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Abstract: Protein, which is the main component of meat, is degraded and oxidized during meat
fermentation. During fermentation, macromolecular proteins are degraded into small peptides and
free amino acids, and oxidation leads to amino acid side chain modification, molecular crosslinking
polymerization, and peptide chain cleavage. At different metabolic levels, these reactions may affect
the protein structure and the color, tenderness, flavor, and edible value of fermented meat products.
Lactic acid bacteria are currently a research hotspot for application in the fermented meat industry.
Its growth metabolism and derivative metabolites formed during the fermentation of meat products
regulate protein degradation and oxidation to a certain extent and improve product quality. Therefore,
this paper mainly reviews the changes occurring in proteins in fermented meat products and their
effects on the quality of the products. Referring to studies on the effects of lactic acid bacteria on
protein degradation and oxidation from all over the world, this review aims to provide a relevant
reference for improving the quality of fermented meat products.

Keywords: fermented meat products; protein; degradation; oxidation; lactic acid bacteria;
antioxidation

1. Introduction

Fermented meat products refer to meat products with a long shelf life, special flavor,
texture, and color formed through fermentation of raw meat with the natural or artificial
addition of microorganisms under specific temperature and humidity conditions [1]. Due to
the differences in customs, raw materials, recipes, and manufacturing processes in different
countries and regions, there are diverse products in the fermented meat products market [2],
such as sausages that originate in the Mediterranean region and have spread to other
countries such as Germany, the United States, and Hungary, which have created products
with different characteristics due to the differences in each region’s own environment and
processing methods [2,3]; the dry-cured hams of Jinhua and Xuanwei in China, Iberia and
Serrano in Spain, Parma and San Daniele in Italy, and Bayonne in France all have strong
regional characteristics [1,3]; in addition, there are also regional specialties such as salami,
cured meat and sour fish in China, Thailand and India [1,4,5].

Protein, a molecularly large and structurally complex compound composed of amino
acids, is a crucial dry matter component of meat. During fermentation, maturation, and
storage of meat products, moderate protein degradation can effectively improve the flavor
and nutritional value of fermented meat, but excessive protein oxidation can adversely
affect meat quality such as texture, color, and flavor. In addition, oxidative induction
of proteins may affect their digestive utilization, reduce the content of essential amino
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acids, reduce the nutritional value of meat products, and even cause product spoilage and
deterioration, thereby severely affecting the safety of the product for consumption [6,7].
Therefore, we need to determine the optimal degree of protein changes to prevent excessive
protein oxidation, thus maximizing the quality and nutritional value of fermented meat
products through protein changes.

Lactic acid bacteria (LAB) are dominant bacteria in meat product fermentation. During
fermentation, dynamic changes in the flora and the metabolites produced affect the flora
structure in the product, act on each meat component, and have a certain impact on the
flavor and other product indicators [8,9]. The effect of LAB on the quality of meat products
has attracted considerable research attention. Although the research on lactic acid bacteria
has developed in recent years, there is still a lack of review on how lactic acid bacteria affect
the changes occurring in proteins of fermented meat and further improve the quality of
products [10–14]. Therefore, this paper reviews the changes and influence on protein in
fermented meat products, the regulation of protein degradation and oxidation by LAB, and
its effect on the quality of fermented meat products, aiming to provide a relevant reference
for the use of LAB for regulating the moderate change of protein in fermented meat.

2. Protein Changes in Fermented Meat Products
2.1. Protein Degradation

Protein degradation is among the most crucial biochemical phenomena that occurs
during fermentation and maturation of meat products. Degradation of proteins in these
fermented meat products is mainly influenced by endogenous enzymes in muscle tissue
and proteases produced by microorganisms involved in fermentation. The endogenous
proteases can be classified as endopeptidases and exopeptidases. Endopeptidases mainly
include cathepsin B, cathepsin L, cathepsin D, and calpain, and exopeptidases mainly in-
clude aminopeptidases and carboxypeptidases [15]. Sarcoplasmic protein and myofibrillar
protein (MP) were mainly decomposed into polypeptides by endogenous proteases such
as cathepsin B and cathepsin L at the early fermentation stage. The polypeptides were
further decomposed into small peptides, free amino acids, aldehydes, organic acids, and
amines by endogenous aminopeptidases, microbial proteases, and microbial metabolites,
which lead to changes in physical and chemical criterion [16]. This is reflected in both
fermented sausages and hams; in the early stages of sausage fermentation, although lactic
acid produced by microbial metabolism such as LAB decreases the pH of the product, the
alkaline metabolites accumulated by protein degradation in the later stages may act as
a buffer against organic acids and cause a rebound in the pH of the product [17,18]; in
the production of hams, the pH of dry-cured ham was found higher after ageing due to
massive release of low-weight nitrogen molecules and ammonia formation ascribed to
endogenous and exogenous proteolytic, deaminase and deamidase activities [19].

The protein hydrolysis index, total volatile base nitrogen, and free amino acid content
of meat significantly increased during fermentation [20]. The trial of Yu et al. [21] verified
that degradation of large molecules of myogenic fibronectin and myosin in fermented
sausage results in an increase in the concentration of small molecule peptides. As shown in
Table 1, antioxidant peptides in sausage and ham are mainly derived from myosin and actin
hydrolysis [22]. Myosin, actin, myoglobin, troponin, and pyruvate kinase are generally
the main proteins affecting differential peptides [23]. Using dry cured ham, Li et al. [24]
identified 66 peptides from myosin, β-enolase, and actin with antioxidant, angiotensin-
converting enzyme, and platelet-activating factor-acetylhydrolase inhibitory activities and
found that peptides of <3 kDa were most effective. By measuring dry cured ham at different
stages of storage, Virgili et al. [19] verified that free amino acids are released from the ham,
biogenic amines are produced as storage time increases and protein degradation continues,
and tyramine and putrescine formed due to the conversion of arginine to ornithine were
the most abundant at 23 months of storage.
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Table 1. Composition of Crude Peptide in Fermented Meat.

Sample Peptide Sequence Length Mass (Da) Protein of Origin References

Fermented
sausage

LPVKY 5 618.3741 Phosphatidylinositol 3-kinase catalytic subunit
type 3

[22]

PFGDTH 6 672.2867 CDP-6-deoxy-delta-3,4-glucoseen reductase
QPSLVH 6 679.3653 Aminoglycoside transferase
LPVTVR 6 683.433 Rho guanine nucleotide exchange factor 2
LPSLKF 6 703.4268 Phosphoglycerate kinase

HKLPVK 6 720.4646 Myoglobin
YGLDEK 6 723.3439 Serine/threonine-protein kinase A
LDRKDL 6 758.4286 Lipid A biosynthesis lauroyltransferase
LDLRDK 6 758.4286 Tetratricopeptide repeat protein 27

EGGLSKLT
LDKLDVKGK 17 1800.036 Phosphoglycerate kinas

EARSKLTLDKLDVKGK 16 1800.047 Phosphoglycerate kinase
ESDLLAAFR 9 1020.524 Adenosine kinase

EVSHGSDQVKAHGQK 15 1605.786 Hemoglobin subunit alpha
ELSNKLTLDK 10 1159.645 Phosphoglycerate kinase

VDLNGGSHAGNK 12 1167.563 Beta-enolase isoform X1
EGADSEMALFGE

AAPYLRKSEKEVGKN 27 2925.418 Myosin-1 isoform X1

NPPKF 5 601.3224 Myosin
KGGSLELT

LDKLDVKGK 17 1800.036 Phosphoglycerate kinase

Mutton
Ham

MWTD 4 551.61 Uncharacterized protein

[23]

SAGNPN 6 558.20 Uncharacterized protein
APYMM 5 611.76 Uncharacterized protein
VFDPEG 6 662.69 Myosin-2

FWIIE 5 706.84 Spectrin alpha chain-like protein
DKEEFV 6 744.81 Myosin-7

GVDNPGHP 8 791.81 Creatine Kinase M-type
MVHMASK 7 803.00 Glyceraldehyde-3-phosphate dehydrogenase
PAPAPPKE 8 805.91 Titin
FGNTHNK 7 816.87 Creatine Kinase M-type
MDAIKKK 7 833.05 Tropomyosin
IEEALGDK 8 873.94 Beta-enolase
IPPKIPEGE 9 887.01 Troponin T
GLRKHER 7 895.02 Myosin-4
ERFSKDE 7 909.93 Uncharacterized protein
ERSFKDE 7 909.93 Troponin T

PFGNTHNK 8 913.99 Creatine Kinase M-type
NVINGGSHAG 10 924.97 Glyceraldehyde-3-phosphate dehydrogenase

HIITHGEE 8 935.02 Myosin regulatory light chain 2
GRKFRNPK 8 1002.18 Beta-enolase

DVAGHGQEVL 10 1024.10 Myosin regulatory light chain 2
IDDMIPAQK 9 1030.20 Creatine Kinase M-type

Jinhua
Ham

GKKFNV 6 565.28 Transcription activator BRGl

[23]

LVVDGVK 7 728.88 Uncharacterized protein
DKEEFV 6 744.81 Myosin-7

VDIINAK 7 772.45 Uncharacterized protein
VHMASKE 7 801.39 Glyceraldehyde-3-phosphate dehydrogenase
MDAIKKK 7 833.05 Tropomyosin

LVVDGVKL 8 841.53 Creatine Kinase M-type
IPPKIPEGE 9 887.01 Troponin T

KAGTTPKGK 9 887.04 Maturase K
YGEKLKR 7 893.04 Binding protein

ALPHAIMR 8 908.11 Actin
PFGNTHNK 8 913.99 Creatine Kinase M-type
VKQKGPDF 8 918.50 Pyruvate kinase
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Table 1. Cont.

Sample Peptide Sequence Length Mass (Da) Protein of Origin References

AGQAFRKF 8 924.05 Uncharacterized protein
MVHMASKE 8 932.43 Glyceraldehyde-3-phosphate dehydrogenase
IEEALGDKA 9 945.02 Beta-enolase
VITHGDAKD 9 955.48 Myosin regulatory light chain 2
LQNHPEHS 8 960.99 Glyceraldehyde-3-phosphate dehydrogenase
EAGPSIVHR 9 965.07 Actin
LRDKAKEL 8 972.12 Binding protein

AGFAGDDAPR 10 975.99 Actin
FPMNPPKF 8 977.49 Myosin

DVGDWRKN 8 989.05 Troponin T
VAPEEHPTL 9 992.08 Actin

KKAGTTPKGK 10 1015.21 Troponin T

Thus, during the maturation of fermented meat products, large molecule proteins tend
to be degraded into small molecule substances; however, excessive degradation can lead to
the production of non-healthy factors such as biogenic amines.

2.2. Protein Oxidation

Although protein oxidation is similar to lipid oxidation because it is also a chain
reaction consisting of initiation, transmission, and termination caused by free radicals [25],
the targets and pathways of protein oxidation are more complex and are closely related to
the types and properties of oxidation products [26]. Protein oxidation refers to covalent
modification of proteins directly induced by active substances such as reactive oxygen
species (ROS) and reactive nitrogen species (RNS) or indirectly by secondary products
of oxidative stress such as lipids and carbohydrate oxides. The ROS can result in the
oxidation of amino acid side chains and protein skeleton, leading to protein fragmentation
or protein–protein crosslinking [27]. Among them, the ROS generation system is mainly
affected by the radiation, irradiation, and lipid oxidation system; myoglobin-mediated
oxidation system; and metal catalytic oxidation system [28].

The possible mechanisms of protein oxidation in fermented meat products are shown
in Figure 1. The blue color represents the protein oxidation mechanism catalyzed by metal
ions: in stage 1, the hydrogen atom in protein (PH) is deprived of ROS such as a hydroxyl
radical (OH·), thereby generating a carbon-centered protein free radical (P·); in stage 2,
the protein free radical (P) is oxidized to alkyl free radical (POO·) under the condition of
O2 [29]; a cross-linked derivative (P-P) was generated by carbon-carbon bonding (C-C) with
another protein free radical (P·) without O2; in stage 3, an alkyl radical (POO·) generates
alkyl peroxide (POOH) by seizing the hydrogen atom in another protein, participating in
the redox reaction of transition metal ions (Mn+ such as Fe2+ or Cu+), or reacting with a
protonated superoxide radical; and then, in stages 4 and 5, alkyl peroxides (POOH) react
with ROS such as HO2

· radical or with reduced forms of transition metal ions (Mn+) to
form alkane oxidation radicals (PO·), respectively. Further, hydroxyl derivatives (POH) are
generated in stages 6 and 7. In addition, alkyl peroxide (POOH) and hydroxyl derivative
(POH) can break the peptide chain through α-amidation or the diamide pathway to produce
related derivatives [30]. The green color is the speculated mechanism of lipid peroxidation-
induced protein oxidation. Similar to protein oxidation catalyzed by metal ions, lipids
generate free radicals through the initiation and transmission of oxidation to seize hydrogen
atoms in proteins, and then form polymers or protein–lipid complexes through several
reaction stages of hydrogen extraction, extension, recombination, and polymerization.
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Figure 1. Mechanism of Protein Oxidation in Fermented Meats [7,25]. Notes: P = protein; L = lipid.
The blue color represents the metal ion-catalyzed protein oxidation mechanism, and the green color
represents the lipid peroxidation-induced protein oxidation.

Park et al. [31] compared the sensitivity of common amino acids in meat to the oxi-
dation reactions of different catalytic systems, and confirmed that the amount of essential
amino acids such as cysteine, methionine, and tyrosine significantly reduced in metal
ion-catalyzed oxidation. This is mainly due to the generation of carbonyl derivatives
of these amino acid side chains and the loss of sulfhydryl groups; therefore, experimen-
tal studies often use the carbonyl and sulfhydryl content as a measure of the degree of
protein oxidation.

2.3. Effects of Protein Changes
2.3.1. Effects on Protein Structure

Myofibrillar protein is the main protein in meat, accounting for 55–60% of the total
and is mainly composed of myosin, actin, and other regulatory proteins. Many myofibrils
form muscle fibers and further connect through the connective tissue to form muscles [32].
Both protein degradation and oxidation during fermentation and maturation change the
natural structure of proteins and consequently their properties.

Changes in the protein secondary structure are observed using Fourier transform
infrared spectroscopy, circular dichroism spectroscopy, and Raman spectroscopy; UV
absorption spectroscopy or endogenous fluorescence spectroscopy are used to detect the
tertiary structure of proteins. The relaxation time and proportion of different water are
observed through NMR spectroscopy. Thus, we can speculate that changes occur in protein
during the production of fermented meat products.

Through Raman spectroscopy, some scholars analyzed that oxidation expands the
protein structure in meat and transforms α-helix into β-sheet, β-turn, and random coil [33].
The increase in the hydrophobicity of a protein surface indicates that oxidation exposes
hydrophobic amino acids. The change in the spectral wavelength can be used to modify,
expose, or cover the oxidation of aromatic amino acid residues, and finally reveal the
changes in secondary and tertiary structures of proteins [34]. Lipid oxidation-induced
protein oxidation affects the structure and functional properties of protein gels through the
expansion and crosslinking of MP. Moderate MP oxidation leads to protein crosslinking
through disulfide bonds to maintain a good water-holding capacity of gels. However,
excessive exposure of hydrophobic residues and formation of protein polymers during
excessive MP oxidation hinder the water-holding capacity of gels [35].

Thus, we can consider that a protein’s structure is directly related to the texture of
fermented meat products, and ultimately reflects the hardness, chewing type, elasticity,
and tenderness of the products. In addition, the protein structure determines the degree
of binding to flavor compounds, especially the number of hydrophobic binding sites on
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the surface of the protein. Thus, structural changes caused by protein degradation and
oxidation affect product quality to some extent.

2.3.2. Impact on Product Quality

The effects of protein changes on fermented meat products are often directly reflected
through the color, tenderness, flavor, and edible quality of products. As shown in Figure 2,
different levels of the changes occurring in proteins have positive or negative effects
on quality.
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Figure 2. Effects of Protein Changes on the Quality of Fermented Meat Products.

(1) Color gives the first impression about a product to consumers. According to
previous studies, 80–90% of the stability of meat color is determined by the content and
chemical state of myoglobin [36]. As shown in Figure 2, myoglobin, which gives the meat
its purplish red color, can be oxygenated to form bright red oxygenated myoglobin, while
these two myoglobins are oxidized to form brown high-iron myoglobin under an anaerobic
condition. Excessive accumulation of high-iron myoglobin in fermented meat products
during maturation deteriorates meat color. However, high-iron myoglobin can be reduced
with reductase to maintain the stability of meat color [37]. Thus, enzymes related to redox
regulation of sarcoplasmic proteins are also closely related to meat color [38].

Moreover, light scattering has a certain influence on meat color, especially meat
brightness [38]. By studying dry cured ham, some scholars have speculated that protein
degradation and oxidation affect the muscle tissue microstructure and change the distance
between muscle filaments, thereby affecting the absorption, transmission, and scattering of
light by the muscle and thus changing the color of meat [39,40]. In summary, changes in
myoglobin content and state, reductase activity, and muscle structure are critical factors
affecting the color of the meat product.

(2) Tenderness, as a crucial index for evaluating meat grade, is determined by many
factors. In general, the type of muscle, integrity of muscle fiber, and activity of endogenous
enzymes in muscle are all related to muscle tenderness [41]. As shown in Figure 2, protein
degradation affects meat tenderness by degrading numerous MPs in muscle tissue [42]. In
addition, ROS-induced protein oxidation may damage the MPs and activate the proteasome,
thereby promoting the degradation of structural proteins in muscle and improving meat
tenderness [43].

However, some researchers have pointed out that over-oxidation of proteins also
adversely affects tenderness. Strong oxidation often leads to the formation of cross-linked
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MPs, loss of thiol groups, and formation of Schiff bases and disulfide bonds, and thus, the
activity of calpain is reduced [44]. These cross-linking compounds also increase the distance
between muscle fibers, and the non-flowable water in myofibrils is transformed into free
water that can be easily lost, thereby reducing the water-holding capacity of meat [45], and
resulting in increased hardness of meat and decreased tenderness [7,46].

Based on proteomics, Zhu et al. [47] found that tenderness is closely related to muscle
structure, energy metabolism, heat shock protein, oxidative stress response, and apoptosis-
related pathways. Thus, moderate protein degradation can improve meat tenderness,
whereas excessive oxidation can reduce it.

(3) Lipid hydrolysis and oxidation are generally believed to be the main methods of
producing volatile flavor compounds. However, as shown in Figure 3, protein degradation
also has a major impact on flavor changes.
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Protein degradation produces free amino acids as a taste substance. In ham, taste
amino acids such as glutamic acid and aspartic acid are directly positively correlated with
the product’s taste. Alanine is related to sweetness, lysine is related to a mature taste, and
tryptophan is related to a salty taste. Phenylalanine and isoleucine contribute to an acidic
taste. Tyrosine and histidine have very low taste thresholds, which may also affect the
flavor of ham [39,50]. Microbial transaminases can convert free amino acids into α-keto
acids, which can be directly or indirectly metabolized into corresponding aldehydes as
intermediates. Aldehydes are converted to corresponding alcohols and acids by alcohol
dehydrogenase and aldehyde dehydrogenase, respectively. Microorganisms are also an
indispensable part of flavor substance production by amino acids. In the presence of
bacteria such as LAB and Staphylococcus, branched-chain amino acids are converted
into corresponding methyl branched-chain compounds such as 2-methylbutyraldehyde,
2-methylpropanal, 3-methylbutyraldehyde, and benzaldehyde, contributing to the malt,
fruit, and sweet tastes of the product [14,51]. Estévez et al. [52] reported the formation of
Strecker aldehyde from leucine and isoleucine through α-amino aliphatic semialdehyde and
γ-glutamic acid semialdehyde. Thus, carbonyl derivatives were believed to be involved as
precursors in the degradation of Strecker aldehyde to produce volatile flavor compounds.

On the other hand, although protein itself is tasteless, some researchers believe that
it can contribute to product flavor by binding with flavor compounds [53]. Studies have
shown that the interaction between proteins and flavor substances depends on physical
binding, chemical interaction, and mass transfer effects. For example, hydrogen bonds and
van der Waals forces are the key driving forces for the interaction between myosin and
ethyl octanoate [54], and hydrophobic forces are also crucial for maintaining the interaction
between protein and flavor substances [55]. Notably, ketone and aldehyde are more difficult
to bind to the MP gel with an increase in the carbon chain length. By contrast, in the protein
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solution system, the ability of flavor compounds to bind to proteins increases with an
increase in the carbon chain length, which may be because the gel structure hinders the
mass transfer of flavor compounds and affects their release [56].

However, excessive protein degradation leads to excessive accumulation of bitter
amino acids and peptides such as hypoxanthine, conferring bitterness and rancidity to the
products [48]. Excessive oxidation of proteins leads to changes in protein conformation,
reduces the hydrophobicity of the protein surface, and reduces the binding sites between
proteins and flavor compounds, thereby affecting the ability of proteins to bind flavor
compounds [55]. Moderate protein degradation and oxidation enrich the products’ flavor
through the Strecker degradation reaction, but excessive protein changes can lead to
flavor deterioration.

(4) The edible quality of products, especially safety, is a major concern for consumers.
As shown in Figure 2, moderate protein degradation can improve the edible quality of
products, but excessive protein oxidation poses a threat to the quality, digestibility, and
even, safety of products. Oxidation of meat protein leads to the oxidative modification
of amino acid side chain groups, reduction of essential amino acids, and generation of
irreversible carbonyl compounds, which thereby reduce the edible value of meat [57]. Ma
et al. [58] proposed that during the processing of air-dried yak meat, the digestibility of
MPs decreases with an increase in protein oxidation, which may be because the over-
oxidation modification of proteins hinders protein hydrolysis, weakens the binding of
proteolytic enzymes to proteins, affects the sensitivity of proteins to pepsin, and reduces
protein digestibility [59]. Moreover, excessive protein oxidation can directly lead to meat
corruption and the formation of derivatives (such as furans, biogenic amines, acrylamide,
and nitrosamines), thus causing food safety problems [60].

Therefore, to ensure the quality of fermented meat products and to improve this
quality, the degree of protein changes must be adequately controlled. At present, the degree
of protein degradation or oxidation is regulated by adding NaCl, auxiliary additives, and
fermenting agents and by controlling the production temperature.

3. Regulatory Role of LAB

As organisms generally recognized as safe, LAB have become the most widely used
probiotics in food production. Currently, Lactobacillus lactis, Lactobacillus plantarum, Pe-
diococcus lactis, and Pediococcus pentosaceus and so on are widely used in fermented meat
products [61,62]. They regulate the degradation or oxidation of protein mainly through
acid and protease production, and their antioxidant capacity.

3.1. Acid Production

Endogenous enzymes play a major role in protein degradation during meat product
fermentation; however, LAB contribute to the degradation of muscle protein and the
release of small peptides and amino acids through metabolic acid production. Studies have
shown that some endopeptidases, such as cathepsin, exhibit higher activity at low pH,
and increasing pH inhibits cathepsin B activity to a certain extent [63,64]. By comparing
fermented sausages under the two acidification curves, Berard et al. found that the number
of actin-derived peptides identified at low pH increased from 42 to 144, which was 88 more
than that identified at high pH. Most of these derivatives were released at the cleavage sites
of cathepsin B and cathepsin D. This shows that cathepsin can degrade proteins to produce
more peptides under acidic conditions [65].

The LAB can produce organic acids such as lactic acid through carbohydrate metabolism
in fermented meat, resulting in a decrease in environmental pH [66]. Therefore, the acid
production capacity is often used as one of the criteria for measuring the suitability of a LAB
starter culture. Fermented sausages experience a decline in the pH value at the beginning
of fermentation. The pH decline added with a LAB starter is more obvious, which thus
provides a better environment for protease activity. At the late stage of fermentation, the
pH of sausages show a certain rebound, which is mainly due to protein degradation by
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protease and the production of peptides, amino acids, amines, and organic acids [62].
By analyzing a protein degradation model at pH 4.0, Fadda et al. [67] found that the
degradation under acidic conditions was affected by the synergistic effect of acid-induced
changes by acidic endogenous protease, protease hydrolysis activity of L. plantarum CRL
681, and fermentation metabolism. Therefore, LAB can be speculated to assist in the
initial degradation of proteins by producing acid and reducing pH to improve cathepsin
activity [68]. In addition, the metabolism and acid production of LAB will affect the
structure of other microorganisms, thus inhibiting the growth of spoilage bacteria, and
reducing the impact of spoilage bacteria metabolism [69].

3.2. Protease Production

Protein degradation is mainly affected by endogenous protease, but LAB-secreted
protease during fermentation can also increase the concentration of free amino acids and
short peptides by affecting the degradation of sarcoplasmic proteins [70].

Compared with dairy products, the research and application of lactobacillus protease
in fermented meat are less. On screening LAB isolated from fermented sausages, Cao
et al. [10] obtained seven strains with good fermentation performance and high protease
activity, and identified one strain as L. pentosus, one strain as L. fermentum, and the others as
L. plantarum. Through SDS-PAGE and molecular docking, Sun et al. verified that proteases
purified from P. pentosaceus R1 [71], L. brevis R4 [72], L. curvatus R5 [73], and L. fermentum
R6 [74,75] isolated from Harbin dry sausage can catabolize sarcoplasmic proteins and
myogenic fibrous proteins, and interact with the myosin light chain, myosin heavy chain,
and actin and myoglobin in meat. They also predicted that protease consists of a β-strand
and an α-helix, the properties of protease are altered by changes in a tandem conserved
structural domain consisting of a protease structural domain and a PDZ structural domain,
and the active site of protease is related to protease properties and substrate specificity [71].
This demonstrates the potential of protease-producing LAB to influence proteolysis as a
meat fermenter.

In addition, Cao et al. [10] inoculated LAB with high protease activity into fermented
sausage and identified the metabolites of sausage protein through LC-MS/MS. Lactobacillus
plantarum CD101 could help to produce more peptides and small peptides, and the content
of antioxidant peptides also significantly increased, indicating that LAB has a certain
application prospect as a meat fermentation starter.

3.3. Antioxidant Properties

The LAB are considered a natural antioxidant, as shown in Figure 4. At present,
the antioxidant properties of LAB are believed to be jointly regulated through multiple
mechanisms such as regulation of the redox system, production of antioxidant metabolites,
scavenging of free radicals, and chelation of metal ions [12].

First, transition metal ions inhibit the enzyme-catalyzed phosphate substitution reac-
tion and produce related ROS by decomposing hydrogen peroxide. The cell-free extract
of LAB cells exhibited a good chelating ability of Fe2+ and Cu+. Therefore, LAB cells are
speculated to contain related metal ion-chelating agents and their high antioxidant activity
is positively correlated [76,77].

Second, several studies have shown that the intracellular antioxidant activity of LAB
is based on the activities of superoxide dismutase (SOD), catalase (CAT), glutathione perox-
idase (GPx), nicotinamide adenine dinucleotide (NADH) oxidase, NADH-peroxidase, and
glutathione (GSH) [78–80]. Thus, antioxidant enzymes play an indispensable role in the
high antioxidant properties of LAB. The SOD regulates the ROS level by catalyzing super-
oxide decomposition [81], while CAT and GPx decompose H2O2 formed by SOD-mediated
superoxide anion radical scavenging into water and oxygen, thereby preventing the for-
mation of the hydroxyl radical (·OH). Regulation of some ROS-producing enzymes can
also play an antioxidant role [82]. The NADH oxidase produces H2O2 that causes NADH
peroxidase to remove H2O2 [80]. The thioredoxin–thioredoxin reductase system (Trxs)
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and glutathione–glutathioredoxin system (GSHs) in LAB cells can regulate intracellular
disulfide/disulfide, thus helping to maintain redox homeostasis [83]. Under the premise of
hydrogen supply by NADPH oxidase, TrxR converts oxidized Trx into reduced Trx, GR
converts oxidized GSH into reduced GSH, and GSH activates GPx activity to remove lipid
peroxides and H2O2 [84].
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Furthermore, LAB can produce various metabolites with antioxidant activities, such
as cell wall polysaccharides, peptidases, lipid acids, and protein derivatives [85,86]. Ex-
opolysaccharide is a type of polysaccharide produced by LAB during metabolism that
adheres to the surface of bacteria and binds to cells [87]. Lactobacillus plantarum AAS3
screened from fermented dried fish can scavenge DPPH free radicals and hydroxyl free
radicals through metabolism to produce extracellular polysaccharide, thus reflecting a
good in vitro antioxidant capacity [88]. Fatty acids such as palmitic acid and stearic acid
are considered indirect antioxidants. In saturated fatty acids, the antioxidant activity in-
creases with an increase in chain length, while unsaturated fatty acids are mainly oxidized
in an unsaturated-dependent manner [85]. Some amino acid derivatives such as N-(5-
amino-2-hydroxy-1-oxopentyl)-tyrosine, (S)-8-hydroxy-4-hydroxy-phenylpropionic acid,
(S)-8-hydroxy-phenylpropionic acid, and indole-3-(S)-3-lactic acid can scavenge DPPH free
radicals, which proves the antioxidant activity of metabolites of LAB [89].

In addition, in the face of oxidative stress, through proteomics, some researchers
analyzed that LAB can inhibit biochemical processes related to the ribosome structure,
transcription, translation, and protein synthesis through the oxidation defense system,
oxidation protein repair system, ABC transporter system, and the expression of proteins
involved in carbohydrate energy metabolism, and carry out antioxidant stress reactions [90].

Mei et al. [11] added L. plantarum P3 with antioxidant properties to fermented sausage,
and detected the thiobarbituric acid value, carbonyl content, thiol content and other indica-
tors. The P3 could inhibit the activity of lipoxygenase and prevent adverse consequences
caused by lipid peroxidation by reducing lipid oxidation through its antioxidant properties
and chelating with ferrous ions, which verified the slowing effect of P3 on protein oxidation
of sausage. Scavenging free radicals, chelating metal ions, and preventing lipid peroxida-
tion are the ways through which LAB with antioxidant function reduce protein oxidation
and improve the quality of fermented meat.
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3.4. Effect on Quality

People currently want to develop more green, safe, healthy, and delicious functional
foods. The safety of fermented meat products is the focus of consumers. As a key factor
leading to spoilage and deterioration of products, LAB can compete with other microor-
ganisms for nutritional substrates in fermented meat products and metabolize them to
produce lactic acid, acetic acid, hydrogen peroxide, antimicrobial peptides, and other
compounds. These compounds can destroy the stability of biofilms of spoilage bacteria
through coordination, interfere with the proton gradient of spoilage bacteria, passivate
the enzyme activity of spoilage bacteria and generate ROS after entering cells, inhibit the
growth and metabolism of spoilage bacteria, and improve product safety [69]. They can
also reduce the residual amount of nitrite through acid degradation or enzyme degradation
and reduce the potential harm caused by nitrite [91]. At the same time, LAB can improve
the color by increasing the brightness value of the product [13]. Some special strains can
convert myoglobin and high-iron myoglobin (Met-Mb) to red nitro myoglobin (Mb-NO),
with the potential of natural biological colorants [92]. LAB-produced enzymes can promote
the decomposition of protein lipids, which is closely related to the production of esters,
aldehydes, and ketones [8,14].

Moreover, LAB can maintain intestinal stability, coordinate digestion, regulate choles-
terol content [93], and regulate Nrf2-Keap1-ARE [94], NFκB [95], and MAPK [96] signaling
pathways through antioxidant characteristics to alleviate oxidative stress, improve inflam-
mation, reduce toxins, and alleviate injury.

Therefore, based on the functional characteristics of metabolic acid production and
protease production, and antioxidant properties, LAB can be used as a starter culture for
regulating the degree of protein changes in fermented meat products, ensuring the quality
of the products, and further assisting in the development of green and healthy products.

4. Summary

Protein changes occur through the whole process of fermentation, ripening, and
storage of fermented meat products. In this paper, the mechanism of protein degradation
and oxidation, its effect on the quality of fermented meat products, and the regulation
of protein degradation and oxidation by LAB are described in detail. The use of LAB
as a starter culture for meat fermentation can not only improve sensory qualities such
as color, tenderness, and flavor of fermented meat products but also affect the degree of
protein degradation and oxidation in the products through acid production and protease
production, and antioxidant properties. However, few studies have currently investigated
whether the addition of LAB can affect the protein structure and improve the binding ability
of proteins to various flavor substances. Therefore, studies on LAB starters are warranted.

With the advancement of omics technology and computer simulation software, in the
future, we can use multi-omics technology combined with molecular docking and other
models to clarify the dynamic process of the changes occurring in proteins of fermented
meat, determine the key differential metabolites of proteins that affect product quality, and
identify how to maintain the best quality of products. The effects of LAB or their interactions
with other influencing factors on each component in fermented meat were clarified to
optimize the LAB starter, explore the improvement mechanism of strain compounding on
fermented meat products, and develop more high-quality fermented meat products.
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