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Summary
Background Oesophageal squamous cell carcinoma (ESCC) is a lethal malignancy. Immune checkpoint inhibitors
(ICIs) showed great clinical benefits for patients with ESCC. We aimed to construct a model predicting prognosis and
response to ICIs by integrating diverse programmed cell death (PCD) forms.

Methods Genes related to 14 PCDs were collected to generate multi-gene signatures, including apoptosis,
necroptosis, pyroptosis, ferroptosis, and cuproptosis. Bulk and single-cell RNA transcriptome datasets were used
to develop and validate the model. We assessed the functions of two necroptosis-related genes in ESCC cells by
Western blot, co-immunoprecipitation (Co-IP), LDH release assay, CCK-8, and migration assay, followed by
immunohistochemistry (IHC) staining on samples of patients with ESCC (n = 67).

Findings We built and validated a 16-gene prognostic combined cell death index (CCDI) by combining immunogenic
cell death (ICD) and necroptosis signatures. The CCDI could also predict response to ICIs in cancer, as shown by
Tumour Immune Dysfunction and Exclusion (TIDE) analysis, confirmed in four independent ICI clinical trials.
Trajectory analysis revealed that HOOK1 and CUL4A might affect ESCC cell fate. We found that HOOK1 induced
necroptosis and inhibited the proliferation and migration of ESCC cells, while CUL4A exhibited the opposite
effects. Co-IP assay confirmed that HOOK1 and CUL4A promoted and reduced necrosome formation in ESCC
cells. Data from patients with ESCC further supported that HOOK1 and CUL4A might be a tumour suppressor
and oncogene, respectively.

Interpretation We constructed a CCDI model with potential in predicting prognosis and response to ICIs in cancer.
HOOK1 and CUL4A in the CCDI model are crucial prognostic biomarkers in ESCC.
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Research in context

Evidence before this study
Oesophageal squamous cell carcinoma (ESCC) is a common
and lethal malignancy with an unsatisfactory prognosis.
Immune checkpoint inhibitors (ICIs) have shown promising
and durable therapeutic effects on some patients with ESCC.
Therefore, patient classification accuracy urgently needs to be
enhanced regarding prognosis and response to ICIs. Molecular
biomarkers predicting cancer progression, prognosis, and
therapy sensitivity have been used to improve cancer
treatment. However, current single biomarkers may not
characterise tumour subtypes well due to the molecular
heterogeneity of cancer. The recent breakthrough of unbiased
high-throughput sequencing (seq) techniques and advances
in deep machine learning algorithms analysing big data have
revolutionised the understanding of cancer biology. As a
result, over the past few years, numerous predictive multi-
gene models were generated using sequencing data to predict
clinical outcomes and responses to anti-cancer therapies,
including chemotherapy, targeted therapy, and
immunotherapy. Among them, predictive models based on
different programmed cell death (PCD) are noteworthy due to
their importance in tumour development, regression, and
prognosis. However, most of such models were developed
upon single PCD forms. Predictive models derived from all
known PCD types might better represent tumour
characteristics and thereby be more robust predictive
biomarkers in clinical practice than those developed from
single types of cell death. The study had several aims: 1) to
build a multi-gene signature predictive of prognosis and

response to ICIs, 2) to conduct trajectory analysis to identify
essential genes in the predictive signature using published
single-cell RNA-seq (scRNA-seq) data, and 3) to validate
functions of the selected genes.

Added value of this study
First, this study yielded and validated a combined cell death
index (CCDI) comprising 16 genes selected from the ICD and
necroptosis signatures. Second, the CCDI may serve as a
biomarker to predict response to ICIs, as suggested by TIDE
analysis and validations in four independent ICI clinical trials
of different cancers. Third, we used public scRNA-seq data to
identify two essential genes (HOOK1 and CUL4A) that might
impact ESCC cell fate. Finally, in vitro studies demonstrated
that HOOK1 overexpression activated the formation of
necrosomes and impaired the proliferation and migration of
ESCC cells. Parallel studies showed the opposite effects of
CUL4A on ESCC cells. Clinical sample analyses supported that
HOOK1 and CUL4A were tumour-suppressing and -promoting
genes, respectively.

Implications of all the available evidence
We constructed a CCDI model predicting prognosis and
response to ICIs in cancer. Furthermore, bioinformatic and
functional evidence confirmed that HOOK1 and CUL4A in the
CCDI model may have crucial regulatory roles in ESCC and are
potential therapeutic targets and prognostic biomarkers in
ESCC.
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Introduction
Oesophageal cancer is the seventh most common cancer
worldwide, including squamous cell carcinoma and
adenocarcinoma.1 Oesophageal squamous cell carci-
noma (ESCC) is more prevalent in China, accounting
for 90% of cases.1 Surgery is the primary treatment for
patients with ESCC. However, treatment options are
very limited for patients with advanced or metastatic
ESCC, for whom the mainstay first-line therapy has
been restricted to platinum plus paclitaxel/fluorouracil
chemotherapy over the past few decades with an un-
satisfactory median overall survival (OS) of less than 12
months.2 Recently, anti-programmed death 1 (PD-1)
therapy has shown great promise in ESCC treatment,
especially in combination with chemotherapy in neo-
adjuvant and first-line settings.2 However, it remains
demanding to identify the subpopulation of patients
with ESCC suitable for immune checkpoint inhibitors
(ICIs).3 Therefore, it is urgent to develop robust models
predictive of the prognosis and immunotherapy
response to individualise clinical treatment.

Programmed cell death (PCD), also known as regu-
lated cell death, does not occur accidentally but is
precisely orchestrated by various mechanisms. Based on
triggering stresses, morphological features, regulatory
signalling pathways, and effector molecules, PCD is
categorised into apoptosis (intrinsic and extrinsic),
entotic cell death, necroptosis, cuproptosis, oxeiptosis,
ferroptosis, alkaliptosis, pyroptosis, parthanatos,
autophagy-dependent cell death, lysosome-dependent
cell death, and netotic cell death.4 Briefly, intrinsic
apoptosis is triggered by damaged mitochondria and
mediated by caspase 3 (CASP3), CASP6, and CASP7.
On the contrary, extrinsic apoptosis requires ligand-
membrane receptor interactions and is generally medi-
ated by death receptors (e.g., fas cell surface death
receptor and TNF receptor superfamily member 1A),
relying on the activity of initiator caspases, CASP8 and
CASP10.4 Entotic cell death (Entosis) is referred to as
cell cannibalism. One example is that healthy cells may
engulf and kill nearby cancer cells.5 Necroptosis is
characterised by the formation of necrosomes consist-
ing of receptor-interacting protein kinase 1 (RIPK1) and
RIPK3, and mixed lineage kinase domain-like pseudo-
kinase (MLKL) phosphorylation.6 Cuproptosis is a type
of copper-induced cell death characterised by lipoylation
www.thelancet.com Vol 99 January, 2024

www.thelancet.com/digital-health


Articles
of the TCA cycle protein.7 Both alkaliptosis8 and oxeip-
tosis9 were discovered in 2018. The former is caused by
intracellular alkalinisation,8 and the latter is initiated by
oxygen radical activated KEAP1-PGAM5-AIFM1
pathway, independent of caspases.9 Ferroptosis is
caused by iron overload and the ensuing lethal peroxi-
dised lipids accumulation, which can be antagonised by
glutathione peroxidase 4 (GPX4) GPX4 and glutathione
(GSH).10 Pyroptosis often involves the activation of the
inflammasome, in which the essential event is the
cleavage of the gasdermin (GSDM) superfamily by
caspase-1, 3, 4, or 5 and the formation of pores with the
N terminal of GSMDs in the plasma membrane.11 Par-
thanatos is an oxidative stress-triggered and poly [ADP-
Ribose] Polymerase 1 (PARP1) dependent PCD with
DNA damage and chromatolysis.12 Autophagy is related
to the formation of autophagosome containing cytosolic
components and damaged organelles, which can either
promote cell survival or induce cell death in a different
context.13 Lysosome-dependent cell death is induced by
increased lysosomal membrane permeabilization,
which further leads to the leakage of hydrolytic enzymes
into the cytosol.14 Netotic cell death is driven by the
formation and release of neutrophil extracellular traps
(NETs) by leukocytes (neutrophils, mast cells, eosino-
phils, and basophils), epithelial cells, and cancer cells
upon infection or injury.15 PCD is also classified into
immunogenic cell death (ICD), tolerogenic cell death
(TCD), and silent cell death. ICD triggers immune re-
sponses and plays a crucial role in the development and
metastasis of malignant tumours.4,16 Over the past years,
tremendous efforts have been made to develop predic-
tive models with signature genes of single PCD forms,
and moderate predictive accuracy is achieved in pre-
dicting cancer prognosis and drug resistance.17–23 How-
ever, considerable redundancy and crosstalk have been
observed among the signalling pathways regulating
diverse cell death forms. Therefore, it is reasonable to
speculate that a predictive model based on all known
PCD types should better represent tumour characteris-
tics than single types of cell death. In this study, we
collected the signature genes of 13 PCD forms and the
representative genes of ICD to establish various prog-
nostic models and compare their predictive abilities.
ICD was analysed because of its critical implication in
tumour immunity. Consequently, we generated an
optimal model of 16 genes by integrating necroptosis
and ICD, called combined cell death index (CCDI), us-
ing gene expression datasets from bulk tumours.

Cancer cell death is fundamental in reshaping the
tumour immune microenvironment (TIME).24 For
example, tumour cell debris serves as antigens, which
can be captured, processed, and presented by conven-
tional dendritic cells (cDCs). Some types of cell death
with cellular membrane disruption release damage-
associated molecular patterns (DAMPs) and inflamma-
tory cytokines, such as necroptosis and pyroptosis.16 In
www.thelancet.com Vol 99 January, 2024
contrast, some studies show that cell death can also be
immunosuppressive, both directly and indirectly, via the
recruitment of myeloid cells, such as immunosuppres-
sive macrophage subsets.25 Given the tight linkage be-
tween TIME and immunotherapy response, it has been
a research hot spot to identify and induce immunogenic
forms of cell death to optimise the immune response
against cancer, especially in the era of ICIs. Moreover,
accumulating evidence indicates that patients with
cancer having different prognoses frequently show dif-
ferences in tumour immune microenvironments and
response to ICIs. Many prognostic signatures could
predict sensitivity of patients with cancer to chemo-
therapy and immunotherapy to some content.26–29

Therefore, we further evaluated the CCDI’s discrimi-
nating accuracy in predicting immunotherapy responses
and validated its predictive value in four ICI clinical
trials.30–33

Bulk technologies have long contributed to cancer
research and translational medicine. However, this
methodology could only detect merged signals from
heterogeneous cell groups, including tumour cells, fi-
broblasts, endothelial cells, and different infiltrating
immune subsets. Such information could merely reflect
the molecular states and functions of the dominant cell
populations. As a result, the critical roles of less abun-
dant cell populations in tumour development have often
been neglected. The striking advances in single-cell
sequencing technology enable widespread application
of the single-cell analysis in cancer research to accu-
rately delineate each cellular composition in the tumour
microenvironment (TME) and further dissect activities
of signalling pathways in a cell type wise.34–36 Further-
more, the ensuing machine-learning single-cell algo-
rithms allow us to analyse and visualise cell-to-cell
interactions.37 Therefore, we further investigated the
role of CCDI genes in the single-cell resolution, fol-
lowed by in vitro functional analyses and validation in
the in-house ESCC samples.
Methods
Data source
RNA-sequencing (RNA-seq) data and clinical data of
patients were downloaded from the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo)
and The Cancer Genome Atlas (TCGA) (https://www.
cancer.gov/tcga/). This study involves eight published
datasets, including TCGA-ESCC (n = 81), GSE53625
(n = 358), GSE53624 (n = 238), GSE78220 (n = 28),
GSE67501 (n = 11), GSE165252 (n = 77), GSE196756
(n = 6), GSE188900 (n = 7), and the IMvigor210 cohort
(n = 310). The IMvigor210 cohort was retrieved from
previously published literature.30 For genes detected by
multiple probes, the average expression levels were
used. They were quantile normalised by log scale
transformation to ensure normalisation.
3
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We used GSE53625 as the training set and the
TCGA-ESCC and GSE53624 as the validation set for the
prognostic model of ESCC. We used two ESCC scRNA-
seq datasets, GSE196756 (3 normal vs 3 tumour tissues)
and GSE188900 (1 normal vs 6 tumour tissues), to
assess the dynamic changes of the CCDI-related genes
during the evolution of different cells in the TME. We
also analysed the interactions among ESCC, immune,
and stromal cells. Moreover, data from four ICI clinical
trials were used to assess the predictive ability of the
CCDI model for immunotherapy sensitivity, including
patients with metastatic urothelial carcinoma undergo-
ing anti-PD-L1 therapy (the IMvigor210 cohort), patients
with melanoma treated with anti-PD-1 therapy
(GSE78220), patients with renal cell carcinoma receiving
anti-PD-1 treatment (GSE67501) and patients with
oesophageal adenocarcinoma (EAC) treated with anti-
PD-L1 therapy (GSE165252).

The gene sets associated with the different forms of
PCD were collected from published literature and da-
tabases, including intrinsic apoptosis (n = 500), extrinsic
apoptosis (n = 500), entotic cell death (n = 23), nec-
roptosis (n = 500), cuproptosis (n = 17), oxeiptosis
(n = 146), ferroptosis (n = 283), alkaliptosis (n = 73),
pyroptosis (n = 387), parthanatos (n = 23), autophagy-
dependent cell death (n = 232), lysosome-dependent
cell death (n = 194), netotic cell death (n = 11) and
immunogenic cell death (ICD) (n = 500).4,38–42

Construction and validation of the CCDI model
The GSE53625 dataset was used as the training set to
construct and compare the prognostic models of 14 cell
death forms and the CCDI model. The TCGA-ESCC and
GSE53624 datasets were used as external validation sets
to verify the predictive power of necroptosis, CDI, and
CCDI models. Firstly, univariable Cox analysis
regarding overall survival (OS) was performed to screen
significant prognostic genes from all the signature
genes of 14 cell death forms. Then, multivariable Cox
regression analysis was performed to construct prog-
nostic models for each form of cell death based on the
coefficients of genes. The multivariable Cox regression
model was applied to select variables through the
“bidirectional” stepwise selection that includes back-
ward stepwise elimination and forward stepwise selec-
tion, while the Akaike information criterion (AIC) but
not P-values was used as a variable selection criterion.
This analysis was implemented with the “stepAIC”
function in package “MASS”.43 When using AIC to
select variables for a multivariable model, the alpha level
is not explicitly set as in traditional hypothesis testing,
but rather a lower AIC value that indicates a better
model fit. The AIC considers the statistical fit degree of
the model and the number of independent variables
used for fitting. The model with a smaller AIC value is
preferred, which indicates that the model obtains a
sufficient fit degree with fewer independent variables.44
Time-dependent receiver operating characteristic
(ROC) and ROC were created. The area under the curve
(AUC) was used to evaluate the efficiency of each
prognostic model. We obtained seven prognostic
models with AUC > 0.7 for 1, 2, 3, 4, and 5 years. To
minimise the uncertainty in the AUC estimate, we
removed three models (pyroptosis, lysosome-dependent
cell death and extrinsic apoptosis) with a lower 95%
confidence limit smaller than 0.7 for 1-year AUC. Sub-
sequently, we employed logistic regression to recreate a
series of combined models comprising 2–4 independent
prognostic signatures. Among them, CCDI, the inte-
grated model incorporating necroptosis and ICD, had
the largest AUC and was selected for the rest of the
study. Each patient with ESCC in the dataset was
assigned a risk score, that is, the CCDI risk score
calculated from the following equation: CCDI/Risk

score =
exp (β0+β1χICD+β2χnecroptosis)

1+exp (β0+β1χICD+β2χnecroptosis). β0 is the constant term;

β1 and β2 are the logistic regression coefficients, while
χICD and χnecroptosis are risk scores computed from “Risk
score ICD = ∑n

i=1βixi” and “Risk score

Necroptosis =∑n
j=1βjxj”, respectively. Patients were divided

into two groups regarding a cutoff value of CCDI score
determined using the minimum P value method in the
Kaplan–Meier curve. Patients with a risk score higher
than this cutoff value were considered high risk, while
the rest were deemed low risk. The distribution differ-
ences of high- and low-risk groups were explored by the
“umap” R packages. To internally validate the 14 indi-
vidual PCD models and the CCDI in the training set, we
created 1000 bootstrap datasets of the same size
(n = 179) by sampling with replacement. The TCGA-
ESCC (n = 81) and GSE53624 (n = 238) were used as
the two independent external validation sets.

Estimation of the capacity of the CCDI model in
predicting responses to ICIs
Tumour Immune Dysfunction and Exclusion (TIDE,
http://tide.dfci.harvard.edu/) is a web tool developed to
predict immune checkpoint blockade (ICB) response.
This database was established by integrating large-scale
omics data and biomarkers collected from 188 tumour
cohorts, 12 published ICB trials, and eight CRISPR
screens designed to discover modulators regulating
lymphocyte-mediated cancer killing and the anti-cancer
immune response.17 Therefore, TIDE can be adopted to
predict patients’ response to ICBs by analysing the
gene expression profile of the tumour. The threshold of
the TIDE score was 0 by default, i.e., a patient with a
TIDE <0 was defined as a responder of ICBs. Addi-
tionally, four independent immunotherapy trials
(IMvigor210 dataset, GSE78220, GSE67501 and
GSE165252) were used to detect differences in
immunotherapy efficacy between high- and low-risk
groups.30–33 The immunotherapy approach produced
four outcomes: complete response (CR), partial
www.thelancet.com Vol 99 January, 2024
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response (PR), progressive disease (PD), and stable
disease (SD).

Evaluation of immune cell infiltration
The differences in immune cell infiltration in high- and
low-risk groups were assessed by the MCP-counter
method45 (cytotoxic lymphocytes, B cell lineage,
CD8+ T cells, myeloid dendritic cells, NK cells, T cells,
monocytic lineage cells, neutrophils, endothelial cells,
and fibroblasts) and the CIBERSORT method (naive and
memory B cells, plasma cells, NK cells, myeloid subsets,
and 7 T cell types). In addition to this, the differences in
immune cell infiltration between high- and low-risk
groups were also explored using another five immune
cell infiltration assessment methods (TIMER,46 XCell,47

EPIC,48 QUANTISEQ,49 CIBERSORT-ABS50) from the
TIMER 2.0 website. The correlations between the risk
score and the immune infiltrated cells were explored
using Pearson correlation analysis. We also calculated
immune scores for all subjects using the Estimation of
STromal and Immune cells in Malignant Tumours us-
ing Expression data (ESTIMATE)-an algorithm that al-
lows us to deduce the composition of stromal and
immune cells in tumour samples using transcriptional
profiles of cancer samples.51 Single-sample gene set
enrichment analysis (ssGSEA) based on the expression
of 141 immune signature genes was carried out to
compute immune scores to predict the level of infil-
trating immune cells.

Pathways and function enrichment analysis
Gene set variation analysis (GSVA, “GSVA” R package)
and Gene Set Enrichment Analysis (GSEA) software
(version 4.0.1, http://www.gsea-msigdb.org/gsea/index.
jsp) were used to compare high- and low-risk groups.
The immunologic signature gene sets (C7), KEGG (C2),
and Hallmark gene sets (H) were applied to dissect
differential immune cell subsets, signalling pathways,
biological states, and processes in the high- and low-risk
groups. As the official literature of GSEA suggested, a
false discovery rate (FDR) value of 0.25 was used as a
cutpoint.52 A GSEA result with P < 0.05 and FDR < 0.25
was considered statistically significant.52

Analysis of single-cell RNA-sequencing data
Single-cell data were analysed using the “Seurat”, “Sin-
gleR”, “Cellchat” and “Monocle2” R packages. First, the
10X data matrix was imported into Seurat V3.10
(https://satijalab.org/seurat) for data filtering, sample
integration, gene normalisation, downscaling, and data
visualisation. All samples were integrated into one ob-
ject using Seurat’s “IntegrateData” feature. To retain
high-quality scRNA-seq data for the following analysis,
three measures were applied to filter the raw data for
each cell. Cells with low (<200) or high (>2500) feature
counts and a high percentage of mitochondrial genes
(>25%) were removed. The “RunHarmony” function of
www.thelancet.com Vol 99 January, 2024
the “harmony” R package was employed to de-batch all
samples. Dimensionality reduction was accomplished
using Seurat’s “RunPCA”, “UMAP”, and “TSNE” func-
tions. Then, the top 40 principal components with the
highest variance (resolution = 0.4) were used to visualise
the clustering of single cells according to the clustering
of cells.

For cluster annotation, we combined reference data
from CellMarker (http://xteam.xbio.top/CellMarker/),
SingleR, and published literature for cell annota-
tion.35,53,54 Cell–cell interactions and receptor–ligand
pairs between the major cell types were probed using
Cellchat V1.0.0 (http://www.cellchat.org/). Potential in-
teractions between cell types were estimated by gene
expression levels deduced from 1000 interchange as-
says. Regarding cellular evolutionary trajectories, the R
package “Monocle2” was used to infer cellular trajec-
tories using a gene-cell matrix at the UMI count scale
extracted from the Seurat subset as the input data set
after downscaling and cell sorting, using default
parameters.55

Patients
We retrospectively recruited 67 patients with ESCC who
underwent surgical treatment at the Harbin Medical
University Cancer Hospital from March 2012 to
December 2016.

Age, biological sex, and clinical information of pa-
tients were retrieved from electronic medical records in
the hospital information system (Supplemental
Table S1). Each patient was followed up for more than
five years. The eligible patients met the following
criteria: pathologically confirmed ESCC, complete
prognostic follow-up information, no preoperative anti-
cancer therapy, and no severe complications affecting
prognosis in the perioperative period. Paraffin-
embedded samples were collected for these patients.
We also selected snap-frozen tumours and peri-tumoral
tissues from an extra 12 patients with ESCC. The TNM
classification of malignancy (TNM) for patients with
ESCC was determined according to the guidelines of the
American Joint Committee on Cancer (AJCC) and the
International Union Against Cancer (UICC) (2017).

Cell culture and reagents
Oesophageal epithelial cells (HET-1A) (RRID:
CVCL_3702) and ESCC cells (KYSE410, KYSE30,
KYSE510, KYSE450, and KYSE150) (RRID: CVCL_1352,
RRID: CVCL_1351, RRID: CVCL_1354, RRID:
CVCL_1353 and RRID: CVCL_1348) were obtained
from the Cell Bank of Chinese Academy of Sciences
(Shanghai, China) and Procell Life Science&Technology
Co., Ltd (Wuhan, China). Cell lines were cultured in
RPMI 1640 medium (PM150110, Procell, China) with
10% fetal bovine serum (164210, Procell, Wuhan,
China), penicillin G (100 U/ml, BYT-C0222, Beyotime,
China), and streptomycin (100 μg/ml, BYT-C0222,
5
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Beyotime, China) and maintained in a humidified
incubator with 5% CO2, at 37 ◦C. All cell lines tested
negative for mycoplasma throughout the study. The
short tandem repeat (STR) profiling was used to verify
the identity of each cell line. Cisplatin (HY-17394,
MedChemExpress, Monmouth Junction, NJ, USA),
necrostatin-1(Nec-1) (HY-15760, MedChemExpress,
Monmouth Junction, NJ, USA), RIPA-56 (HY-101032,
MedChemExpress, Monmouth Junction, NJ, USA) and
necrosulfonamide (NSA) (HY-100573, MedChemEx-
press, Monmouth Junction, NJ, USA) were used to treat
cells for 24 h to induce and inhibit necroptosis,
respectively.

Plasmids and transfection
Plasmids overexpressing HOOK1, CUL4A, and empty
vectors (CMV-enhancer-MCS-3FLAG-SV40-Puromycin)
were purchased from Shanghai Genechem Co., Ltd.
Cells in 6-well plates were transfected with empty vec-
tors or plasmids encoding HOOK1 and CUL4A
(plasmid 50 nM) using jetPRIME® transfection reagent
(101000027, Polyplus Transfection Inc. New York, NY,
USA) when reaching 80% confluency. Cells were kept
in the medium for 24 h before being used for
experiments.

Western blot analysis
The collected tissue was first well-ground using a
homogeniser, lysed by adding RIPA lysis (P0013B,
Beyotime, China) solution for 20 min, and then centri-
fuged at high speed (13,500 rpm for 15 min). Cell lysis
was also prepared using the RIPA method. The protein
samples were separated on SDS-PAGE (PG112, Epi-
zyme Biotech, Shanghai, China) and transferred to
PVDF membranes (ISEQ00010, Millipore, USA). The
resulting blots were incubated with primary antibides
against hook microtubule tethering protein 1 (HOOK1)
(1:750, K003840P, Solarbio, Beijing, China), CUL4A
(1:1000, K008800P, Solarbio, Beijing, China), MLKL
(1:1000, Cat.#: 380559, Zen Biotechnology Co., Ltd,
Chengdu, China), Phospho-MLKL (Ser358) (1:1250,
Cat# 382136, Zen Biotechnology Co., Ltd, Chengdu,
China), RIPK3 (1:1000, Cat# AF4808, RRID: AB_
2844793, Affinity Biosciences, China), Phospho-RIPK3
(3:5000, Cat# 93654, RRID: AB_2800206, Cell
Signaling Technology, China), RIPK1 (1:1000, Cat#
3493, RRID: AB_2305314, Cell Signaling Technology,
China), GAPDH (1:2000, Cat# 60004-1-Ig, RRID: AB_
2107436, Proteintech, Wuhan, China), and the second-
ary antibody (1:2000, Cat.# A212020, Abbkine, China;
1:2000, SA00001-1, Proteintech, China). For details,
please refer to the previous publication.56

Co-immunoprecipitation (Co-IP)
Briefly, HOOK1-overexpressing KYSE150, CUL4A-
overexpressing KYSE440 cells, or corresponding con-
trol cells were collected and lysated in IP lysis buffer with
the addition of PMSF (protease inhibitor, ST505, Beyo-
time, China). All procedures were carefully executed on
ice. The resulting supernatants were incubated with
agarose-conjugated anti-RIPK1 antibody (Cat# 3493,
RRID: AB_2305314, Cell Signaling Technology, China)
or IgG (Cat# AC005, ABclonal, Wuhan, China) overnight
at 4 ◦C. The immunoprecipitated beads were then
washed three times, eluted with 1X loading buffer
(P0015A, Beyotime, China), and boiled at 99 ◦C for
5 min. Upon the removal of beads, these samples were
subjected to Western blot analysis and probed with the
anti-RIPK1 (Cat# 3493, RRID: AB_2305314, Cell
Signaling Technology, China), anti-RIPK3 (Cat# AF4808,
RRID: AB_2844793, Affinity Biosciences, China), anti-
MLKL (Cat.#: 380559, Zen Biotechnology Co., Ltd,
Chengdu, China), or anti-GAPDH antibodies (Cat#
60004-1-Ig, RRID: AB_2107436, Proteintech, Wuhan,
China).

Wound healing assay and migration assay
Cells are seeded in 6-well plates. Vertical scratches were
generated on the monolayer when the cells reached 95%
confluence. Afterwards, a serum-free medium was used
to maintain the cells. Images were taken, and wound
gaps were measured at 0 and 24 h. Migration assays
were performed using Transwell chambers (8 μm; 3422,
Corning, Tewksbury, MA, USA). A serum-free cell
suspension was added to the upper wells of the cham-
bers at a density of 3 × 104 cells/well, while the lower
wells of the chambers contained 1640 (PM150110,
Procell, China) supplemented with 10% FBS (164210,
Procell, Wuhan, China) and then maintained in an
incubator at 37 ◦C for 24 h. Migrating cells were fixed
with 4% paraformaldehyde, stained with 0.1% crystal
violet, and counted under a microscope.

Cell viability and LDH release assay
Cancer cell suspensions were added to 96-well plates at a
density of 5000 cells/well. After attachment, cell viability
was determined at 0, 24, 48, and 72 h using the Dojindo
Cell Counting Kit-8 (CCK-8, GK10001, GlpBio, USA)
according to the manufacturer’s instructions. An
appropriate number of ESCC cells were inoculated into
96-well cell culture plates such that the cell confluence at
the time of the assay did not exceed 80–90%. LDH levels
were measured using the Lactate Dehydrogenase Cyto-
toxicity Assay Kit (LDH Cytotoxicity Assay Kit, C0016,
Beyotime, China).

Immunohistochemistry (IHC) staining
Paraffin-embedded samples were cut into 3–4 μm sec-
tions using a paraffin microtome (Leica, Germany) and
mounted on poly-L-lysine-coated slides. Immunohisto-
chemical analyses were performed using primary anti-
bodies against HOOK1 (at 1:150 dilution, K110729P,
Solarbio, Beijing, China) and cullin 4A (CUL4A) (at
1:100 dilution, K008800P, Solarbio, Beijing, China).
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IHC staining was performed according to the standard
protocol described elsewhere.57 Each sample was desig-
nated as 1 (negative), 2 (weakly positive), and 3 (strongly
positive) based on relative staining intensity. Strongly
positive samples were defined as the high-expression
group, while negative and weakly positive samples
were considered the low-expression group.

Statistics
Statistical analysis was performed using GraphPad
Prism 9 (https://www.graphpad-prism.cn/) and R 4.2.2
(https://www.r-project.org/). Continuous variables with
normal distribution and equal variance between binary
groups were compared using Student’s t-test; otherwise,
the Wilcoxon rank-sum test was used, such as the dif-
ferences between high- and low-risk groups regarding
the expression levels of CCDI-related genes and levels
of intratumoral infiltrating immune cells. We used the
quantile–quantile (QQ) plot to test the normality
assumption of data sets, while Levene’s test was applied
to compare the variances between the two sets of data.
Continuous variables with normal distribution and
equal variance between ternary and more groups were
compared using one-way ANOVA; otherwise, the
Kruskal–Wallis test was used. The chi-squared test was
used to assess whether there was a difference between
multiple overall rates or component ratios. We evalu-
ated the survival data for proportional hazards and
linearity for quantitative predictors, the assumptions
underlying the Cox regression, before performing uni-
variable and multivariable Cox regression analysis to
estimate hazard ratios (HR) and 95% confidence inter-
val (CI) of PCD-related genes against OS, using the
“survival” and “survminer” R packages. To evaluate the
prognostic models’ prediction accuracy prognosis in
patients with ESCC, time-dependent receiver ROC
curves were generated, and AUC was calculated and
plotted using the R packages “pROC”, “survivalROC”
and “ggplot2”.58 Kaplan–Meier survival curves were
plotted to compare OS between the high- and low-risk
groups. The difference in OS between these groups
was assessed using the log-rank test, which was con-
ducted using the “survival” and “survminer” R pack-
ages. The “surv_cutpoint” algorithm in the “survminer”
R package was used to determine model cutpoints.
Uniform Manifold Approximation and Projection
(UMAP) analysis and visualisation in the “umap” R
package were used to assess discriminative power.
Recall curves were evaluated to assess the precision and
recall of the model based on the “modEvA” R package.59

Correlations between variables were examined using
Pearson correlation analysis. Immune cell levels and
the immune score of samples were evaluated using
“CIBERSORT” and ESTIMATE” R packages and
“TIMER 2.0” website”. All experiments were repeated at
least three times, and the results of continuous variables
are presented as mean ± standard deviation (SD).
www.thelancet.com Vol 99 January, 2024
Unless otherwise stated, P < 0.05 was considered sta-
tistically significant.

Ethics
The Ethics Committee of the Cancer Hospital of Harbin
Medical University approved the use of retrospective
patient material. Written informed consent was ob-
tained from all participants.

Role of the funders
The funders played no role in the study design, data
collection, data analysis, data interpretation, and paper
writing.
Results
Identification of genes associated with 14 forms of
cell death and establishment of prognostic
signatures
First, the signature gene sets of 14 cell death forms were
collected from published literature and databases
(Supplementary Table S2), including apoptosis
(intrinsic and extrinsic), entotic cell death, necroptosis,
cuproptosis, oxeiptosis, ferroptosis, alkaliptosis, pyrop-
tosis, parthanatos, autophagy-dependent cell death,
lysosome-dependent cell death, netotic cell death, and
ICD. The study flowcharts are shown in Fig. 1a and
Supplementary Figure S1. The univariate Cox regres-
sion was used to filter out genes not significantly asso-
ciated with OS (adjusted q-values <0.05) from a total of
3518 genes retrieved for 14 forms of PCD. Then, the
multivariable Cox regression was used to generate a
prognostic gene signature for each form of cell death
with the remaining corresponding genes. The expres-
sion levels of the genes included in each prognostic
signature were compared between normal and tumour
tissues, followed by the matching forest plots summa-
rising the results of multivariable Cox regression anal-
ysis (Fig. 1b–o).

Evaluation of 14 prognostic models and the CCDI
model
The time-dependent ROCs of the 14 prognostic models
were plotted (Fig. 2a). Prognostic models with a lower
95% confidence limit of AUC>0.7 for 1, 2, 3, 4, and 5
years were used for the combined analyses. Among
various combined models containing 2–4 individual
prognostic signatures, the model combining ICD
(AUC = 0.800) and necroptosis (AUC = 0.803), named
combined cell death index (CCDI), showed the highest
predicting accuracy (AUC = 0.834) (Fig. 2b). The CCDI
consisted of 16 genes (KIF11, MTOR, PIK3R1, TSC1,
HOOK1, ALK, CEACAM1, VIM, CCND1, DPP4, NGFR,
RPS24, MEFV, CLU4A, RARG, and SRC). Its time-
dependent ROC curves are shown in Fig. 2c.

The Kaplan–Meier survival curves (Fig. 2d) and
Uniform Manifold Approximation and Projection
7
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Fig. 1: Establishment of 14 prognostic models based on different cell death forms. a. The flowchart of the study. We constructed 14
prognostic models based on genes associated with various cell death forms. b–o. Expression (Normal vs Tumour tissues) (n = 358) and results of
multivariable Cox regression analysis for genes included in each prognostic model are shown for different types of cell death, including intrinsic
apoptosis (b), extrinsic apoptosis (c), entotic cell death (d), necroptosis (e), cuproptosis (f), oxeiptosis (g), ferroptosis (h), alkaliptosis (i),
pyroptosis (j), parthanatos (k), autophagy-dependent cell death (l), lysosome-dependent cell death (m), netotic cell death (n), and immunogenic
cell death (ICD) (o) (n = 179). Hazard ratio (x axis) is presented on the logarithmic scale in the forest plots. P values for differences in gene
expression between tumours and normal tissues were determined by the student t-test. CCDI, combined cell death index; ESCC, oesophageal
squamous cell carcinoma; TIDE, Tumor Immune Dysfunction and Exclusion; WB, Western blot; LDH, Co-IP, co-immunoprecipitation; CCK-8, cell
counting kit-8; lactate dehydrogenase; IHC, Immunohistochemistry.
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Fig. 2: Evaluation of the 14 prognostic models of cell death forms in the training set (GSE53625, n = 179). a. The area under the time-
dependent receiver operating characteristic (ROC) curve for prognosis-predicting models of 14 cell death forms at indicated time points. b. ROC
plots of necroptosis, ICD, and combined cell death index (CCDI) models. c. Time-dependent ROC curves for the CCDI. d. The Kaplan–Meier curves
for high- and low-risk patient subgroups are presented for the three models (The dotted curves depict the 95% confidence interval for the
survival curve, n = 179, log-rank test, P < 0.0001). e. Uniform Manifold Approximation and Projection (UMAP) analysis and visualisation
estimate the discriminating ability of necroptosis, ICD, and CCDI models for the low- and high-risk groups. f. The precision–recall curves evaluate
the prognostic accuracy of indicated models (Recall is the sensitivity while precision means positive predictive value). g. Correlation between
necroptosis and ICD risk scores. CCDI increases while necroptosis and ICD risk scores increase. h. The network of genes and the labelled
prognostic models. Line weights measure the correlation between individual gene expression levels and the risk score of corresponding risk
models, as well as the correlation among the three models concerning the risk score. Pearson correlation analysis was used to assess the
correlations (n = 179). AUC, area under the curve; CI, confidence interval; OS, overall survival.
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(UMAP) analysis and visualisation (Fig. 2e) showed that
the CCDI could better discriminate patients with
favourable prognosis from those with poor outcomes
compared to the ICD or necroptosis model alone. In
addition, the Precision-Recall Curve (PRC) (PR-AUC of
necroptosis = 0.74, PR-AUC of ICD = 0.77 and PR-AUC
of CCDI = 0.90) was plotted (Fig. 2f). A correlation be-
tween necroptosis and ICD risk scores was displayed,
and CCDI increased with increasing necroptosis and
ICD risk scores (Fig. 2g). These results suggest that the
CCDI had higher predicting accuracy for the prognosis
and could more precisely distinguish patients at high
risk (CCDI >0.64) from those with low risk (CCDI
≤0.64) than the single cell death pattern models. Finally,
associations of genes with ICD, necroptosis, and CCDI
models were mapped using Pearson correlation
methods. Central dark blue, green, and red spots sym-
bolised necroptosis, ICD, and CCID models connected
with related genes by the grey lines (Fig. 2h). Line
thickness is proportional to the correlation between the
expression level of each gene and the risk score of cor-
responding prognostic models, as well as the correlation
among ICD, necroptosis, and CCDI models regarding
the risk score (Fig. 2h). We further validated the CCDI
model in the TCGA-ESCC (Supplementary Figure S2a,
b, e, f) and GSE53624 cohorts (Supplementary
Figure S2c, d, g). Similarly, ROC curves, the Kaplan–
Meier survival curves, and UMAP analyses indicated
that the CCDI outperformed the necroptosis or ICD
model alone in predicting prognosis for patients with
ESCC.

Immunotherapy response in high- and low-risk
groups defined by CCDI
To explore the predictive power of the CCDI model for
immunotherapy sensitivity, we analysed the correlation
between the CCDI model risk score and 51 immune
checkpoints and modulators.60 The results showed that
the CCDI was significantly correlated with a broad
spectrum of immune-related genes, indicating the po-
tential immune implications of the CCDI model
(Fig. 3a). The Tumor Immune Dysfunction and Exclu-
sion (TIDE) algorithm was applied to predict response to
ICIs in the training set (GSE53625). The results showed
that the TIDE method could differentiate responders
(TIDE score <0) from non-responders (TIDE score>0)
(Fig. 3b). The Pearson correlation analysis indicated that
the risk score was positively associated with the TIDE
score, meaning that patients with low CCDI are more
likely to respond to ICIs than those with high CCDI
scores (Fig. 3c). Indeed, in the same cohort, the low-risk
group had a larger proportion of responders than the
high-risk group (Fig. 3d).

We further confirmed the CCDI’s capacity to predict
the response to ICIs with the IMvigor210 dataset.30 The
phase II IMvigor210 study recruited 220 patients with
locally advanced or metastatic urothelial carcinoma who
experienced Response Evaluation Criteria In Solid Tu-
mors (RECIST) v1.1 progression after platinum treat-
ments.30 CCDI score was calculated for each patient in
the IMvigor210 dataset based on the coefficients of
multivariable Cox regression analysis and expression of
the CCDI genes. Patients with CCDI scores >0.64 (the
cutoff value established for the training set in early
survival analysis) were categorised into the high-risk
group and the remaining patients into the low-risk
group. The Kaplan–Meier analysis showed that the pa-
tients with low CCDI had significantly elongated sur-
vival compared with counterparts with high CCDI
(Fig. 3e). Among them, 137 patients received one or
more doses of atezolizumab, an inhibitor of PD-L1, after
initial cancer progression.30 Encouragingly, we found
that a larger percentage of patients achieved CR or PR in
the low-risk group than in the high-risk group defined
by CCDI (Fig. 3f). Moreover, CR or PR group patients
possessed lower average CCDI than patients in the PD
group (Fig. 3g). We also validated the predictive value of
this CCDI in patients with melanoma treated with anti-
PD-1 therapy (pembrolizumab and nivolumab) in the
GSE78220 cohort.31 Compared with the high-risk group,
relatively more patients tended to respond to anti-PD-1
treatment in the low-risk group (Fig. 3h and i). Again,
in terms of renal cell carcinoma,32 we observed that
patients with low CCDI were more likely to benefit from
anti-PD-1 therapy, and the CCDI was lower in the re-
sponders (GSE67501) (Fig. 3j and k). The discriminant
accuracy of the CCDI in predicting response to ICIs was
also confirmed in a clinical trial of resectable oesopha-
geal adenocarcinoma (EAC) with atezolizumab
(GSE165252) (Fig. 3l and m).33 Taken together, these
results suggest that the patients with low risk were more
sensitive to ICIs, implying that the CCDI may be able to
predict sensitivity to ICIs in different types of cancer.

Comparison of tumour immune microenvironment
between high- and low-risk groups
Given the differential response to ICIs of the two risk
groups, we further explored the underlying mecha-
nisms. GSEA based on ESCC bulk sequencing data
(GSE53625) demonstrated that many immune-related
pathways were associated with low-risk groups
(Supplementary Figure S3a and b). Moreover, using the
MCP-counter, recognising ten types of cells in TME,
including immune and stromal cells, we detected sig-
nificant differences in NK cells, B lineage, cytotoxic
lymphocytes, and neutrophils between the two groups
(Supplementary Figure S3c). As shown in
Supplementary Figure S3e, the CIBERSORT algorithm,
enumerating 22 immune subsets, uncovered the sig-
nificant difference in plasma cells, monocytes, activated
NK cells, neutrophils, activated dendritic cells, and M2
macrophages between the two groups. Correlations be-
tween the CCDI and different types of cell populations
are exhibited in Supplemental Figure S3d and f. Again,
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Fig. 3: Comparison of the Immunotherapy efficacy between high and low-risk groups defined by the CCDI. a. Heat map of correlation
between the CCDI and immune checkpoints (Blue square represents negative correlation, while red square represents positive correlation)
(GSE53625, n = 179). b. Tumor Immune Dysfunction and Exclusion (TIDE) analysis indicated the distribution of responders and non-responders
to immune checkpoint inhibitors (ICIs) in the training set (GSE53625, n = 179). c. Correlation of TIDE scores of patients with CCDI (GSE53625,
n = 179). d. Percentages of ICI responders in the low-risk group compared to the high-risk group (GSE53625, n = 179). e. Kaplan–Meier OS
curves for the CCDI-defined high- and low-risk groups in the IMvigor210 (externally validated, log-rank test, P < 0.0001) dataset (n = 220). f, h,
j, l. Comparison of the response to anti-PD-L1 treatment in the high-risk and low-risk groups in the IMvigor210 study (Bladder urothelial
carcinoma, n = 137) (f), GSE78220 (Melanomas, n = 28) (h), GSE67501 (Human renal cell carcinoma, n = 11) (j) and GSE165252 (resectable
oesophageal adenocarcinoma, n = 40) (l) cohorts. g, i, k, m. The differences in CCDI between the high- and low-risk groups of the IMvigor210
(g), GSE78220 (i), GSE67501 (k) and GSE165252 (m) cohorts. Pearson correlation analysis was performed to assess the correlations. Differences
in immunotherapy response between high and low-risk groups were compared using the chi-square test. Differences in CCDI between the two
groups were analysed using a student t-test, and one-way ANOVA was used for the comparisons among three or more groups.
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other methods, such as CIBERSORT-ABS, EPIC,
QUANTISEQ, TIMER, and XCELL, also confirmed the
distinct forms of immune cell infiltration between the
two groups and the correlation between the risk score
and the immune subsets (Supplemental Figure S4a and
b). Finally, analyses with the ESTIMATE algorithm
revealed that the immune score in the CCDI-defined
low-risk group was significantly higher than those in
the low-risk group in the training set and two validation
sets (Supplemental Figure S4c–e). The difference in
immune score may partially explain the discrepancy in
response to ICIs between the two groups.

Different tumour-associated pathways among the
high- and low-risk groups
GSVA was used to explore further the molecular and
cellular characteristics of the two different risk groups.
Compared to the low-risk group, the high-risk group
had higher enrichment scores in tumour-related sig-
nalling pathways, including EMT, G2M checkpoint, cell
cycle, E2F targets, TGF-β signalling, NOTCH signalling,
HEDGEHOG signalling, ADHERENS junction and
Wnt/β-catenin pathway, while lower scores in nec-
roptosis, pyroptosis, and p53 signalling pathways
(Supplementary Figure S5a–m).

Establishment of ESCC cell atlas using single-cell
RNA transcriptome
Although our findings are interesting, all analyses were
conducted based on the bulk transcriptomes. These results
conveyed mixed information on diverse cells but failed to
delineate the cellular diversity of the TME in a single-cell
resolution. Therefore, we further analysed the impor-
tance of the CCDI gene by taking advantage of the pub-
lished single-cell transcriptome data (GSE196756). After
multiple quality control and filtering steps, we obtained an
expression matrix of 24,171 genes retrieved from 36,515
single cells. Using typical individual marker genes, the
total cells were clustered into eight major cell types,
including epithelial cells (epithelial and ESCC cells), im-
mune cells (T cells, B cells, monocytes, and dendritic cells),
stromal cells (fibroblasts and endothelial cells), and eryth-
rocytes (Fig. 4a and b). For instance, fibroblasts were
characterised by high expression of several extracellular
matrix genes, fibronectin 1 (FN1), decorin (DCN), collagen
type 1 (COL1A1), and COL12A; meanwhile, T cells pref-
erentially expressed CD3 delta subunit of T-cell receptor
complex (CD3D) and T cell surface antigen CD2 (CD2).
The same goes for identifying B cells (IL3RA, MS4A1, and
CD79A) and monocytes (MS4A7, FCGR3A, LYZ, and
CD14). The proportion of epithelial, immune, and stromal
cells varied greatly between paired normal and tumour
tissues (Fig. 4c). Next, the results of intercellular
communication analysis showed that ESCC cells had vital
interaction with immune and stromal cells (Fig. 4d and e).
These results suggest a mutual regulation between tumour
cells and the immune microenvironment.
It is believed that tumour cells, immune cells, and
stromal cells interact dynamically and reciprocally in
the tumour microenvironment. Their intricate
communication and joint contributions consequently
lead to the tumour fate decision. CellChat, a newly
published machine learning method, allows us to
quantitatively extrapolate intercellular communications
from single-cell RNA-sequencing (scRNA-seq) data
based on ligands, receptors, and their cofactors.37 The
circle plots visualised comprehensive cell-to-cell inter-
action networks among tumour cells, T cells, B cells,
monocytes, dendritic cells, fibroblasts, and endothelial
cells by the number of interactions and the interaction
strength (Fig. 4d and e).

We next extrapolated incoming and outgoing signals
for different cell types in the TME using CellChat. All
kinds of cells can synthesise and secret various cyto-
kines or ligands as signal senders; meanwhile, they
sense extracellular ligands via receptors as signal re-
ceivers. The crucial signals mediating communications
among different cell types are exhibited in Fig. 4f.
Collectively, the ligand–receptor interaction among
different cell types in the TME highlighted the impor-
tance of each cell subpopulation for tumour
development.

Identification of dynamic CCDI genes during the
transition of cell states
Next, by plotting single-cell trajectories, we attempted to
investigate whether the CCDI genes contribute to cell
fate decisions in infiltrating immune, stromal, and
ESCC cells (GSE196756). First, the seven cell pop-
ulations were divided into subsets using the “singleR” R
package and marker genes collected in published
studies (upper panels of Fig. 5a–g). We ranked cells with
the “Monocle2” R package within original groups based
on cell subtypes to establish their single-cell motility
trajectories. The starting point of the timeline trajectory
of each cell population is shown by arrows (middle
panels of Fig. 5a–g). For instance, in the case of T cells,
the transition might initiate in naïve T cells (blue),
which then develop into CD4+ T cells (red) and CD4+

memory T cells (green) (upper and middle panels of
Fig. 5b). We identified that levels of PIK3R1, RPS24,
and VIM dynamically altered along the differentiation
process of T cells (lower panel of Fig. 5b), suggesting
that these genes might be somehow related to the cell
fate decision of these cells. Overall, we found that
RPS24 and VIM might regulate the cell states of all
analysed cell populations anyhow. In addition, cyclin D1
(CCND1) may also execute a particular function in the
dynamic transitions of fibroblasts and endothelial cells
(Fig. 5e and f). We also noticed that CUL4A was
implicated in the differentiation process of ESCC cells
(Fig. 5g). However, these results should be interpreted
cautiously. For instance, the CD4+ cell subpopulations
based on the machine learning strategy should be
www.thelancet.com Vol 99 January, 2024
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Fig. 4: Clustering and annotation of single-cell RNA sequencing data in GSE196756 (n = 6). a. The t-distributed stochastic neighbour
embedding (t-SNE) plot of patients, tissue types, and the eight identified main cell types in ESCC tumours and normal oesophageal tissues. b.
Bubble plot showing 36 marker genes expressed in the eight-cell types. The size of the bubbles represents the proportion of cells expressing
marker genes, and the spectrum of colours indicates the average expression level of marker genes (log1p transformation). c. Histograms display
the percentages of different cells across normal and tumour tissues of the oesophagus. d-e. The number of interactions (d) and interaction
weights/strength (e) of cell and cells in the tumour microenvironment of ESCC. The colour and width of the lines represent the number of
interacting pairs between cell types. f. The bubble plots indicate the key outgoing and incoming signalling patterns of the cell, respectively. The
size of the dots is proportional to the calculated contribution fraction in cellular communication, with higher contribution fractions representing
signalling pathways that are more abundant in cellular interactions.
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Fig. 5: Pseudo-time analysis of each cell type and dynamic changes of CCDI- gene expression in trajectories in the training set
(GSE196756, n = 6). a–g. Cell subpopulations (upper panels), single cell motility trajectories (middle panels), and dynamic genes during the cell
differentiation (lower panels) were visualised for dendritic cells (DC) (a), CD4+ T cells (b), B cells (c), monocytes (d), fibroblasts (e), endothelial
cells (f), and ESCC cells (g). UMAP plots show the main subclusters of cells. The “Monocle2” algorithm was used to perform trajectory plots for
cells and determine dynamic genes. Each dot indicates a single cell coloured by its cluster, and the solid black line shows the LOESS fit in the
lower panels.
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validated with T cell receptor sequencing (TCR-seq). We
obtained another ESCC scRNA-seq dataset (GSE188900)
with an expression matrix of 23,160 genes retrieved
from 52,772 single cells (Supplement Figure S6). We
confirmed the importance of RPS24, VIM, and PIK3R1
in the decision-making of cell fates (Fig. 6). Interest-
ingly, the results from the new dataset suggested that
besides CUL4A, HOOK1 may also be critical for ESCC
cell transition (Fig. 6g).

In vitro functional analyses of HOOK1 and CUL4A
Hook Microtubule Tethering Protein 1 (HOOK1) is a
member of the hook family of coiled-coil proteins. It can
bind to microtubules and organelles and may bridge the
endocytic membrane trafficking and the microtubule
cytoskeleton. Cullin 4A (CUL4A) is a critical component
of multiple cullin-RING-based E3 ubiquitin-protein
ligase complexes, regulating the ubiquitination of sub-
strates. Given the functional significance of HOOK1 and
CUL4A in ESCC prognosis and the regulation of
tumour cell fates revealed by the bioinformatic analysis,
we investigated the in vitro function of HOOK1 and
CUL4A. We examined the expression levels of HOOK1
and CUL4A in oesophageal epithelial cells and ESCC
cell lines. KYSE150 and KYSE410 cells with relatively
low HOOK1 and CUL4A levels were used for the gain-
of-function analysis (Fig. 7a). RT-qPCR (Fig. 7b, top)
and Western blot (Fig. 7b, bottom) assays were per-
formed to confirm the efficiency of gene manipulation.
We next demonstrated that cisplatin could elicit nec-
roptosis in ESCC cells (Fig. 7c) and use it as a nec-
roptosis inducer. Ectopic expression of HOOK1 induced
necroptosis in ESCC cells as indicated by increased
levels of RIPK1, p-RIPK3, and p-MLKL, which was
attenuated by several necroptosis inhibitors in a
concentration-dependent manner, such as necrostain-1
(Nec-1), a potent anti-MLKL drug necrosulfonamide
(NSA), and a more specific anti-pRIPK1 drug RIPA-56
(Fig. 7d–f). The hallmark of necroptosis is the forma-
tion of the necrosome, a complex consisting of RIPK1
and RIPK3, and the recruitment and phosphorylation of
MLKL. Our Co-IP results demonstrated that enforced
expression of HOOK1 prompted the interaction of
RIPK1, RIPK3, and MLKL, suggesting increased
necrosome complexes in the ESCC cells (Fig. 7g).
Moreover, overexpression of CUL4A reduced
necrosome formation (Fig. 7h). These data further
confirmed that HOOK1 and CUL4A promoted and
reduced necroptosis in ESCC cells. LDH assay sub-
stantiated that HOOK1 overexpression-mediated cell
injury could be reversed by Nec-1, NSA, and RIPA-56
(Fig. 7i–k), while CUL4A overexpression significantly
reduced cisplatin-induced necroptosis in ESCC cells
(Fig. 7l), suggesting that the two genes regulate nec-
roptosis. In addition, we investigated the effects of
HOOK1 and CUL4A on the proliferation and migration
of ESCC cells. Forced expression of HOOK1 inhibited
www.thelancet.com Vol 99 January, 2024
proliferation and migration of ESCC cells as shown by
the CCK, transwell migration, and wound healing assays
(Fig. 7m, o, q), while CUL4A exerted an inverse influ-
ence on cancer cells (Fig. 7n, p, r). These results un-
veiled the tumour-suppressing and promoting
potentials of HOOK1 and CUL4A in ESCC cells by
regulating cancer cell necroptosis, proliferation, and
migration, respectively.

Validation of CUL4A and HOOK1 in clinical
specimens
In addition, we validated the expression of these two
genes in the samples of patients with ESCC. The
Western blot results showed that HOOK1 was highly
expressed in peri-tumoral tissues compared to matched
tumour tissues collected from 12 patients. Meanwhile, a
reverse expression trend was found for CUL4A, sug-
gesting a tumour-promoting potential of this gene
(Fig. 8a). We also performed immunohistochemistry
(IHC) staining on tumour tissues from 67 patients with
ESCC along with 10 peri-tumoral tissues (Fig. 8b and c,
Supplement Figure S7). HOOK1 was found to pre-
dominantly localise in the cytoplasm of epithelial cells
and down-regulated in peri-tumoral tissues (Fig. 8b, d).
In addition, HOOK1 expression levels were further
decreased in tumours with low/medium degree of dif-
ferentiation compared to highly differentiated tumours
(Fig. 8e) and were not associated with the clinical stage
(Fig. 8f). CUL4A was present in the nucleus and cyto-
plasm of epithelial cells and up-regulated in tumour
tissues (Fig. 8c, h). CUL4A was associated with neither
the differentiation degree nor the clinical stage of ESCC
(Fig. 8i and j). Moreover, patients with ESCC were
dichotomised concerning expression levels of HOOK1
or CUL4A. The Kaplan–Meier survival analyses indi-
cated that patients with HOOKhigh tumours exhibited
significant survival advantages over those with HOO-
Klow tumours (Fig. 8g). In contrast, patients with high
CUL4A expression had a poorer prognosis than those
with low gene expression (Fig. 8k). Combined analysis
elucidated that patients with ESCC with HOOKlow/
CUL4Ahigh tumours have the worst OS (Fig. 8l). Uni-
variate and multivariable COX regression analyses
identified HOOK1 (Fig. 8m) as an independent predic-
tor for prognosis in ESCC. Collectively, these results
reaffirm that HOOK1 and CUL4A play an essential role
in the development of ESCC.
Discussion
PCD occurs in an orderly and controllable manner to
maintain homeostasis, regulated by given signalling
pathways. Over ten types of PCDs have been recognised
to date.4 Moreover, all kinds of cell death usually end up
with an immunological consequence. On the one hand,
pro-inflammatory cytokines or antigens released by
dead cells undergoing some PCDs like pyroptosis can
15
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Fig. 6: Validation of the implications of CCDI-gene in cell state transition with GSE188900 (n = 7). a–g. T cells (a), B cells (b), NK cells (c),
Monocytes (d), fibroblast (e), endothelial cells (f), and ESCC cells (g) were divided into subgroups (upper panels), shown in single cell motility
trajectories (middle panels). The dynamic genes during the cell differentiation (lower panels) were also determined for these cell populations.
Each dot indicates a single cell coloured by its cluster. The solid black line represents the LOESS fit in the lower panels.
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arouse inflammation and specific immune responses,
called immunogenic cell deaths.61 On the other hand,
when apoptotic and dead cells are phagocytised, cells
die quiescently without activating inflammatory or im-
mune reaction cascades. Because of the importance of
ICD in tumour progression and immunotherapy
www.thelancet.com Vol 99 January, 2024
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Fig. 7: Impacts of HOOK1 and CUL4A on necroptosis, proliferation, and migration of ESCC cells. a. Differential expression of HOOK1 and
CUL4A in normal oesophageal epithelial cells and ESCC cells by Western blot analysis. b. The overexpression efficiency of HOOK1 and CUL4A
was examined using qRT-PCR (upper panel) and Western blot analysis (lower panel). c. KYSE410 cells were treated with increasing con-
centration of cisplatin for 24 h and then were subjected to Western blot analysis for necroptosis biomarkers. d-f. ESCC cells (KYSE150) with
HOOK1 overexpression were treated with the indicated concentrations of different necroptosis inhibitors for 24 h, including necrostatin-1
(Nec-1), necrosulfonamide (NSA), and RIPA-56. Western blot analysis was conducted to examine necroptosis biomarkers. g, Co-IP showed
that HOOK1 facilitated the precipitation of RIPK3 and MLKL with RIPK1. h, Co-IP indicated that HOOK1 reduced the RIPK3 and MLKL
interacting with RIPK1. i–l. The LDH release assay was used to quantify the effect of Nec-1 (15 μM) (i), NSA (10 μM) (j), and RIPA-56 (1.5 μM)
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response, we also consider ICD as a type of cell death in
our analysis.

There is no doubt that the primary goal of most
cancer treatments is induced neoplastic cell death.
However, the tumour is complex and intriguing, and
PCDs could play dual roles in cancer depending on the
context.16 For instance, substantial evidence has shown
that necroptosis, pyroptosis, and ferroptosis could
enhance tumour immunogenicity; paradoxically, the
same types of death can lead to immune suppression
and tumour progression.16 Entosis also plays a context-
dependent role in tumorigenesis. By engulfing cells, it
may supply nutritional ingredients for tumour growth
but may also facilitate healthy neighbouring cells to
remove malignant cells.62,63 Because of the pivotal and
intriguing roles of various PCDs in cancer, abundant
multi-gene signatures based on individual PCD forms
have been developed and shown great promise in pre-
dicting clinical outcomes, drug resistance, and response
to ICIs in cancer, such as pyroptosis, ferroptosis,
autophagy, ICD, and the recently emerged
cuproptosis.18–21,23,64,65 However, the different PCDs are
not absolutely mutually exclusive. Many redundancies
and crosstalks have been observed among the signalling
pathways regulating these cell death modalities, sug-
gesting they may collectively affect tumorigenesis and
progression.16 Therefore, a predictive signature inte-
grating information on multiple PCDs may better
characterise the tumour status. By developing and
comparing prognostic gene signatures derived from
each type of PCD-related genes with public ESCC bulk
RNA-Seq data, we found that ICD- and necroptosis-
related models had superior prognostic ability
compared to other cell death models. Moreover, the
combination of these two models, CCDI, exhibited the
best performance in predicting prognosis. Two external
datasets validated these results, confirming the CCDI’s
reliable prognostic power and generalizability.

Given the AUC values, the CCDI with an AUC >0.8
performed better than many published prognostic sig-
natures in ESCC, including the lymph node metastasis-
associated gene signature,66 the magnetic resonance
radiomic signature,67 ferroptosis signature,68 autophagy-
related gene signature65 and immune-related genes
signature.62 The literature search retrieved only one
analysis based on multi-PCD.69 Zou et al. collected
programmed cell death genes from 12 PCDs and pooled
1078 genes. After several filtering processes, the Lasso-
Cox regression model was applied to establish a
12-gene signature out of 18 PCD genes.69 The authors
(k) on HOOK1 overexpression-mediated cell damage and impacts of CUL
The effects of overexpression of HOOK1 (m) and CUL4A (n) on the p
expression of HOOK1 (o, q) and CUL4A (p, r) on cell migration ability b
bar = 20 μm). The data are presented as the means ± standard dev
determined using the student t-test.
reported a decent performance of this diverse PCD
signature in predicting prognosis and drug sensitivity in
patients with resectable triple-negative breast cancer.69

The finding also demonstrated that the comprehensive
analysis of PCDs is a promising strategy for developing
accurate predictive models in cancer. Overall, it is sug-
gested that the combined multi-cell death forms model
can further improve the prognostic prediction accuracy
and address the lopsidedness and limitations of a cell
death pattern.

ICIs are one of the revolutionary advances in cancer
management. The FDA has approved several ICIs to
treat various cancers, including ESCC, in the neo-
adjuvant setting or as the first-line therapy.2 However,
ICIs can only achieve reliable and sustainable responses
in a proportion of patients with cancer. Therefore,
intensive efforts have been made to develop accurate
biomarkers for selecting patients who may benefit from
the administration of ICIs. Besides PD-L1 expression by
IHC, tumour mutation burden (TMB), and microsatel-
lite instability (MSI),3 physicians still called for better
biomarkers to facilitate decision-making on whether to
prescribe ICIs to a patient with cancer. To extend the
application of the CCDI, we further explored its pre-
dicting potential for immunotherapy sensitivity. Using
the TIDE database,17 we found that patients with ESCC
in the high-risk group classified by CCDI were prone to
resist ICIs compared with patients in low-risk group,
with a positive correlation between TIDE and risk score.
The CCDI’s predicting accuracy was further validated in
platinum-treated locally advanced and metastatic uro-
thelial carcinoma,30 melanoma,31 renal cell carcinoma,32

and EAC.33 In the IMvigor210 study,30 the CCDI could
divide patients with urothelial carcinoma into low and
high-risk groups with significantly different survival,
suggesting the prognostic value of CCDI in cancers
other than ESCC. Moreover, among these patients with
urothelial carcinoma, a larger fraction of patients in the
low-risk group gained clinical benefits from anti-PD-L1
therapy than in the high-risk group, as indicated by
the ratio of CR and PR.30 In melanoma31 and renal cell
carcinoma,32 patients in the low-risk group were more
likely to experience an anti-PD-1 response. CCDI also
showed predictive values in patients with EAC treated
with anti-PD-L1 therapy.33 These results suggest that the
CCDI can discriminate patients sensitive to ICIs from
non-responders.

In addition, we validated the relationship between
the CCDI model and immune cell infiltration based on
bulk sequencing data from ESCC. GSEA analysis
4A overexpression on cisplatin (15 μM)-caused necroptosis (l). m-n.
roliferation of ESCC cells by CCK-8 assay. o-r. The effects of over-
y transwell assay (scale bar = 5 μm) and wound healing assay (scale
iations (SD) of three independent experiments. The P value was
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Fig. 8: Validation of expression and prognostic potential of HOOK1 and CUL4A in Clinical specimens. a. Western blot results showed the
differential expression of HOOK1 and CUL4A in tumours and matched peri-tumoral tissues from 12 patients. b-c. Representative images of
immunohistochemistry (IHC) staining showing high and low expression levels of HOOK1 (b) and CUL4A (c) in peri-tumoral and tumour tissues
of indicated patients with ESCC (scale bars = 10 μm and 20 μm for 100x and 50x, respectively; n = 67). d-g. Relationship between the
expression level of HOOK1 and tissue type (d), tumour differentiation degree (e), clinical stage (f), and overall survival (g) in patients with ESCC.
h-k. Relationship between the expression level of CUL4A and tissue type (h), degree of tumour differentiation (i), clinical stage (j), and overall
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showed that immune-related pathways were mainly
enriched in the CCDI-defined low-risk group. Addi-
tionally, many immune infiltration prediction algo-
rithms disclosed differential immune cell infiltrations
between low- and high-risk groups. We also found that
patients in the low-risk group had higher immune
scores than those in the low-risk group across the
training and two validation sets. The association be-
tween the immune scores and the infiltrating leukocytes
is observed across various tumour types.51 ICIs may
show enhanced efficacy in tumours with intrinsically
high levels of infiltrating leukocytes. However, the ca-
pacity of the ESTIMATE immune scores to predict
immunotherapy response in cancer is controversial.70–74

Gao et al. observed that the low-risk group classified by a
novel pyroptosis-related signature had higher ESTI-
MATE immune scores and exhibited better responses to
ICIs than the high-risk group in oral squamous cell
carcinoma.70 In another study, Liu et al. built a prog-
nostic signature with seven colorectal cancer liver me-
tastases (CRLM)-associated genes. The low-risk group
responded more to ICI than the high-risk group. How-
ever, there was no difference in the ESTIMATE im-
mune scores between the two groups.74 In the future,
optimal predicting biomarkers should not only concern
the composition of the immune infiltrates and the
feature of the inflammatory response but also disclose
heterogeneity in immunological composition, spatial
distribution and function.75 Finally, GSVA indicated that
compared to the low-risk group, the high-risk group had
higher enrichment scores in tumour-related signalling
pathways. Overall, the differences in intratumoral infil-
trating immune cells and activities of the crucial sig-
nalling pathways may partially explain the different
responses to ICIs between the two groups.

Applications of single-cell RNA-Seq have deepened
our understanding of ESCC TME.35,76 Zheng et al.
investigated the immune landscape of the TME at
single-cell resolution. They substantiated an immuno-
suppressive environment in ESCC, such as the presence
and dominance of exhausted cytotoxic cells, regulatory T
cells (Tregs), M2 polarised macrophages, and contin-
uous progression of CD8+ T cells into an exhausted
type.35 Neoadjuvant chemoradiotherapy (neoCRT) fol-
lowed by surgery has been widely used to manage pa-
tients with locally advanced resectable ESCC. Wen et al.
found that neoCRT led to fundamental changes in the
immune portraits of TME by analysing and comparing
scRNA-seq profiles of paired pre- and post-neoCRT
ESCC specimens.76 Single-cell technologies enable
survival (k) in patients with ESCC. l. Kaplan–Meier curves for patients wi
Results of univariate and multivariable Cox analyses of characteristic clin
(logarithmic scale) in the forest plots. Differences in gene expression be
ANOVA was adopted, while three or more groups were compared. Th
Hazard ratio.
precisely dissecting dynamic changes of biological pro-
cesses, cell states, and gene expression in an individual
cell type among heterogeneous cell populations in TME.
Moreover, the dramatic advances in bioinformatic
techniques allow us to visualise the communication
among different types of cells. Using two scRNA-seq
datasets, we unveiled a complex cell communication
network in the TME of ESCC, confirming that ESCC
development and progression are inextricably linked to
immune cells and stromal cells.

Next, we analysed the functional implications of 16
CCDI genes using two scRNA-Seq datasets. Single-cell
trajectories were developed to uncover the association
between gene expression changes and cell fate de-
cisions, assuming that most cell state transitions concur
with the featured gene expression change forms.55,77

Based on single-cell RNA-Seq data, Monocle 2,
involving the ‘pseudo-temporal ordering’ algorithm, can
rank and arrange individual cells in the trajectories ac-
cording to their states during the differentiation process
and other biological process transitions.55 We performed
a pseudo-temporal developmental trajectory analysis of
tumour cells, four principal immune cells, and two
stromal cells in the TME. We found that the expression
of many CCDI genes kept changing during the differ-
entiation of tumour, immune, and stromal cells,
including PIK3R1, RPS24, VIM, CCND1, CUL4A, and
HOOK1. These results indicated that some CCDI genes
might regulate oesophageal carcinogenesis and pro-
gression and modulate immune cell function in the
TME.

We further validated the regulatory role of CUL4A and
HOOK1 in necroptosis in ESCC cells since these two
genes may regulate the malignant differentiation of
ESCC cells; the clinical relevance of the two genes were
also studied in our in-house ESCC samples. Our results
elucidated that expression levels of HOOK1 and CUL4A
are significantly down- and up-regulated in ESCC,
respectively, compared with normal tissue. The prog-
nostic values of HOOK1 and CUL4A were also
confirmed, alone or in combination. Patients with ESCC
with HOOK1high/CUL4Alow tumours survive for the
longest time and have much better survival than those
with HOOK1low/CUL4Ahigh tumours. Survival analysis
revealed that HOOK1 could be an independent protective
factor for the prognosis of ESCC, while patients with high
CULA4-expressing tumours had a poor prognosis. The
study on the relationship between HOOK1 and cancer is
very limited. However, the findings of several studies are
consistent with ours. HOOK1 is known to bind to
th ESCC with different expression patterns of HOOK and CUL4A. m.
ical factors, HOOK1 and CUL4A in ESCC. The x-axis shows the HR
tween two groups were analysed using the student t-test; one-way
e Kaplan–Meier curves were analysed using the log-rank test. HR,
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microtubules, which is implicated in dynamic changes of
the microtubule cytoskeleton, endocytic trafficking, and
cell differentiation. Cao et al. reported that patients with
thyroid carcinoma having high HOOK1 expression in
tumours displayed significantly longer OS than those
with HOOK1 low-expressing tumours.78 Two preliminary
studies confirmed the oncogenic role of CUL4A in ESCC.
Nakade et al. demonstrated that the knockdown of
CUL4A inhibited ESCC cell proliferation and led to cell
cycle arrest at the G1 phase.79 They also reported the as-
sociation of CUL4A with poor prognosis in ESCC.
Moreover, evodiamine (Evo), a small molecule extracted
from a traditional Chinese herb, was shown to cause M-
phase cell-cycle arrest in ESCC by inactivating CUL4A E3
ligase.80 Taken together, these results suggested that
HOOK1 and CUL4A contribute to tumorigenesis in
opposite directions, and these two genes can collabora-
tively predict the prognosis of ESCC. However, the effects
of HOOK1 and CUL4A on necroptosis should be further
explored.

This study has several limitations. First, the available
ESCC scRNA-seq datasets are very few and have small
sample sizes. In the future, ESCC scRNA-seq datasets
with larger sample sizes should be analysed to validate
our findings drawn from GSE196756 (n = 6) and
GSE1888900 (n = 7). Second, it should be noted that the
key effectors involved in programmed cell death path-
ways are mostly regulated at a post-translational level.
Therefore, post-translational levels of these molecules
are critical in maintaining cell functions and should be
considered. However, in this study, we screened PCD-
related genes solely depending on the RNA-seq dataset
since no corresponding proteomics data are available. In
the future, the analysis should be improved by inte-
grating RNA-seq data in combination with proteomics
data (e.g., single-cell proteomic information) when
possible. Third, at the beginning of the study, we used
univariable Cox analysis against OS to screen significant
prognostic genes from all candidate genes of 14 cell
death forms. Therefore, only genes with significant
prognostic value were maintained to develop the pre-
dictive model. As a result, genes closely related to cell
death but with little prognostic values were excluded,
such as RIPK1, RIPK3 and MLKL genes that tightly
regulate necroptosis. Fourth, although we conducted
internal and external validations for the CCDI, only two
independent validation sets were included. More eligible
ESCC data sets should be used for validation in the
future. Finally, we only validated the CCDI’s value for
immune therapy in datasets of advanced metastatic
urothelial carcinoma, ccRCC, melanoma, and EAC, and
the validation should be carried out in ESCC cohorts
treated with anti-PD (L)1 or anti-CTLA4.

In conclusion, the CCDI model could assess prog-
nosis and immunotherapy efficacy in cancer. Further-
more, HOOK1 deficiency and CUL4A overexpression in
www.thelancet.com Vol 99 January, 2024
the CCDI model contributed to ESCC development and
showed promise for predicting tumour progression.
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