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Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignancies worldwide with a dismal prognosis. Lack of
efficient biomarkers, early detection, and prognosis is still a challenge for HCC. Pyroptosis is a new discovery inflammatory
form of programmed cell death. There is growing evidence revealed that pyroptosis plays a role in physiological and
pathological conditions of human cancers. However, the prognostic evaluation of these pyroptosis-related genes (PRGs) in
HCC remains blank. Consensus clustering of PRGs was used to classify 374 patients with HCC from the TCGA-LIHC cohort.
By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, a 2-gene prognostic gene
model (PLCG1 and GSDMC) was built and indicated the survival rate in HCC with medium-to-high accuracy. Then, the
median risk score from the TCGA cohort was utilized; the prognostic gene model was also accurate in Gene Expression
Omnibus (GEO) cohort. The functional enrichment analysis indicated that the oncogenic properties are associated with
prominent hallmarks of cancer. The ssGSEA analyses and TIMER database indicated that immune infiltration tumor
microenvironment in the HCC. In conclusion, our findings provide a foundation for further research targeting PRGs and their
immune microenvironment.

1. Introduction

Hepatocellular carcinoma (HCC) ranks the sixth most lethal
malignancy and accounts for the second leading cause of
cancer-related deaths worldwide [1]. The development of
HCC refers to multiply steps. The nonresolving inflamma-
tion is a significant driver of disease, causing the tumor often
rise in inflammatory conditions such as hepatitis B virus
(HBV) and hepatitis C virus (HCV) infection, liver cirrhosis,
nonalcoholic fatty liver, or alcoholic liver [2].

Pyroptosis was first described as a novel type of cell sui-
cide in macrophages, which are infected by Shigella flexneri
[3]. Not until 2001, the word “pyroptosis” was defined to
distinguish it from apoptosis. Further research found pyrop-
tosis was the two-sided sword for cell survival. Moderate
pyroptosis improves immune activity and helps protect these
pathogens [4]. The excessive one may construct an unfavor-
able inflammatory immune microenvironment, which may

fasten diseases progressing, especially in cancer pathology
[5]. Although studies of pyroptosis in HCC are just in their
infancy, there are also many researches in this area [6, 7].
These studies highlight the vital role of pyroptosis in HCC.
Moreover, pyroptosis is also found to affect the immune activ-
ity of HCC [8]. However, whether these pyroptosis-related
genes are correlated with HCC patient prognosis and reflec-
tion in immune activity remain largely unknown. The new
genome sequencing technique and the public databases allow
us to explore the adequate sample size and available multio-
mics data systematically. The ferroptosis-related genes also
showed great power in HCC survival prediction [9]. In the
present study, we identified pyroptosis-related gene expres-
sions, established a pyroptosis prognostic gene model with
survival prediction, and evaluated the model in HCC patients.
Moreover, combined with clinicopathological features of
patients, a nomogram-based risk assessment of patients was
constructed to improve the prediction ability and accuracy of
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the model. Finally, GSEA, ssGSEA, and TIMER databases
were employed to assess their underlying mechanical path-
ways and immune cell infiltration and activity in the tumor
microenvironment (TME).

2. Materials and Methods

2.1. HCC Datasets and Preprocessing. We obtained level 3
RNA sequencing (RNA-Seq) data and clinic information of
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Figure 1: Identification of the candidate PRGs in the TCGA cohort. (a) The heat map for different expressions of PRGs between HCC and
normal tissues (green: low expression; red: high expression). (b) The PPI network from the STRING database indicated the interactions
among the PRGs. (c) The correlation network of PRGs.
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the HCC cohort downloaded from the TCGA database
(https://cancergenome.nih.gov). This cohort contained 374
HCC tumor tissues and 50 normal tissues with gene expres-
sion profiles, which was used in the train set. The test
group’s RNA-Seq data and clinical information for external
validation were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/, ID: GSE54236). Data
analysis was performed with the R (version 3.6.1) and R Bio-
conductor packages. We use the STRING database to con-
struct performing the interaction of protein interaction [10].

2.2. Identification and Validation of the Prognostic
Pyroptosis-Related Gene Signature. We obtained 33 PRGs
from prior reviews [11–16] and the MSigDB database. They
are shown in Table S1. We employed the univariate and
multivariate Cox regression analyses to evaluate each gene
impact on patients’ survival status in TCGA cohort Only
PEGs with a P value < 0.05 and logFC > 1:5 were used for
further study. Then, the “limma” package was used to
identify the total differentially expressed genes (DEGs)
between tumor and normal tissues with a P value < 0.05 in
genes in HCC. The intersect genes of two sets were used to
construct the gene prognosis model. The LASSO analysis
with ten cross-validations was applied using the “glmnet”
R package. According to the best lambda value, only two
PRG prognostic genes list with coefficients were generated
from the LASSO model. Each patient’s risk score can be
obtained from the gene expression level and corresponding
coefficients. The formula is calculated as follows: score =

expression gene one ∗ coefficient + expression gene two ∗
coefficient and so on. Based on the median value of the risk
score, the patients were classified into the high risk or low-
risk groups. Then predictive accuracy of the model was
evaluated by time receiver-operating characteristic (ROC)
analysis. We also perform the Kaplan–Meier survival
analysis, PCA, and t-SNE to visualization this model by R
packages. Using the cut-off value from TCGA, we
evaluated the accuracy of this model in the GEO group.
After external evaluation, combined with these
clinicopathologic features, we constructed the nomogram
to predict the survival probability of HCC patients. The
calibration curves were used to assess the accuracy of this
nomogram.

2.3. Functional Enrichment Analysis. The “clusterProfiler” R
package was used in the GO enrichment analysis. We
employed GSEA (gene set enrichment analysis) in the JAVA
environment to assess the possible mechanisms between the
high- and low-risk groups. The entire dysregulated genes
between tumor and normal samples were used for GSEA.
The random sample permutations number was set at 1000.
And P value < 0.05 and FDR q value < 0.05 were set as the
significance.

2.4. TME Immune Cell Infiltration. We employed an online
TIMER database to comprehensively analyze these PRG
prognostic genes’ effect on tumor-infiltrating immune cells

Consensus matrix k = 2
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Figure 2: Pyroptosis-related regulators relate to subgroups of HCC. (a) Two clusters were likely to be grouped based on the expression of 33
PRGs. (b) The OS curves for the two clusters.
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(https://cistrome.shinyapps.io/timer/) [17]. The ssGSEA
(single sample GSEA) was also used in this section.

2.5. Statistical Analysis. The data was conducted using the R
software (3.6.1). Moreover, the PEG expression levels
between the tumor and normal tissues were compared with
one-way ANOVA. The log-rank test was used in the com-
parison of Kaplan–Meier plots. P < 0:05 was deemed statisti-
cally significant.

3. Results

3.1. Identification of Prognostic Pyroptosis-Related DEGs. A
total of 33 were included in our study (Table S1). Most
PRGs (26/33) were differentially expressed between tumor
and normal tissues (Figure 1(a)) (all FDR < 0:05). Among
these ELANE, NLRP6, CASP4, SCAF11, PRKACA, CASP6,
CASP9, AIM2, NLRP7, GPX4, NOD2, TIRAP, PJVK,
CASP3, NOD1, CASP8, GSDMD, NLRP1, GSDME,
GSDMB, PYCARD, PLCG1, and GSDMC were
upregulated in tumor than normal, while IL6, IL1B, and
NLRP3 were downregulated (Figure 1). The STRING
database showed the protein-protein interaction (PPI) of
these PRGs (Figure 1(b)). The correlation gene network
containing all pyroptosis-related genes is presented in
Figure 1(c). Based on these dysregulated genes, we
identified two different regulation patterns in the TCGA
cohort (Figure 2(a)). The survival analysis showed that
many advantages of cluster 1 were higher than that of
cluster 2 (Figure 2(b)). To focus on the most dysregulated
PRGs between two groups, we took these genes (PLCG1,
GSDMC, PYCARD) whose logFC is greater than 1.5 into

the prognostic model. Then, the R package “limma” was
used to screen all kinds of dysregulated genes between
tumor and normal. The lap of two gene sets was used in
our prognostic gene mode (PLCG1, GSDMC).

3.2. Construction of a Prognostic Model in the TCGA. LASSO
Cox regression analysis was employed to establish a prog-
nostic model using the expression profile of the two genes
above. After identifying the optimal value of λ, the risk score
was calculated as follows: 0.24850607345869∗ expression
level of PLCG1+0.418060351852712∗ expression level of
GSDMC. According to the median cut-off value, the patients
were stratified into high-risk or low-risk groups. The
Kaplan-Meier analysis indicated that the high-risk group
patients had a significantly worse OS than their low-risk
counterparts (Figure 3(a)). Time-dependent ROC curve for
OS was employed to evaluate the predictive performance
of the risk score. The area under the curve (AUC) reached
0.685 at 1 year, 0.608 at 2 years, and 0.612 at 3 years
(Figure 3(b)). PCA (principal component analysis) and t-
SNE analysis also indicated that different risk group patients
were distributed in two directions (Figures 3(e) and 3(f)).

3.3. External Validation of the Risk Signature. 82 HCC
patients from Gene Expression Omnibus (GEO) cohort
(GSE54236) were utilized in the validation set. Based on
the TCGA median risk score, patients were divided into high
or low-risk groups. Kaplan–Meier plot indicated a signifi-
cant OS difference in the survival rate between the two
groups (Figure 4(a)). The AUC of the ROC curve showed
good predictive efficacy (AUC = 0:748 for 1-year, 0.732 for
2-year, and 0.603 for 3-year survival) (Figure 4(b)). The
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Figure 3: Prognostic evaluation of the signature model in the TCGA cohort. (a) Kaplan-Meier curves for the OS of HCC patients in the
high-risk group and low-risk group. (b) The time-dependent ROC curves verified the predictive performance of the risk score. (c) The
distribution of the risk scores in the TCGA cohort. (d) The distributions of OS status, OS, and risk score for TCGA patients. (e) The t-
SNE analysis of the TCGA cohort. (f) The PCA plot of the TCGA cohort.
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PCA and tSNE1 also showed great separation between
tumor and normal (Figures 4(e) and 4(f)).

3.4. Independent Prognostic Value of the Risk Model. Univar-
iate and multivariable Cox regression analyses were also
used to evaluate whether the risk score is an independent
prognostic factor for HCC survival. The result of the univar-

iate Cox regression analysis indicated that the risk score was
an independent factor predicting poor survival in both the
TCGA and GEO (HR = 4:277, 95% CI: 2.738–6.681 and
HR: 3.079, 95% CI: 1.216–7.796, Figures 5(a) and 5(b)).
The multivariate analysis also implied that the risk score as
a prognostic factor (HR = 4:262, 95% CI: 2.615–6.945 and
HR: 2.969, 95% CI: 1.155–7.634, Figures 5(c) and 5(d)).
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Figure 4: Validation of the prognosis signature in the GEO cohort. (a) Kaplan-Meier curves for the OS of HCC patients in the high-risk and
low-risk groups. (b) The time-dependent ROC curves verified the prognostic performance of the risk score. (c) The distribution of the risk
scores in the GEO cohort. (d) The distributions of OS status, OS, and risk score in the GEO cohort. (e) The t-SNE analysis of the GEO
cohort. (f) The PCA plot of the GEO cohort.
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3.5. Building a Predictive Nomogram and the Calibration
Curves. Combined with these clinicopathologic features,
the risks core was used to build a predictive nomogram to
predict the survival probability (Figure 6(a)). The c-index
of the nomogram was 0.68. The calibration curves were
employed to assess the accuracy of this nomogram
(Figures 6(b)–6(d)).

3.6. Functional Analyses, TME Immune Cell Infiltration, and
Functions. To elucidate the biological behavior and pathways
associated with the risk score, we perform the GO analysis
and GSVA enrichment analysis using the DEGs between
the high-risk and low-risk groups (Figures 7(a) and 7(b)).
As shown in Figure 7(a), the DEGs were associated with
many immune response pathways and many extracellular
structure organization pathways. The KEGG pathway analy-
sis showed that DEGs were rich in cell cycle, RNA degrada-
tion pathways, etc.

Therefore, ssGSEA (single-sample gene set enrichment
analysis) was used to compare the 16 types of immune cells
and their activity and TME functions. In the TCGA cohort,
the high-risk subgroup had a higher rate of aDCs, Tfh, and
Treg cells while lower macrophage cells, neutrophils, and
Nk cells rate (Figure 8(a)). Moreover, the cytolytic activity
and type 1 and type 2 IFN responses were lower in the
high-risk group than low-risk, while the MHC class 1 activ-
ity was greater (Figure 8(b)). Then, we used the TIMER
database to analyze the correlation of expression of two
prognostic PRGs and immune infiltration in HCC. As
shown in Figure 7(c), PLCG1 expression was positive with
the immune infiltration level of CD4+, macrophages, neu-
trophils, and dendritic cells. GSDMC expression was posi-
tive with CD8+, CD4+, macrophages, neutrophil, and
dendritic cells, while negative with purity.

4. Discussion

Chronic infection such as virus infection, liver cirrhosis,
nonalcoholic fatty liver, or alcoholic liver leads to gradual
development of HCC progression. As the newly defined
inflammation-associated programmed cell death, pyroptosis
has been proved to have actual effects on cancers. Its two
side effects are always upon the tumor microenvironments.
On the one hand, normal cells could be provoked by a large
number of pyroptosis derived inflammatory factors, which
leads to transformation into tumor cells [18]. On the other
hand, promoting cell pyroptosis could kill these tumor cells,
release the tumor burden, and cure diseases. Some studies
have already identified the antitumor effect of pyroptosis in
HCC and colorectal cancer [6, 7, 19]. Moreover, the pyrop-
tosis phenomena have been proven to connect with TME
immune activity [7]. Studies have identified that molecular
subgroup classification was associated with distinct clinical
outcomes in solid tumors [15, 20]. Therefore, we need to
explore the changes in the different status and mechanisms
of HCC associated with the pyroptosis and immune envi-
ronment to facilitate treatment. So, employing all the genes
related to pyroptosis, we explored a prognostic signature
for HCC patients. Our model provides PLCG1, and GSDMC
could be biomarkers and potential targets for antitumor
therapy and impact the HCC immune microenvironment.

Phospholipase C gamma 1 (PLCG1) participates in
receptor tyrosine kinase- (RTK-) mediated signal transduc-
tion pathway. Knockdown of PLCG1 may interrupt the
GSDMD mediated pyroptosis [21]. The PLCG1 expression
could also be a biomarker for myelodysplastic syndromes
and oral squamous cell carcinoma [22, 23]. The dysregulated
PLCG1 in HCC tissues and cell lines was also proved [8].
PLCG1 was also taking part in lung cancer pathology [24].
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Figure 5: Univariate and multivariate Cox regression analyses for the risk score. (a) The univariate Cox regression result for TCGA. (b) The
multivariate Cox regression result for TCGA. (c) The univariate Cox regression result for GEO. (d) The multivariate Cox regression result
for GEO.
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In our prognosis model, high PLCG1 expression was also
correlated with poor survival outcomes, which may result
from the low activity of pyroptosis. GSDMC, also called
melanoma-derived leucine zipper extranuclear factor
(MLZE), was first described from melanoma cells. Its
expression was higher in the gastrointestinal tract and skin
than in other normal tissues [25]. Moreover, GSDMC
functions as an oncogene in multiply cancers and may
serve as a potential therapeutic target. GSDMC stimulated
colorectal cancer cell proliferation by interacting with
transforming growth factor β receptor type II [26]. Along
with PD-L1, GSDMC leads to tumor’s necrosis [27].
Upregulated GSDMC also refers to poor clinical outcomes
for lung cancer, breast cancer, and melanoma [27–29],
similar to our findings in HCC.

Recently, some papers have focused on the prognostic
significance of PRGs in HCC. Liu et al. built a prognostic
model based on CASP1, CHMP6, CASP4, DHX9, GZMA,
and DFNA5 expression [30]. Chen et al. screened six genes
in the model: BAK1, CHMP4B, DHX9, GSDMC, GSDME,
and TREM2 expressions [31]. Fu and Song constructed a
model with GSDME, GPX4, and SCAF11 [32]. Chen et al.
build with BAK1, CHMP4B, DHX9, GSDMC, GSDME,

and TREM2 expressions [33]. In our opinion, the more
genes used in the prognostic model, the more this model will
cost, and the less possible it will be used in the clinic. So, we
only choose two genes in our model. Although the underly-
ing mechanisms of pyroptosis are still covered, our study
may help doctors classify HCC patients into subtypes, build
a pyroptosis-related prognostic model, and then externally
validate. Furthermore, functional enrichment and immune
impact were also performed. There are still some limitations
that are needed to be considered. All data we used were from
public databases. More individual clinical information is
needed to improve our model. As we only consider these
hallmark genes to build a prognostic model, these less prom-
inent genes may also significantly affect tumor progression.
More in vitro and in vivo experiments are required for
studying these underlying mechanisms behind the phenom-
ena. Tumor heterogeneity is also substantial in tumor micro-
environment studies.

In summary, our study demonstrated that pyroptosis is
closely connected to HCC progression. We provided a novel
pyroptosis-related gene signature to predict patients’ sur-
vival. With further verification, it is believed that this model
could be successfully used in clinic.
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Figure 6: Construction of a predictive nomogram. (a) Nomogram to predict the 1-year, 2-year, and 3-year overall survival rate of HCC
patients. (b) The calibration curve for the 1-year survival for the TCGA. (c) The calibration curve for the 2-year survival for the TCGA.
(d) The calibration curve for the 3-year survival for the TCGA.
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Figure 7: The functional analysis of DEGs between the high- and low-risk groups in the TCGA. (a) Bubble graph for GO enrichment. (b)
GSEA analysis for KEGG pathway.
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Figure 8: Continued.
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