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Abstract

Purpose. Unpredictable chemotherapy side effects are a major barrier to successful

treatment. Cell culture and mouse experiments indicate that the gut microbiota is

influenced by and influences anti-cancer drugs. However, metagenomic data from

patients paired to careful side effect monitoring remains limited. Herein, we focus on the

oral fluoropyrimidine capecitabine (CAP). We investigate CAP-microbiome interactions

through metagenomic sequencing of longitudinal stool sampling from a cohort of

advanced colorectal cancer (CRC) patients.

Methods. We established a prospective cohort study including 56 patients with

advanced CRC treated with CAP monotherapy across 4 centers in the Netherlands.

Stool samples and clinical questionnaires were collected at baseline, during cycle 3,

and post-treatment. Metagenomic sequencing to assess microbial community structure

and gene abundance was paired with transposon mutagenesis, targeted gene deletion,

and media supplementation experiments. An independent US cohort was used for

model validation.

Results. CAP treatment significantly altered gut microbial composition and pathway

abundance, enriching for menaquinol (vitamin K2) biosynthesis genes. Transposon

library screens, targeted gene deletions, and media supplementation confirmed that

menaquinol biosynthesis protects Escherichia coli from drug toxicity. Microbial

menaquinol biosynthesis genes were associated with decreased peripheral sensory

neuropathy. Machine learning models trained in this cohort predicted hand-foot

syndrome and dose reductions in an independent cohort.

Conclusion. These results suggest treatment-associated increases in microbial vitamin

biosynthesis serve a chemoprotective role for bacterial and host cells, with implications

for toxicities outside the gastrointestinal tract. We provide a proof-of-concept for the use

of microbiome profiling and machine learning to predict drug toxicities across

independent cohorts. These observations provide a foundation for future human

intervention studies, more in-depth mechanistic dissection in preclinical models, and

extension to other cancer treatments.
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Introduction
With the emerging field of pharmacomicrobiomics, it has become increasingly evident

that bi-directional interactions exist between the gut microbiota and numerous drugs,

including those not traditionally classified as antibiotics1, 2. As such, the gut microbiota is

both affected by chemotherapy and may alter chemotherapy outcomes.

Treatment-related toxicity considerably influences the quality of life of patients with

colorectal cancer (CRC), often causing treatment delays and dose reductions that

impact efficacy3. Therefore, understanding the role of the gut microbiota in

chemotherapy is of high clinical importance.

Capecitabine (CAP) is a commonly used chemotherapy in patients with CRC,

either as monotherapy or with other agents4, 5. CAP is administered as an oral prodrug

and is sequentially converted by host enzymes into the active compound 5-fluorouracil

(5-FU), which exerts its anticancer effects by disrupting DNA synthesis and RNA

processing6. Subsequently, 5-FU is metabolized into the inactive metabolite

dihydrofluorouracil by host clearance enzyme dihydropyrimidine dehydrogenase6.

CAP has two major drawbacks: limited response rates and toxicity. While there

have been significant advancements in the early-stage CRC setting, overall response

rates in the advanced CRC setting remain modest, falling between 34-42%7, 8. Further,

many patients suffer from CAP-induced toxicity, with up to 57% requiring dose

alterations or treatment discontinuation9. Common side effects include diarrhea,

hand-foot-syndrome (HFS), and oral mucositis7, 10–12.

The gut microbiota modulates CAP efficacy and toxicity in mouse models.

Specific gut bacteria harbor a bacterial homologue of host DPYD, encoded by the preTA

operon13, 14. preTA-containing bacteria can metabolize and inactivate 5-FU, modulating

treatment efficacy and toxicity in mice13, 15. Beyond direct drug metabolism, gut

Lactobacillus potentiate the anti-tumor effects of CAP through immunologic and

pro-apoptotic effects16, 17.

In a clinical setting, we detected only slight CAP-induced bacterial shifts in our

prior 33 patient cohort with advanced CRC using 16S rRNA sequencing11, 15. Fecal

levels of microbially-derived valerate and caproate decreased significantly during CAP

treatment, and baseline levels of the iso-butyrate were associated with tumor
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response18. Taken together, these studies highlighted (1) the need to measure gut

microbial functional potential; (2) the importance of mechanistic follow-up; and (3) the

utility of validation on a separate cohort. Therefore, the current study investigated

CAP-microbiome interactions by performing metagenomic sequencing of stool samples

from a larger cohort of advanced CRC patients with detailed toxicity data.
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Methods
1. Study design and population
This prospective longitudinal cohort study was conducted in Maastricht University

Medical Center (MUMC+), Catharina Hospital Eindhoven, Hospital Gelderse Vallei and

VieCuri Medical Center in the Netherlands, following the previously published study

protocol (NL-OMON29314/NTR6957)19. This study was approved by the Medical Ethics

Committee azM/UM (METC 16-4-234.1) and conducted in accordance with the

Declaration of Helsinki and Good Clinical Practice. Each patient provided written

informed consent. Patients were eligible if diagnosed with metastatic or unresectable

CRC with planned CAP treatment, with or without the VEGF inhibitor bevacizumab.

Exclusion criteria included radiotherapy within two weeks of enrollment, other systemic

therapy within one month of inclusion, antibiotic use within three months of enrollment,

microsatellite instability (MSI), impaired renal function (creatinine clearance <30 ml/min),

and (sub)total colectomy and/or ileostomy. CAP therapy was administered in a 3-week

cycle, consisting of two weeks of oral CAP at a dose of 1000-1250 mg/m² (twice daily),

followed by a one-week rest period. Treatment was adjusted if deemed necessary by

the treating oncologist.

2. Sample and data collection
2.1 Fecal samples
Fecal samples were collected at three timepoints: before CAP initiation (t1), during week

2 of CAP cycle 3 (t2), and after week 3 of cycle 3 (t3). Fecal samples were collected by

patients at home in preservation-free tubes (Sarstedt) and stored in freezers. Frozen

samples were transported to the hospital in cooled containers (Sarstedt) and stored at

-80°C long-term.

2.2 Clinical data and chemotherapy-induced toxicity
Patients completed questionnaires on health-related characteristics and medical history.

Chemotherapy-induced toxicities were self-reported by the patients and scored based

on the Common Terminology Criteria for Adverse Events (CTCAE v4.0)20. The

questionnaire encompassed nausea (0-3), vomiting (0-5), diarrhea (0-5), unintended
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weight loss (0-3) constipation (0-5), peripheral sensory neuropathy (PSN) (0-5), oral

mucositis (0-5), HFS (0-3), fever (0-5), alopecia (0-2), and fatigue (0-3). Additional data

about medical history, tumor characteristics, medications, surgery, dihydropyrimidine

dehydrogenase (DPYD) deficiency, and CAP dose adjustments were collected from

medical records.

3. Gut microbiome analysis
ZymoBIOMICs 96 MagBead DNA Kit was used for fecal DNA extractions (156 samples

from 56 patients), with extraction, library preparation, sequencing, and read mapping

performed as described previously15. Taxa abundances were central log ratio

(CLR)-transformed. Pathway/gene abundances were normalized to reads per kilobase

per genome equivalent using microbeCensus21. Shannon diversity was calculated using

vegan command diversity22. PERMANOVA was performed using vegan commands

vegdist (CLR-Euclidean/Aitchison distance) and adonis222 to compare patient

demographics and patient-reported toxicities (any grade) to the baseline microbiome.

Differential abundance was calculated using linear mixed effects modeling with time as

a fixed effect and patient as a random effect (nlme command lme), followed by False

Discovery Rate (FDR) correction. Phylogenetic trees were obtained by pruning the

MetaPhlAn 4 tree23 and visualized using ggtree24.

4. In vitro studies of fluoropyrimidine toxicity in E. coli
4.1 Transposon sequencing experiment
We performed E. coli transposon mutant fitness assays as described previously25. A

thawed transposon library aliquot was grown overnight in 25 mL Luria broth (LB) with 50

μg/mL kanamycin at 37°C with 225 rpm shaking. Cells were then inoculated into

competitive growth assays in fluoropyrimidines (500 μM CAP, 5-fluorouracil,

5'deoxy-5-fluorocytidine) or vehicle. Assays were performed in duplicate in 200 μL M9

minimal media with starting OD600=0.02. After 48 hours, cell pellets were collected and

gDNA extracted with ZymoBIOMICS 96 MagBead DNA kit (ZymoResearch D4302) per

manufacturer protocol. We performed barcode sequencing as previously described,

averaging independent insertions at the gene level and calculating log-ratios26. A

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.11.24315249doi: medRxiv preprint 

https://paperpile.com/c/Oa2umW/VtURY
https://paperpile.com/c/Oa2umW/ppVTD
https://paperpile.com/c/Oa2umW/C5w0Y
https://paperpile.com/c/Oa2umW/C5w0Y
https://paperpile.com/c/Oa2umW/4h7cN
https://paperpile.com/c/Oa2umW/ollxZ
https://paperpile.com/c/Oa2umW/23phe
https://paperpile.com/c/Oa2umW/2fIXI
https://doi.org/10.1101/2024.10.11.24315249
http://creativecommons.org/licenses/by-nc-nd/4.0/


quantile-quantile method was used to determine significance (abs(ln(FC))>0.25,

abs(log(VehFitness))<0.05, Supplemental Figure 3a). Overlap between conditions was

visualized using UpSetR27. Gene set enrichment analysis was performed using

clusterProfiler function enrichKEGG (universe=library, organism=“eco”,

pvalueCutoff=0.01)28.

4.2 5-FU sensitivity experiments
E. coli BW25113 wild-type and ΔmenF::KanR were obtained from the Keio collection29

and streaked on LB with 30 μg/mL kanamycin. Colonies were subcultured overnight in

Brain Heart Infusion (BHI) in an anaerobic chamber (Coy Laboratory Products) at 37°C

with an atmosphere of 3% H2, 20% CO2, and balance N2. 5-FU (MilliporeSigma 343922)

was assayed at 0 and 500 μM. Vitamin K2 (MilliporeSigma V9378) was dissolved in

methanol, supplemented 1% (v/v), and assayed at 0 and 0.1 μg/ml. Uracil

(MilliporeSigma U0750) was assayed at 0 and 50 μM. 3 µL seed culture diluted to

OD600=0.1 was inoculated with 197 µL media±drug in a 96-well plate. Plates were

covered (Breathe-Easy sealing membrane) and incubated anaerobically at 37°C for 24

hr in a plate reader (Biotek Gen5), with 1 min linear shake prior to OD600 readings every

15 min. Carrying capacity was determined using package Growthcurver30.

5. Random forest modeling
Two cohorts were used for modeling: a training cohort (this Netherlands cohort, 48

patients with baseline stool sequencing and cycle 3 toxicity data), and an independent

validation cohort (U.S. cohort, n = 38 patients with baseline stool sequencing and

on-treatment toxicity data)15. HFS and dose adjustment were selected as targets due to

available toxicity data in both cohorts, while PSN was chosen due to the strong

microbiome signal in our analysis. Features (CLR-normalized KOs) were selected by

applying the Boruta algorithm31 to the training cohort for HFS and dose adjustments. For

PSN, the top 10 pathways from differential abundance testing were used as features,

with no external validation cohort (no PSN data for U.S. cohort). A random forest model

was fitted using these features (500 trees, leave-one-out-cross validation (LOOCV))

using packages randomForest32 and caret33. Within-cohort model accuracy was
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evaluated by training 100 separate models, validating on left-out samples (LOOCV),

and plotting the mean and 95% confidence interval of receiver operating curves using

pROC34. For HFS and dose adjustments, model generalizability was validated in the

U.S. cohort.

6. Statistical analysis
Statistical analysis was performed in R (v4.2.1)35, with plots generated using ggplot2

(v3.5.1) and ggpubr (v0.6.0)36, 37. Statistical tests are specified in the text/figure legends

where used and summarized here. PERMANOVA (CLR-Euclidean ordination) was used

to test compositional differences in taxa vs patient characteristics, and gene pathways

vs toxicity. Linear mixed-effects modeling (time as a fixed effect, patient as a random

effect) was used to identify time-dependent changes in taxa/genes. T-tests, Spearman’s

correlation, and likelihood-ratio tests were used to identify relationships between

categorical/continuous, continuous/continuous, and categorical/categorical variables,

respectively. Significance was determined as p<0.05 (individual tests) or

Benjamini-Hochberg FDR<0.2 (multiple hypothesis correction).
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Results
In total, 56 patients were enrolled (Table 1). 71% were treated with bevacizumab in

combination therapy, 70% had left-sided tumors, 29% had a colostomy, and 55% had

received prior systemic treatment, mainly CAP with oxaliplatin (CAPOX; Table 1). The

majority (79%) of the patients had previously undergone surgical resection of their

primary tumor, including 18 with rectum resection, 9 with sigmoid resection, 10 with right

hemicolectomy, 4 with left hemicolectomy, and 1 with extended left hemicolectomy

(Supplemental Table 1).

A total of 157 stool samples were collected across the 3 timepoints (2-3 stool

samples/subject; Figure 1a). DNA was extracted and used for deep metagenomic

sequencing, resulting in 39.9±2.5 million high-quality sequencing reads/sample

(11.7±0.7 Gbp, Supplemental Table 1). Inter-individual differences in microbial

community accounted for 83% of the variation in the combined dataset, as evidenced by

species-level principal coordinate analysis (Supplemental Figure 1a).

Multiple patient characteristics were associated with variations in baseline

microbial diversity and taxonomic composition. We binarized all baseline characteristics

and performed t-tests to identify significant associations with the Shannon diversity

index (Supplemental Figure 1b). Antibiotic use within the past year (>3 months before

inclusion) and prior systemic treatment (>1 month before inclusion) were both

associated with significantly lower baseline diversity, with most of the signal coming

from patients who had both prior systemic treatment and prior antibiotic use

(Supplemental Figures 1b-e). Next, we tested for associations between binarized

patient characteristics and gut microbial community structure (Supplemental Figure
1f). Consistent with the Shannon diversity analysis, inter-individual differences in overall

community structure were associated with prior antibiotic use (Supplemental Figure
1f,g).
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The human gut microbiome is altered after chemotherapy
To assess the impact of CAP treatment on the gut microbiome, we compared taxonomic

and pathway abundance post-treatment (t3) relative to baseline (t1) (Figure 1a). After

adjusting for multiple hypothesis testing, we identified 5 enriched and 5 depleted

species (Figure 1b). While the overall trend was significant across the full cohort,

further inspection revealed that these species were more dramatically affected in a

subset of patients (Figure 1c). The 10 differentially abundant species were from similar

higher-level taxonomic groups; multiple Clostridiales species were enriched, while

multiple Actinomycetaceae species were depleted (Figure 1d; Supplemental Table 2).

Pathway abundance was even more dramatically altered, with 257 significantly enriched

and 2 significantly depleted pathways following CAP treatment (Figure 1e,
Supplemental Table 3). Together, these findings reveal that despite the marked

heterogeneity in patient characteristics and baseline microbial community structure, it is

possible to identify consistent shifts in taxonomic composition and metabolic pathway

abundance following three cycles of CAP treatment.

To investigate whether these microbiome shifts would be detected during

treatment, we compared taxonomic and pathway abundance during cycle 3 (t2) relative

to baseline (t1). The compositional differences were more modest at this earlier time with

only two species reaching significance: Slackia exigua and Clostridium sp. NSJ 42

(Supplemental Figure 2a, Supplemental Table 2). However, the overall trends were

comparable, with a significant correlation in the fold-change of bacterial species relative

to baseline, during cycle 3, and post-treatment (Supplemental Figure 2b). Similar

trends were observed in the pathway analysis. A more modest set of pathways was

significantly different during treatment, including 25 enriched and 3 depleted pathways

(Supplemental Figure 2c, Supplemental Table 3). Nevertheless, there remained a

significant correlation between pathway-level differences in relative abundance during

and after treatment (Supplemental Figure 2d).

Notably, seven of the top ten most significantly enriched pathways post-treatment

represented menaquinol biosynthesis or related pathways. Menaquinol is a reduced

form of vitamin K2 (menaquinone) that is produced by diverse members of the gut

microbiota and readily interconverted to menaquinone in bacterial and mammalian
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cells38–40. We investigated the microbial source of menaquinol biosynthesis using

stratified pathway abundance data from our patient cohort. More than 70% of

menaquinol biosynthesis abundance was attributable to Escherichia spp., with

enrichment of Escherichia and unclassified sources responsible for the enrichment of

menaquinol biosynthesis pathways following CAP treatment (Figure 1f). Next, we

retrieved the KEGG orthologous groups (KOs) shared across all 7 enriched menaquinol

biosynthesis pathways. All of these KOs were significantly enriched (Figure 1g).

Analysis at a per-patient level revealed clear inter-individual differences in the temporal

shifts in menaquinol biosynthesis pathway relative abundance, with 70.5% of patients

exhibiting a net increase relative to baseline (Figure 1h). Patients who experienced

menaquinol biosynthesis gene enrichment had significantly lower-stage disease at

diagnosis (Supplemental Figure 2e), and were significantly more likely to require dose

reductions during treatment (Supplemental Figure 2f).

Menaquinol biosynthesis rescues bacterial fluoropyrimidine sensitivity
Because bacterial menaquinol biosynthesis genes were enriched following

fluoropyrimidine treatment and are responsible for the production of menaquinones

(vitamin K2)39, we hypothesized that menaquinol biosynthesis could be a protective

factor allowing bacteria to escape the off-target effects of fluoropyrimidines on gut

bacteria13. The model organism E. coli K-12 encodes an intact menaquinol biosynthesis

pathway41, is sensitive to fluoropyrimidines13, and is genetically tractable42, providing a

useful model system to test causal links between vitamin K2 production, anti-cancer

drugs, and bacterial growth.

We leveraged a previously published genome-wide random barcode

transposon-site sequencing (RB-TnSeq) library that covers 3,789 non-essential genes

with a total of 152,018 unique transposon insertions26. The E. coli RB-TnSeq library was

cultured for 48 hours in M9 with vehicle or 500 µM of three fluoropyrimidines that had all

been previously shown to inhibit E. coli growth13: CAP, 5'-deoxy-5-fluorocytidine

(DFCR), and 5-FU.

5-FU induced major overall changes in library composition (Figure 2a,
Supplemental Figure 3a,b, Supplemental Tables 4-6). We identified a total of 513
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protective (Figure 2a) and 274 detrimental (Supplemental Figure 3b) genes during

incubation with any of the three fluoropyrimidines. A subset of genes were consistent

across the three drugs, including 2 protective and 2 detrimental genes (Supplemental
Tables 4-6). Transposon insertions in the uracil phosphoribosyltransferase (upp) gene

were dramatically enriched in response to all three fluoropyrimidines (Supplemental
Figure 3c), confirming its key role in exacerbating bacterial 5-FU toxicity43. On the other

hand, dUMP phosphatase (yjjG) insertions were most dramatically depleted across

conditions (Figure 2b), confirming its role in mitigating bacterial 5-FU toxicity by

preventing incorporation of mutagenic nucleotides44.

Next, we performed gene set enrichment analysis for genes that were enriched

or depleted by at least one drug to gain a high-level view of the genetic determinants of

fluoropyrimidine sensitivity. The detrimental genes in response to fluoropyrimidine

treatment (5-FU, DFCR, and/or CAP) were significantly enriched for homologous

recombination (p=0.0099, Supplemental Figure 3d), including transposon insertions in

Holliday junction DNA helicase ruvA/ruvB, potentially due to enhanced cellular toxicity

following inaccurate DNA damage repair. Protective genes in response to

fluoropyrimidines were significantly enriched only for quinone biosynthesis (p=0.0056),

including many of our previously identified genes for menaquinol biosynthesis (Figure
1g). Consistent with the broader pattern in this analysis, 5-FU led to a more marked

depletion of menaquinol biosynthesis genes (Figure 2c).

Bacterial genetics and media supplementation validated a causal role of

menaquinol biosynthesis in mediating protection from the off-target effects of

fluoropyrimidines for bacterial growth. First, we acquired an in-frame, kanamycin (Kan)

resistant single gene deletion of the first step of the menaquinol biosynthesis pathway

(menF, K02552) from the Keio collection29. We grew E. coli BW25113 wild-type (wt) and

ΔmenF::KanR in 0 and 500 μM 5-FU. Overall growth of the two strains was comparable

in the absence of 5-FU (Supplemental Table 7). The carrying capacity of ΔmenF::KanR

relative to wt decreased when subjected to 5-FU (Figure 2d). Next, we grew E. coli

BW25113 ΔmenF::KanR in 5-FU with 0.1 μg/mL menaquinone. Menaquinone markedly

rescued carrying capacity in the presence of 5-FU (Figure 2d, Supplemental Table 7).
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Prior studies showed that menaquinol biosynthesis defects lead to uracil

auxotrophy in E. coli45–47, suggesting this pathway may exert a chemoprotective effect

via modulating uracil. To test whether uracil could rescue the 5-FU-dependent

ΔmenF::KanR fitness defect, we grew E. coli wt and ΔmenF::KanR in 5-FU±50 μM uracil.

While ΔmenF::KanR grew worse than wt in 5-FU in media, both strains grew comparably

with uracil supplementation (Figure 2e, Supplemental Table 7). Taken together, these

findings suggest that fluoropyrimidines directly select for bacteria with the ability to

synthesize chemoprotective menaquinone, prompting us to consider the broader

chemoprotective role of the microbiome in mediating host drug toxicities.

Baseline gut microbial functional pathways are associated with toxicities in
patients
Most patients experienced at least one patient-reported toxicity-related event (any

grade) during treatment (n=45/48 patients with t2 toxicity data available; Figure 3a). To

investigate whether the microbiome varies by toxicity status, we performed

PERMANOVA testing comparing these on-treatment toxicities with the community

composition of baseline species and pathway abundances. We did not find any

significant relationships with baseline species abundance (FDR>0.2). In contrast, the

composition of baseline pathway abundance was significantly associated with

patient-reported PSN, alopecia, and oral mucositis (Figure 3b).

Next, we compared baseline pathway abundance in patients who went on to

report PSN-like symptoms, alopecia, and oral mucositis, and those who did not. We

found a significant depletion in 59 pathways in patients who went on to experience PSN

(Figure 3c and Supplemental Table 8). Remarkably, patients who reported PSN-like

symptoms had significantly lower baseline levels of menaquinol biosynthesis pathways

(Figure 3d), supporting the potential clinical relevance of our microbiome analyses

(Figure 1) and experiments in bacterial cultures (Figure 2). Multiple pathways related to

sulfate were also statistically significant (Figure 3d). Analysis of the cycle 3 and

post-treatment data revealed that these pre-existing differences in PSN-associated

pathways equalize in response to treatment (Supplemental Figure 4a).
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Distinct pathways were observed for alopecia, with a significant depletion of 291

pathways at baseline in patients who experienced this alopecia (Supplemental Figure
4b and Supplemental Table 9). We did not observe a role for menaquinol biosynthesis

pathways (Supplemental Table 9). Instead, we noted a depletion in pathways involved

in L-methionine biosynthesis and β-(14)-mannan degradation (Supplemental Figure
4c). Oral mucositis was not associated with any individual pathways (FDR>0.2).

Baseline gut microbial gene family abundance accurately predicts toxicity
We sought to build a model using the baseline microbiome to predict toxicity during

CAP treatment. Rather than relying on gene pathways which encompass genes with

broad functions, we turned to more granular KO abundance data. For each toxicity of

interest, we used Boruta to select KOs of interest, trained a random forest model on this

cohort (48 patients with on-treatment toxicity data available), and validated the model on

an independent cohort (38 patients with on-treatment toxicity data available; Figure 4a).

The validation cohort consisted of fluoropyrimidine-treated patients with CRC treated at

University of California, San Francisco (ClinicalStudies.gov NCT04054908)15. Due to the

availability of detailed HFS (any grade) and dose adjustment data in the validation

clinical dataset, we opted to focus on these toxicity categories.

In our training cohort, the Boruta algorithm selected four baseline microbial KOs

as features relevant to the development of a model predicting dose adjustments (Figure
4b). Of these KOs, serine endoprotease degQ (K04772) was more abundant in

dose-adjusted patients, while sensor kinase cheA (K03407), nucleotide metabolism

esterase ymdB (K09769), and ion-translating oxidoreductase rnfC (K03615) were more

abundant in patients who did not require dose delays or reductions (Figure 4b). Using

these four genes, we trained 100 random forest models using leave-one-out

cross-validation, achieving a mean accuracy of 0.93 and area under the curve (AUC) of

0.92 (Figure 4c). Finally, we validated a random forest model trained on our validation

cohort, obtaining an AUC of 0.73 (Figure 4d).

For HFS, the Boruta algorithm selected seven baseline microbial KOs as relevant

features in our training cohort (Figure 4e). All of these KOs were less abundant in

patients who experienced HFS (Figure 4e). Using these 7 genes, we trained 100
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random forest models using leave-one-out cross-validation, achieving a mean accuracy

of 0.76 and area under the curve (AUC) of 0.77 (Figure 4f). The validation cohort AUC

was 0.62 (Figure 4g).

Finally, inspired by our observations associating baseline pathway abundance

and PSN, we sought to develop an algorithm to predict patient-reported PSN in our

cohort in spite of a lack of validation cohort. We selected the top 10 differentially

abundant pathways (Figure 3c,d) and trained 100 random forest models using

leave-one-out cross-validation, achieving a mean accuracy of 0.77 and area under the

curve (AUC) of 0.72 (Supplemental Figure 5).

Discussion
Our metagenomic and experimental data revealed an unexpected role for microbial

vitamin K2 biosynthesis in protection from the off-target effects of fluoropyrimidines on

gut bacterial growth. The primary mechanism-of-action of 5-FU, thymidylate synthase

inhibition, does not have any direct links to vitamin K2, in contrast to other

micronutrients including folate and vitamin B648, 49. Our experiments in E. coli suggest

this pathway may exert a chemoprotective effect via modulating uracil, protecting

bacteria from 5-FU13.

These data support a protective role of microbial menaquinol biosynthesis in

ameliorating aspects of host drug toxicity. Higher baseline levels of menaquinol

biosynthesis genes were associated with decreased risk of patient-reported PSN.

Consistent with this data, demyelination of peripheral nerve fibers is a primary cause of

PSN50 and vitamin K2 plays a crucial role in the myelin sheath repair in the peripheral

nervous system51. Vitamin K2 supplementation can alleviate peripheral neuropathies in

patients with vitamin B12 deficiency or type 2 diabetes mellitus52.

More broadly, we identified microbial biomarkers of drug toxicity across multiple

endpoints (PSN, alopecia, oral mucositis). We found lower levels of mannan

degradation genes in the gut microbiomes of subjects who developed alopecia.

Intraperitoneal mannan delivery induces alopecia in a mouse model53. Thus, the

balance between mannan consumption through diet, fungal production within the
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gastrointestinal tract, and gut bacterial degradation may modulate alopecia through

systemic mannan levels.

Our data provides a proof-of-concept for the development of microbiome-based

machine learning models that accurately predict drug toxicity in cancer chemotherapy

patients, building upon prior studies in rheumatoid arthritis, prostate cancer

radiotherapy, and immune checkpoint inhibitor-induced colitis54–57. Remarkably, these

models required just a handful of KOs (4-7), which could be measured using less

expensive targeted assays like quantitative PCR. A critical next step will be designing

larger intervention studies to test the utility of such models in clinical decision making.

The current dataset has multiple limitations to address in subsequent efforts. We

did not collect samples during the first two treatment cycles, potentially missing dramatic

early-treatment shifts observed in a cohort of US CRC patients15. While our sample size

(56 subjects, 156 samples) was sufficient to reach statistical significance and uncover

interesting biology, it remains insufficient to inform concrete patient care guidelines. The

observational nature of our study and lack of dietary data makes causal inferences

challenging, a limitation partially overcome by our experimental validation.

Many patients in this cohort reported PSN-like symptoms, a toxicity more

commonly associated with oxaliplatin than with capecitabine. The reported PSN-like

symptoms may be related to HFS, a dose-limiting toxicity of capecitabine, which initially

manifests with dysesthesia and tingling similar to neuropathy. Alternatively, capecitabine

might worsen subclinical PSN in patients previously treated with oxaliplatin58. In our

cohort, 10/14 patients reporting PSN had previous oxaliplatin exposure (Supplemental
Table 1). Although PSN is less common than HFS, previous studies have also observed

PSN in 16-37% of patients treated with capecitabine or 5-FU without oxaliplatin12, 59.

In conclusion, our findings provide further support for a role of the gut

microbiome in mediating the cancer treatment outcomes and the utility of paired studies

in well-characterized patient cohorts and experimental model systems. These results

raise numerous testable hypotheses that should be explored in preclinical models.

Future work should focus on controlled clinical intervention studies to investigate if the

use of vitamin supplementation, probiotics, or other microbiome-based interventions can

alleviate drug toxicity in cancer patients.
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Tables
Table 1. Baseline characteristics.

Clinical characteristics (n=56)
Age (years) - Mean (SD) 72.9 (7.6)
Gender - N (%)

Male
Female

36 (64.3)
20 (35.7)

BMI (kg/m2) - Mean (SD) 26.77 (4.4)
Co-treatment with bevacizumab - N (%) 40 (71.4)
Tumor sidedness - N (%)

Left-sided (descending colon, sigmoid colon, rectum)
Right-sided (cecum, ascending colon, transverse colon)
Missing data

39 (69.6)
16 (28.6)
1 (1.8)

Colostomy in situ - N (%) 16 (28.6)
Prior treatments and medication (n=56)

Prior systemic treatment (>1 month before inclusion)* - N (%)
CAP (with or without B)
CAP+RT
CAPOX (with or without B)
CAPIRI+P
FOLFIRI
FOLFIRINOX (with or without B)
TAS+B

31 (55.4)
6 (10.7)
11 (19.6)
24 (42.9)
1 (1.8)
2 (3.6)
2 (3.6)
1 (1.8)

Prior chemoradiation (>1 month before inclusion) - N (%) 11 (19.7)
Antibiotic use last year (>3 months before inclusion) - N (%) 23 (41.1)
Colorectal surgery in the past - N (%) 44 (78.6)
Proton pump inhibitor use - N (%) 18 (32.1)

*CAP: Capecitabine; B: Bevacizumab; RT: Radiotherapy; CAPOX: Capecitabine + Oxaliplatin: CAPIRI:

Capecitabine + Irinotecan; P: Pembrolizumab; FOLFIRI: 5-Fluorouracil + Irinotecan; FOLFIRINOX:

5-Fluorouracil + Irinotecan + Oxaliplatin; TAS: Trifluridine and Tipiracil. Each count represents a single

patient - if a patient had multiple previous rounds of a single treatment (i.e. CAPOX), this is still only

counted as 1 event. Total percentage exceeds 100 because some patients had multiple distinct prior

treatments.
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Figures and Figure Legends

Figure 1. Capecitabine (CAP) alters the human gut microbiome. (a) Study design. Patients with

advanced colorectal cancer (CRC) were treated with three cycles of CAP, with stool collected at baseline

(t1), during cycle 3 (t2), and post-treatment (t3). Created with BioRender.com. (b) Volcano plot of species

post-treatment (t3) vs baseline (t1). Points represent significantly enriched (blue) and depleted (orange)

species (FDR<0.2). (c) Heatmap of differentially abundant species from (b), with patients and species

ordered by McQuitty hierarchical clustering of log2 fold change (log2FC) of post (t3) vs baseline (t1). (d)
Phylogenetic tree of differentially abundant species from (b), with labels for clades where treatment

affected multiple clade members similarly [enriched (blue) or depleted (orange)]. (e) Volcano plot of

HUMAnN 3.0 gene pathways at post (t3) vs baseline (t1). Points represent significantly enriched (blue) and

depleted (orange) pathways (FDR<0.2). 7 of the top 10 most significantly altered pathways are

menaquinol biosynthesis pathways. (f) Genera of microbes contributing to menaquinol biosynthesis

pathways. (g) KOs shared across all enriched menaquinol biosynthesis pathways in (f). Blue indicates

p<0.05. (h) Heatmap of all KOs from (g), with patients ordered by average log2FC (top row, “Average”)

and KOs ordered by occurrence in the menaquinol biosynthesis pathway. (b,e,g): p-value: mixed effects

model of central log ratio (CLR)-normalized abundance vs time, with patient as a random effect.
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Figure 2. Menaquinol biosynthesis rescues bacterial sensitivity to fluoropyrimidines. (a-c) An E.

coli RB-TnSeq library was treated with 500 μM of capecitabine (CAP), 5'-deoxy-5-fluorocytidine (DFCR),

5-fluorouracil (5-FU), or vehicle (Veh) in duplicate for 48 hours. (a) Upset plot of significantly depleted

transposon-disrupted genes (intact gene is protective) across all 3 conditions. (b) Fitness of Tn::yjjG

mutant in all four conditions, relative to vehicle. Values represent the mean of 2 biological replicates. (c)
Gene set enrichment analysis of protective genes from (a) revealed quinone biosynthesis as the sole

significantly enriched pathway (hypergeometric p<0.01). RB-TnSeq fold-change of enriched quinone

biosynthesis genes is depicted. (d-e) E. coli BW25113 wild-type (wt) and ΔmenF::KanR (ΔmenF) were

treated with 500 μM 5-FU ± 225 nM menaquinone (MK) (d) or ± 50 μM uracil (e) for 24 hours, with

carrying capacity quantified with Growthcurver. p-values: deviation from linearity on quantile-quantile plot

(a), Student’s t-test (d,e).
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Figure 3. Pre-treatment microbial gene pathways are associated with development of toxicities
during treatment. (a) Distribution of Grade 1+ toxicities in patients at cycle 3 (t2). (b) Permutational

multivariate analysis of variance (PERMANOVA) testing of cycle 3 (t2) toxicities with respect to baseline

bacterial gene family composition. p-value: PERMANOVA test using the central log ratio

(CLR)-transformed Euclidean metric of baseline bacterial gene family composition, with FDR calculated

with Benjamini-Hochberg multiple-testing correction. (c) Volcano plot of baseline gene pathways in

patients who went on to have peripheral sensory neuropathy (PSN) or no PSN during treatment. Colored

points represent significantly depleted (orange) pathways (FDR<0.2). p-value: linear model of abundance

vs toxicity. (d) Heatmap of the baseline (t1) abundances of the top 10 lowest FDR pathways from (c) in

units of reads per kilobase per genome equivalent (RPKG), faceted by whether a patient experienced

PSN, with patients and pathways ordered by median hierarchical clustering.
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Figure 4. The baseline gut microbiome predicts drug side effect profiles. (a) Random forest pipeline.

For each toxicity of interest, metagenomic sequencing reads were mapped to KEGG orthologous groups

(KOs) using HUManN 3 and normalized by kilobase per genome equivalent (RPKG), followed by a central

log ratio (CLR) transform, followed by feature selection with Boruta. A random forest algorithm was

trained on these features using leave-one-out cross-validation (LOOCV) with 500 trees, followed by

evaluation on our cohort and an independent validation cohort of 38 American patients with toxicity data

available15. Created with BioRender.com. (b,e) Importance scores and baseline (t1) abundances of

Boruta-selected KOs to classify dosing changes (b) or hand-foot syndrome (HFS) (e) during treatment

(t2). (c,f) Receiver operating characteristic (ROC) curve for classification of dosing changes (c) or HFS (f)
with random forest models built with Boruta-selected KOs tested with LOOCV. The black line represents

the mean and blue shaded area represents the 95% confidence interval obtained across 10 independent

models. Accuracy and area under the curve (AUC) are displayed, with 95% confidence intervals in

brackets. (d,g) Evaluation of a model trained on our dataset and validated on an independent cohort of 38

American patients to predict dosing changes (d) or HFS (g).
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Supplemental Figures and Figure Legends

Supplemental Figure 1. Prior antibiotic use and systemic treatment are associated with altered
baseline microbial diversity. (a) Species-level principal coordinates analysis (central log ratio

(CLR)-transformed Euclidean distances) across all timepoints, colored by patient, with arrows connecting

patient samples pointing towards later timepoints (i.e baseline, cycle 3, post). (b) Patient demographics

and treatment history are associated with bacterial diversity differences (Shannon index) at baseline. (c-e)
Boxplots of Shannon diversity vs antibiotic use (c), prior systemic treatment (d), or antibiotic use and/or

prior systemic treatment (e). (f) Permutational multivariate analysis of variance (PERMANOVA) testing of

patient demographics and treatment history with respect to baseline bacterial taxa composition. (g) PCA

of CLR-transformed Euclidean distances depicting antibiotic-associated differences in the baseline

microbial species. p-values: Student’s t test (b-e), PERMANOVA test with central log ratio

(CLR)-Euclidean ordination (a,f,g). For (c-e), comparisons with p<0.05 are labeled. Benjamini-Hochberg

false discovery rate (FDR) correction applied for (b,f), with FDR<0.2 called as significant.
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Supplemental Figure 2. Consistent microbiota shifts during and after treatment. (a) Volcano plot of

differentially abundant microbial species during cycle 3 (t2) vs baseline (t1). Orange dots represent

significantly depleted species [false discovery rate (FDR)<0.2]. (b) Comparison of log2 fold change of

species at cycle 3 (t2) or post-treatment (t3) relative to baseline (t1). (c) Volcano plot of pathways during

cycle 3 (t2) vs baseline (t1). Points represent significantly enriched (blue) and depleted (orange) pathways

(FDR<0.2). (d) Comparison of log2 fold change of pathways at cycle 3 (t2) or post-treatment (t3) relative to

baseline (t1). (e,f) Comparison of menaquinol synthesis gene enrichment during treatment versus cancer

stage (e) and on-treatment (t2) dose reduction (f). Patients were grouped using Average log2FC depicted

in Figure 1h. p-values: Mixed-effects model of abundance vs time, with patient as a random effect (a,c);

Spearman’s rank correlation (b,d); one-sided likelihood-ratio test (e,f).
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Supplemental Figure 3. Uridine phosphorylase (upp) exacerbates fluoropyrimidine toxicity. (a)
Quantile-quantile (Q-Q) plot showing deviation from normality (dotted black line) for a RB-TnSeq library

treated with 500 μM capecitabine (CAP), 5'deoxy-5-fluorocytidine (DFCR), and 5-fluorouracil (5-FU)

relative to Vehicle (Veh). (b) Upset plot of significantly enriched transposon-disrupted genes (i.e. the intact

gene is detrimental) across all 3 conditions. (c) Fitness of Tn::upp mutant in all four conditions, relative to

vehicle. Values represent the mean of 2 biological replicates. (d) Gene set enrichment analysis of

detrimental genes from (b) revealed homologous recombination as the sole significantly enriched

pathway (p<0.01). RB-TnSeq fold-change of enriched quinone biosynthesis genes is depicted.
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Supplemental Figure 4. Pretreatment microbial gene pathways are associated with development of
toxicities during treatment. (a) Abundance of top 10 pathways significantly associated with peripheral

sensory neuropathy (PSN) at t2 (pathways from Fig. 3d, labeled with MetaCyc pathway numbers), faceted

by pathway and time of stool sample. p-values: ANOVA. (b) Volcano plot of baseline gene pathways in

patients who went on to have alopecia or no alopecia during treatment. Colored points represent

significantly depleted (orange) pathways (FDR<0.2). p-value: linear model of abundance vs toxicity. (c)
Heatmap of the baseline (t1) abundances of the top 10 lowest FDR pathways from (b) in units of reads per

kilobase per genome equivalent (RPKG), faceted by whether a patient experienced alopecia, with

patients and pathways ordered by median hierarchical clustering.
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Supplemental Figure 5. Pretreatment microbial gene pathways predict peripheral sensory
neuropathy during treatment (at t2). Receiver operating characteristic (ROC) curve for classification of

tumor change with random forest models built with pathways identified in Fig. 3d, tested with

leave-one-out cross-validation. The black line represents the mean and blue shaded area represents the

95% confidence interval obtained across 100 independent models. Accuracy and area under the curve

(AUC) are displayed, with 95% confidence intervals in brackets.
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