outcomes when specific treatments,
such as ERT and/or HSCT, are available. Authors should discuss the results and how they can be
interpreted from the perspective of previous studies and of the working hypotheses. The findings and
their implications should be discussed in the broadest context possible. Future research directions may
also be highlighted.
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