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A B S T R A C T   

We estimated the population density and quantified its characteristics using remote sensing, 
census data, and Geographic Information System (GIS). The interactive influence of these factors 
on population density was quantified based on geographic detectors to identify the differentiation 
mechanisms in the Chengdu metropolitan area of China. We identified the key factors that 
contribute to population density growth. The models used to simulate population density had the 
highest R2 values (>0.899). Population density tended to increase with time, with a multicentre 
spatial agglomeration pattern; the centre of gravity of the spatial distribution tended to move 
from the southeast to the northwest. Industry proportions, Normalised Difference Vegetation 
Index (NDVI), land use, distance to urban centers or construction land, and GDP per capita can 
satisfactorily explain population density changes. The combined impact of these elements on 
population density variation exhibited mutual and non-linear strengthening, with the mutual 
effect of the two elements intensifying the impact of each individual element. Our study identified 
the key driving forces that contribute to the differentiation of population density, which can 
provide valuable support for the development of effective regional and targeted population 
planning guidelines.   

1. Introduction 

The 2020 Report on the World Population Situation highlights that the global population reached 7.75 billion in that year, 
reflecting a highly diverse state of affairs [1]. With reform and transparency, the spatial structure of China’s economic development 
has experienced profound changes [2], regional economic development is substantially differentiated, population and agglomeration 
space are markedly different, and central cities and urban agglomerations are becoming the main spatial forms of populations [3]. 
Population and spatial distributions provide important support for socioeconomic development, as the clustering of people provides 
human resources and drives demand in regional markets [4]. For the present and future development of a country, population density 
must be accurately analyzed, and corresponding population policies must be formulated [5,6]. Although censuses are an important 
source of administrative data for population distributions [7], they reflect only capture the total population within a given admin
istrative regions and do not offer location information that can accurately reflect temporal and spatial concentration and distribution 
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patterns of population [5,6]. This does not offer more precise information for developing effective regional and targeted population 
planning guidelines [5,7,8]. Population data spatialization is a method for inverting the distribution of a population in a certain time 
and space by using parameters and models that can clearly expressing the number and patterns of population [9]. Using demographic 
data or applying the kernel density method, some researchers have obtained a continuous change map of regional population density 
or have displayed demographic data by county administrative district [10–13]. In recent years, researchers have used methods such as 
area weighting [14], geographically weighted regression [15,16], and zonal density mapping [17,18] to decompose census data into 
spatial grid units and obtain gridded population data covering different regions. 

The progress of geospatial information technique has enabled remote sensing (RS) data to be extensively used in population 
drawing study due to its quick and wide range cover [5]. Nightlight data and satellite image are at present go to calculate population 
[5,6]. Researchers have utilized the Defense Meteorological Program Operational Line-Scan System (DMSP/OLS) and the National 
Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) along with population statistics to calculate the 
population of prefecture-level cities of three northeastern provinces in China [19]. The population density of the Su–Xi–Chang region 
in China was calculated by using Luojia-1A Nighttime Light data [20]. The population density of Wuhan, China, was estimated using 
Landsat Operational Land Imager (OLI) images and NPP–VIIRS light data [21]. Based on experiments in African cities, researchers 
have make sure that NPP–VIIRS data can provide more accurate population estimates than DMSP/OLS nightlight data [22]. However, 
the employ of nightlight data merely to calculate population information is undependable [5]. The establishment of a new population 
calculation method was showed with integrating land use and night light data [6]. Some researchers have utilized satellite and 
open-source GIS data, such as the WorldPop program, to simulate the global population density [23]. A random forest model was used 
to multi-source data and points of interest to calculate population patterns in impervious areas with a spatial resolution of 30 m in the 
Bohai region [9]. However, population modeling is still subject to the organization work restriction in census [24]. 

Both foreign and domestic studies have analyzed the drivers of population change [5]. By utilizing the centre of gravity analysis 
[11], spatial autocorrelation analysis, methods of centralisation index and migration [12], or multiple linear regression models [13], 
researchers have studied the evolution of spatial patterns and its influence elements of population in China from 2000 to 2020, or other 
regions like the Yangtze River Delta. Using the partial least squares (PLS) method [25,26], a spatial simultaneous equation model [27], 
or a correlation analysis method [28], the elements impacting population density of different areas in China have been quantitatively 
analyzed. The immediate and spatial overflow impact of the influencing factors on population distribution have been revealed using a 
general nesting spatial econometric model [29]. Researchers have employed spatial analysis, statistical analysis of GIS, and regression 
methods to evaluate the spatial-temporal variation features of population distributions and its impact elements in mountainous 
counties, urban agglomerations, and the Beijing–Tianjin–Hebei region [4,6,30,31]. 

Although the findings of these studies are important and have contributed substantially to the knowledge and understanding of 
changes in population distribution and its complex relationship of impacting factors, the study ways are mostly based on census and 
statistical yearbook data with the application of linear, trend, and correlation analyses [32]. Spatial heterogeneity is a presentation of 
no human influence and socio-economic procedure. Although the issue of spatial stratification difference is emphasized by both micro 
areas or huge regions research and spatial big data, statistical ways for examining spatial difference are yet deficiencies [33–35]. 

A geodetector is a new statistical ways for investigating spatial difference and uncovering its key impacting elements. An advantage 
of geographic detectors can investigate both quantitative data and type data [36]. Another unique advantage of a geographical de
tector can investigate the mutual effect between two elements [36]. We can decide whether the two elements mutual effect, such as 
intensity, orientation, linear or nonlinear of mutual effect through computing and contrasting the q values of every element and the q 
values of the two overlay elements [36–38]. This method has been widespread applied in a lot of sciences fields [36]. Therefore, this 
study used geodetector to investigate the spatial difference and patterns of population density. 

The main goals of the study were to: 1) develop a model based on DMSP-OLS, NPP-VIIRS data, and NDVI for simulating population 
density at the county scales, as well as the map population density to uncover spatial-temporal schema and features; 2) identify the 
main factors in the spatial differentiation of population density; 3) detect mutual effect of elements in the spacial difference of pop
ulation density; and 4) identify the features and range of main elements in the spatial difference in population density change. Our 
research consequence and calculation methods can supply significance demographic information and method help of regions that lack 
population data. 

2. Study area 

Chengdu metropolitan area is located in the Chengdu Plain Economic Zone at 29◦23′49′′N–31◦41′50′′N and 
102◦23′49′′E− 105◦45′7′′E. This region has the most thriving economic development, strongest innovation capacity, and highest de
gree of openness in China. Chengdu metropolitan area has a resident population of about 2966 × 104 people. The city of Chengdu 
comprises three cities (Deyang, Meishan, and Ziyang), as well as 35 districts, county-level cities, and counties. It covers an area of 
33,100 km2. Additionally, the total economic volume of the Chengdu metropolitan area accounted for more than 10% of China in 
2020. Longmen Mountains in northwestern Chengdu metropolitan area belong to the Minshan-Qionglai Ecological Function Protec
tion Zone. The topography is dominated by low-altitude hills, plains, terraces, and rolling mountains. The soil primarily soil types 
include acidic purple, paddy, and bleached yellow. Plant life is composed of cultivated vegetation (paddy and upland field rotations, 
evergreen orchards, and subtropical economic forests), subtropical coniferous forests, and subtropical evergreen and deciduous 
broadleaf mixed forests. The land use is mainly arable (non-irrigated and paddy), forestland, and construction land. Chengdu 
metropolitan area belongs to subtropical monsoon climate, and its climate features is early spring, hot summer, cool autumn and warm 
winter, with an AAT of 16 ◦C and AAP of about 1000 mm. Owing to vertical height differences, it has vertical climate zones with 
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obvious variations in heat; thus, it has rich, diverse, and concentrated biological resources and a varied natural ecology. 

3. Data sources and methods 

3.1. Data sources 

The data used in this study included RS images and auxiliary data. RS images included DMSP-OLS, NPP-VIIRS, and the NDVI. 
Auxiliary data covered DEM, land use types, statistical yearbook data, and administrative district boundary (Table 1). The study data 
are unified into WGS1984 projection coordinates and GCS_WGS_1984 geographic coordinates.  

(1) DMSP-OLS and NPP-VIIRS data were obtained from Earth Observation Group (http://ngdc.noaa.gov/eog/). The pixel gray 
values of DMSP-OLS data and NPP-VIIRS data is range from 0 to 63, with a spatial resolution of about 1000 m and 500 m, 
respectively [39].  

(2) DEM, Landsat 5/8 images, weather data, and geomorphological data were obtained from the Resource and Environmental 
Sciences Data Center of the Chinese Academy of Sciences (http://www.resdc.cn). Land use data were extracted from Landsat 8 
remote sensing images.  

(3) The NDVI data were obtained from MOD13Q1 in NASA (https://www.nasa.gov/), with a spatial resolution of 250 m. The 
MODIS Reprojection Tool was applied to convert the sinusoidal projection of the MODIS MOD13Q1 product into a Universal 
Transverse Mercator projection, with the projection coordinate system set to WGS_84. The annual NDVI was synthesized ac
cording to the maximum synthesis method.  

(4) Distance, road, farmland, forestland, grassland, construction land, and water, as well as TOR and land use, were obtained using 
GIS technology. The GDP density, population density, PPI,PSI,PTI, and IEE data were obtained from the Sichuan Statistical 
Yearbook (2001–2021), spatialized using GIS.  

(5) Administrative district vector map include 1:1 million Chinese counties, townships, and town-level vector boundary, obtained 
from the National Geomatics Center of China (http://www.ngcc.cn). 

3.2. Methodology 

3.2.1. Processing of DMSP-OLS and NPP-VIIRS data 
RS image processing includes the correction of DMSP-OLS and NPP-VIIRS, and mutual correction of two types of nighttime light 

data [5]. This study used various methods, such as correction for continuity, oversaturation correction, and regression fitting, to 
correct the 2000 and 2010 DMSP-OLS and 2020 NPP-VIIRS [40–43]. To minimize projection distortion, the projection was converted 
to an Albers projection for China; the spatial resolution was uniformly resampled to 1 km by bilinear interpolation. Due to the 
saturation problems in core cities and bright areas, DN anomalies in the DMSP/OLS and NPP/VIIRS were eliminated based on band 
math in ENVI 5.3 [44,45]: (DN lt − 63) × 0 + (DN gt 63) × 0 + (DN ge − 63 and DN le 63) × DN. The maximum image value of Chengdu 
area was used to remove the DN value of extremely bright isolated pixels in the night RS data [45]. Therefore, a data set expressing the 
natural surface light strength was established. 

Table 1 
Factors indicators.  

Category Code Index Abbreviation Unit Resolution 

Economics x1 GDP density – RMB yuan/km2 30 m  
x2 GDP per capita GDPC RMB yuan/person 30 m  
x3 Proportion of primary industry PPI % 30 m  
x4 Proportion of secondary industry PSI % 30 m  
x5 Proportion of tertiary industry PTI % 30 m  
x6 Investment in real estate IEE 104 RMB yuan 30 m 

Location x7 Distance to urban centers DUC m 30 m  
x8 Distance to road DRO m 30 m  
x9 Distance to farmland DFR m 30 m  
x10 Distance to forestland DFO m 30 m  
x11 Distance to grassland DGR m 30 m  
x12 Distance to construction land DCOL m 30 m  
x13 Distance to water DWA m 30 m 

Environment x14 Elevation – m 30 m  
x15 Topographic relief TOR ◦ 30 m  
x16 Geomorphy – types 1 km  
x17 NDVI – – 250 m  
x18 Annual average temperature AAT ◦C 1 km  
x19 Average annual precipitation AAP mm 1 km  
x20 Land use degree index LUDI – 30 m  
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3.2.2. Population density estimation model 
There are many methods to simulate spatialization of socioeconomic data through night-time lights and NDVI, include linear 

regression, logarithmic regression, and second-order regression [46]. In these equations, linear regression equations are more precise 
and easier to come true [47]. An precise regression equations for simulating population density was constructed by examining the 
correspondence between population density and three indicators: mean nighttime light data, mean NDVI, and their ratio (m). The 
model is suitable for calculating population density based on high R2 values and good F-test values; this population density dataset is 
referred to as the statistical population density. Pixel-level population density was calculated using raster calculators in GIS or Band 
math in ENVI 5.3 based on the calculated model and spatial raster layer data (mean nighttime light data and mean NDVI). The 
regression equations was utilized in this research to estimate population density as follows: 

pd = a × x1 + b × x2 + c × x3 + d (1)  

x3 =
n1

n2
(2)  

where pd is the population density of the statistical counties; x1 is the mean value of nighttime lights; x2 is the mean NDVI; x3 is the 
ratio of mean nighttime lights to the mean NDVI; n1 is the night-time lights value of the statistical county; n2 is the NDVI value of the 
statistical counties; a, b, c, and d are regression coefficients and intercepts, respectively. 

3.2.3. Spatial autocorrelation method 
Spatial correlational analysis is applied to examine the interdependent degree in data at different location [47]. Global Moran’s I is 

a synthetically detection of spatial autocorrelation across the research region. It was calculated to detection if the spatial patterns of the 
population density was collective, scatter, or stochastic [48–50]. The calculation of the global Moran’s I (Moran, 1950) is as follows 
[45]: 

I =
n
s0

×

∑n
i
∑n

j wij(xi − )
(
sj−

)

∑n
i (xi− )

2 (3)  

where n is the number of townships in the research region, xi, xj are the surveyed values of the spatial vector boundary units, 
respectively, x is the mean of the investigations, wij is the spatial weight matrices, and S0 is the sum of the spatial weight matrix. 

Global Moran’s I was applied to check spatial correspondence, with values is ranging of − 1 and 1. If Moran’s I > 0, it showed a 
positive spatial relativity in population agglomeration between regions. The higher the value, the greater the magnitude of positive 
relativity. If Moran’s I < 0, there was a negative relativity with a diffuse spatial patterns. The lower the value, the greater the degree of 
negative correspondence. 

Local Moran’s I was used to discern the locations of the spatial collective and spatial scatter at the township level [48]. Local 
Moran’s I of the spatial relativity is as follows: 

Ii =
xi−

s2

∑n

j=1,j∕=i
wi,j

(
xj −

)
(4)  

where xi is the population density of the spatial vector boundary units i, i.e., the population density, X is the mean of the population 
density, wi,j is the spatial weight between the vector boundary units i and j, and there is: 

S2
i =

∑n
j=1,j∕=i

(
xj−

)2

n − 1
(5)  

where n is the number of spatial vector boundary units in the research region. 

3.2.4. Hotspot analysis 
Global spatial autocorrelation analysis was applied to discern whether the population density was spatially collective; but it did not 

reflect the specific location of the collective area. The Getis-Ord G*I statistic was calculated applying for hot pints analysis method to 
assess where the spatial collective of high and low values of population density elements occurrences [48], population density element 
values [45,48]. The G*I statistics are expressed as: 

G∗
i =

∑n
j=1wi,jxj −

∑n
j=1wi,j

S

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

n
∑n

j=1w2
i,j −

(∑n
j=1wi,j

)2
]√ (6)  

where xj is the population density of the spatial vector boundary units i, i.e., the population density, X is the mean of the population 
density, wi,j is the spatial weight between vector boundary units i and j, and n is the number of spatial vector boundary units in the 
research region, and there is: 
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S=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
j=1x2

j

n
− (X)2

√

(7)  

where the Gi* statistic is the Z score. 

3.2.5. Geographical detector 
Geographic detectors are a spatial statistical model used to discern spatial non uniformity and recognize the key impact elements 

applying for risk, ecological factors, and spatial mutual effect [33]. 

3.2.5.1. Detection of spatial heterogeneity and factors. This is applied to discern the spatial non uniformity of the population density and 
extent to which the detection elements make clear the spatial non uniformity of the attribute population density. First, a spatial overlay 
analysis of the population density layer with the factor layer was conducted. Second, the different spatial classes of the factors were 
partitioned or classified. Third, significance tests of the differences in factor means were verified to discern the comparatively sig
nificance of the factors. The method used to calculate the interpretation power (p) of the factors [33] was as follows: 

p= 1 −

∑L

h=1
Nhσ2

h

Nσ2 = 1 −
SSW
SST

(8)  

where the range of p-values is [0, 1], with larger values make clear higher interpretation power for the elements on population density; 
h = 1, …, L is the types or division of the variable (Y) or elements (x); Nh and N are layer h and the number of regional vector boundary 
units, respectively; σ2

h and σ2 are the variance of Y values for layer h and the study area, respectively; SSW and SST are the sum of 
variance within the layer and total regional variance, respectively [45]. The variance of the regional Y values is calculated as follows: 

σ2 =
1

N − 1
∑N

i=1
(Yi− )

2 (9)  

where Yj and are the value of sample j and the average value of region Y, respectively. 

3.2.5.2. Factor interaction detection. To identify interactions between different factors, interaction detection was employed [33]. This 
method allowed us to assess how different factors, both individually and in combination, influenced changes in population density. 
First, we calculated p-values for each of the two population density factors being analyzed. Second, the p-values of the factor in
teractions were calculated; p (xi) and p (xj) were compared with p (xi∩xj). 

3.2.5.3. Detection of risk zones. Risk detection is applied to determine whether there is a remarkable difference in attribute average 
values between two elements’ sub-regions [33]. It is used to search for areas with high population density. The t-statistic is applied to 
test risk: 

t=
Yh=1− Yh=2

[
Var(Yh=1)

nh=1 +
Var(Yh=2)

nh=2

]1/2 (10)  

where Yh denotes the average values of population density in sub-region h, nh denotes the number of samples in sub-region h, and Var 
denotes the variance (Wang et al., 2010). 

3.2.5.4. Ecological detection. Ecological detection is applied to determine whether there is a remarkable difference in the effect of two 
elements, xi and xj, on the spatial patterns of the population density [33]. This can determine whether xi has a more remarkable effect 
on the spatial patterns of the population density than that of xj. Whether there is a remarkable diversity in the effect of factor xi over xj 
on the spatial patterns of population density is measured by the F-statistic [33]. 

F =
Nxi ×

(
Nxj − 1

)
× SSWxi

Nxj × (Nxi − 1) × SSWxj
(11)  

SSWxi =
∑Li

h=1
Nhσ2

h (12)  

where Nxi and Nxj are the specimen size of the two elements [33]; SSWxi and SSWxj are the total square deviation within layers formed 
by the two elements, respectively [24]; and Li and Lj are the number of layers for variables xi and xj, respectively. 
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4. Results 

4.1. Estimation model analysis 

We examined the correspondence between population density and three indicators: the mean nighttime light data, mean NDVI, and 
ratio (m). The results showed that the correlation coefficients were 0.954, − 0.933, and 0.972 in 2000; 0.885, − 0.955, and 0.949 in 
2010; and 0.779, − 0.907, and 0.876 in 2020, respectively (Table 2). The level of correspondence between the variables was found to 
be quite high and passed a remarkable test at the 0.001 level. This indicates that the data can be used effectively for spatial modeling of 
population density. We established the equation between the population density and mean nighttime light data, mean NDVI, and ratio 
(m) (Table 2). Table 2 indicates that the linear regression model had high R2 values and good F-test values, indicating that it could 
model population density based on statistical analysis. 

We created a scatter plot of statistical versus simulated population densities (Fig. 1). According to Fig. 2, the population density 
estimated integrating the DMSP-OLS and NPP-VIIRS data and the statistic population density had a high value (R2 > 0.899), showing 
that DMSP-OLS and NPP-VIIRS data are relatively effective at simulating population density. These consequence show the possibility 
of using DMSP-OLS and NPP-VIIRS data to estimate the population density. 

4.2. Spatial patterns of population density 

The region with the highest population density in the Chengdu metropolitan area was determined to be mainly in the central 
districts of the city and adjacent districts. The density of population was low in northwest mountain region, far from the county-level 
administrative centers (Fig. 3). The spatial pattern showed polycentric spatial agglomeration dominated by the provincial capital of 
Chengdu, with population density decreasing from the center of Chengdu to adjacent districts, as well as from the core centers of cities 
in peripheral areas to their surrounding areas (Fig. 3). 

4.3. Spatial autocorrelation characteristics 

The global Moran’s I was 0.842534 in 2000, 0.929473 in 2010, and 0.939337 in 2020 (Fig. 4). The make clear that the spatial 
patterns of the population density had a positive spatial self-correlation. The Moran’s I values indicated an increasing trend, indicating 
that the degree of spatial correlation of the population density tended to increase and that cities with similar population densities 
tended to be more spatially concentrated. According to Fig. 4, the z-scores of 59.462, 65.343, and 65.864 at the same time intervals 
were significantly greater than 1.65. All of the p-values were 0.000; the confidence levels were greater than 95%, indicating that the 
spatial patterns of the population density observed using the spatial autocorrelation tool had notable clustering features and a spatially 
positive correlation pattern. 

The Chengdu metropolitan area showed local spatial clustering of high observed values for the population density from 2000 to 
2020 (Fig. 5), with small spatial differences in the population density and high population density in the regions themselves and 
surrounding towns and townships with a high population density. According to Fig. 5, in 2000, high population density agglomeration 
was distributed in most of central city regions in Chengdu成都的中心城区the central urban area of Chengdu. In 2010, it was distributed 
in the central urban area of Chengdu and neighboring Pidu, the southeast of Wenjiang, and the northern region of Shuangliu in 2020. 
The agglomeration and distribution of high density of population further expanded in the central city of Chengdu and the southeastern 
neighboring Pidu; southeast and the western Wenjiang; the northern area and the southwestern Shuangliu; the west, southeast, and 
northeast of Xindu; and west and southwest of Longquanyi. 

According to Fig. 6, Chengdu center and adjacent regions in 2000 formed a significant hotspot distribution region; the population 
density of these areas showed a high population aggregation distribution at a remarkable level of 99%. The hot spot map of the 

Table 2 
Population density estimation model parameters.   

Coefficient 95% Confidence interval      

2000 B Lower limit Upper limit Correlation R2 Adjusted R2 F Sig. F 
(constant) 2271.213 − 1025.642 5568.069  0.954 0.950 216.771 0 
x1 − 75.384 − 150.531 − 0.238 0.954     
x2 − 2586.317 − 7472.346 2299.711 − 0.933     
x3 63.04 33.656 92.424 0.972     
2010 B Lower limit Upper limit Correlation R2 Adjusted R2 F Sig. F 
(constant) 3062.861 − 4080.925 10206.647  0.952 0.947 203.131 0 
x1 − 121.058 − 173.589 − 68.527 0.885     
x2 − 3571.42 − 13318.872 6176.032 − 0.955     
x3 86.666 51.387 121.945 0.949     
2020 B Lower limit Upper limit Correlation R2 Adjusted R2 F Sig. F 
(constant) 2597.537 − 15304.71 20499.784  0.899 0.889 91.937 0 
x1 − 321.555 − 456.618 − 186.491 0.779     
x2 − 2883.213 − 25479.339 19712.913 − 0.907     
x3 223.29 119.695 326.885 0.876      
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population density in 2010 showed that high and low values of population density were mainly concentrated in one large hot spot and 
four large cold spots. The central and adjacent areas of Chengdu City formed a significant hot spot distribution, indicating that the 
population density of these areas showed a high population aggregation distribution at a remarkable level of 95–99% (Fig. 6). The 
population densities of Anyue in the southeast, Renshou in the south, and Qionglai in the northwest showed a low population ag
gregation distribution at a significance level of 99% while the population densities of the northeast, east, southwest, and west showed a 
low population aggregation distribution at a remarkable level of 95%. In 2020, the high and low population density were majorly 
centralized in one large hot point area, six large cold spot areas. The center, adjacent areas, and peripheral areas of Chengdu formed a 
significant hotspot distribution; the range was further expanded, indicating that the population density of these areas showed a high 
population aggregation distribution at a remarkable level of 95–99% (Fig. 6). The population densities of Shifang and Mianzhu
jingyang in the north; Anyue Jianyang, Zhongjiang, and Renshou in the southeast and south; and Qionglai and Dayi in the west showed 
a low population aggregation distribution at a significance level of 99%. Compared to 2000 and 2010, the range of high population 
density showed a rapid diffusion trend. Compared with 2010, the density of population in the area of the northeast, east, south, 
southwest, and west in study region showed a low population aggregation distribution at a significance level of 90%, but the range 
showed a rapid decreasing trend (Fig. 6). 

4.4. Distribution ellipse of population density 

Following the calculation method [48], we plotted and calculated the population density standard deviation ellipse (Fig. 7) and its 
parameters (Table 3). According to Fig. 7 and Table 3, the range of the population density standard deviation ellipse was larger in 2000 
than that in 2010 and 2020. The flattening indicates the degree of definiteness and centripetal force of population density changes. The 
flattening of the ellipse in 2020 was lower than that in 2010 and 2000, indicating that the development of population density in 2020 
had a more pronounced trend than those in 2000 and 2010. The change in the spatial rotation angle showed that the rotation angle 
increased from 125◦6′6′′ in 2000 to 128◦29′52′′ in 2020 (Table 3); the generated ellipse direction was consistent with the direction of 
population aggregation in Chengdu. The gravity centre of for the spatial patterns of population density in the research period generally 
showed a trend of moving from the southeast to the northwest between 2000 (30◦36′4′′N, 104◦9′21′′E) and 2020 (30◦38′8′′N, 
104◦4′52′′E). The semi-major axis decreased from 53.236 km in 2000 to 33.306 km in 2020 (Fig. 6 and Table 3). Both decreases were 
relatively large, indicating that the spatial patterns of the population density was increasingly clustered in main direction; the degree of 
clustering was not large. The semi-minor axis decreased from 42.094 km in 2000 to 29.618 km in 2020. The shortening of long axis and 
short axis of the ellipse indicated that spatial distribution of the population density was more clustered during this period, dominated 
by a southeast-to-northwest spatial distribution pattern (Fig. 7). 

Fig. 1. Location of the study area.  
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4.5. Detection factor influence 

The impact of various factors on variation in population density was found to be statistically significant (P < 0.01). Among the 
variables examined, tertiary industry, NDVI, and LUDI had the highest q-values of 0.5059, 0.4807, and 0.4421, respectively, indicating 
that they were the most influential factors. Specifically, these variables were able to explain 50%, 48%, and 44% of the changes in 
population density, respectively, as shown in Table 4. The q-values of the PPI, PSI, DCOL, GDPC, and DUC were 0.3966, 0.3895, 
0.3334, 0.2849, and 0.2328, respectively; their interpretation level were all above 23%.The q-values of the GDP density, landform, 
AAT, and IEE were 0.1596, 0.1486, 0.1277, and 0.1196, respectively, with explanatory powers above 11%. 

Although individual factors, such as elevation, DFO, AAP, DFR, DRO, TOR, DGR, and DWA, had low explanatory power, all less 
than 0.08, they synergize with other important factors and display a non-linear or mutually reinforcing effect, which has a greater 
impact on population density changes. 

Therefore, the PTI, NDVI, LUDI, PPI, PSI, DCOL, GDPC, and DUC were identified as important factors affecting changes in the 

Fig. 2. Accuracy evaluation between the calculated population density and statistics population density at the county scale by linear regression 
analysis equation (person/km2). 
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Fig. 3. Spatial patterns of population density using the DMSP-OLS and NPP-VIIRS data (unit: person/km2).  

Fig. 4. Results of the spatial auto-correlation analysis of population density (left: 2000; right: 2010; bottom: 2020).  
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population density. 

4.6. Analysis of interaction between factors 

The interplay between the factors demonstrated non-linear enhancing associations and mutually reinforced effects, with the 
interaction effects primarily boosting each other; no factors acted independently of each other (Fig. 8, Table 5). The diagonal line in 
Fig. 8 signifies the impact of a single factor, while the q-values for 52% and 48% of the interaction factors were either greater or lesser 
than the q values of the single factors, respectively. According to Table 5, the interaction of most factors impacting the population 
density indicated an enhancement effect on each other, whereas the interaction of a few factors indicated a nonlinear enhancement 
effect. First, x2∩x19 (0.620) > x2∩x2 (0.608) > x2∩x5 (0.570) > x2∩x20 (0.569) > x2∩x13 (0.563) > x2∩x7 (0.445) > x2∩x3 (0.453), 
indicating that the interactions between the GDPC and major factors such as the PPI, PSI, PTI, DUC, DCOL, NDVI, and LUDI 
demonstrated mutually reinforcing effects; Second, x3∩x19 (0.692) > x3∩x20 (0.656) > x3∩x5 (0.618) > x3∩x7 (0.563) > x3∩x4 (0.560), 
the PPI demonstrated mutually enhancing effects with major factors such as NDVI, LUDI, PTI, DCOL, DUC, and PSI, indicating strong 
interplay between these factors. Third, x4∩x20 (0.641) > x4∩x13 (0.547) > x4∩x7 (0.438), indicating that the interactions between the 
PSI and the major factors of the NDVI, LUDI, DCOL, and DUC showed mutually reinforcing effects; Fourth, x5∩x19 (0.704) > x5∩x20 
(0.674) > x5∩x19 (0.627) > x5∩x13 (0.606), showing that the interactions between the PTI and major factors such as the LUDI, NDVI, 
and DCOL show mutually reinforcing effects. Finally, x4∩x19 (0.680) > x3∩x13 (0.561), showing that the interactions between the PSI 
and major factors such as the NDVI, PPI, and DCOL generated a nonlinear increase impact. 

4.7. Analysis of significant differences in detection factors 

The impact of the PTI on the spatial distribution of population density differed significantly from that of GDP density, GDPC, PPI, 

Fig. 5. Spatial clustering of density of population at the township level.  

Fig. 6. Hotspots of the population density at the town and township scale.  
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and PSI. However, no significant difference was evident in the effect on the population density distribution with the remaining factors, 
including DUC, DCOL, NDVI, and LUDI (Table 6). Table 4 indicates that the influence of NDVI and LUDI on the patterns of population 
density differs significantly from that of all other factors, except for the PTI and GDP density. Additionally, Table 6 demonstrates that 
the effect of the LUDI on population density patterns varies notably from that of all other factors, except for the PTI and NDVI. Table 6 
reveals that the impact of the PPI and PSI on population density patterns did not differ significantly from that of all other factors, except 

Fig. 7. Center and distribution ellipse of the population density distribution during 2000–2020 (CPD is center of the population density distribution; 
EPD is ellipse of the population density distribution). 

Table 3 
Standard deviation ellipse parameters of the population density from 2000 to 2020.  

Year Center x Center y Perimeter/km Area/km2 x StdDist/km y StdDist/km Rotation 

2000 104◦9′21′′E 30◦36′4′′N 300.508 7039.723 53.236 42.094 125◦6′6′′

2010 104◦4′20′′E 30◦37′38′′N 270.460 5726.529 47.401 38.457 125◦55′34′′

2020 104◦4′52′′E 30◦38′8′′N 197.850 3098.937 33.306 29.618 128◦29′52′′

Table 4 
The q-values for different impact factors.  

Factor q Statistic p-Value Factor q Statistic p-Value 

x1 0.15957 0.000 x11 0.01322 0.000 
x2 0.28486 0.000 x12 0.01125 0.000 
x3 0.39660 0.000 x13 0.33338 0.000 
x4 0.38948 0.000 x14 0.08007 0.000 
x5 0.50593 0.000 x15 0.02640 0.000 
x6 0.11958 0.000 x16 0.14863 0.000 
x7 0.23280 0.000 x17 0.12766 0.000 
x8 0.03715 0.000 x18 0.05913 0.000 
x9 0.04057 0.000 x19 0.48072 0.000 
x10 0.06987 0.000 x20 0.44208 0.000 

Note: the p-value represents the level of significance of a statistical test. A smaller p-value indicates stronger evidence against the null hypothesis, and 
therefore a higher degree of confidence in the inference that a certain factor or variable has an impact on the dependent variable. x has an impact on 
the dependent variable y. *p < 0.05 is considered significant, **p < 0.01 is considered highly significant. 
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for the PTI, NDVI, and LUDI. The influence of DCOL on population density distribution differed significantly from that of the PTI, 
NDVI, GDPD, GDPC, LUDI, DUC, DFR, DRO, DFO, DGR, and DWA. The remaining factors did not exhibit any significant differences in 
their impact on population density. However, the effects of GDPC, PPI, PSI, and PTI, DCOL, and NDVI were notably distinct on the 
population density patterns. Nonetheless, there were no significant differences in the effects of the remaining factors. The effects of 
DUC on population density distribution differed significantly from those of GDP density, LUDI, DCOL, PTI, and NDVI. However, there 
were no significant differences compared to the effects of the remaining factors. 

4.8. Risk test of factors 

The risk test outcomes indicate how population density responds to variations in a specific factor. The study found that changes in 
population density were notably distinct across different levels of the graded factor. Additionally, the results were statistically sig
nificant with a confidence level of 95% (Fig. 9a–c). 

Based on Fig. 3a, the population density exhibited a declining trend as the PPI and PSI increased, with both factors reaching their 
maximum values at the first level (0–3.58% and 0–19.07%) of 8133 and 15,058 persons/km2, respectively. With the PTI, GDP density, 
and GDPC increased, the population density showed a U-shaped trend, reaching a maximum at the 9th level (75.87–88.56%, 1879.124 
× 108–2792.375 × 108 yuan, and 12.745 × 104 to 15.761 × 104 yuan) for 15,437, 12,126, and 7487 persons/km2, respectively. The 
population density tended to increase with an increase in real estate investment, reaching a maximum value at the 8th level (148.6872 
× 108 to 190.6531 × 108 yuan) for 5547 persons/km2. 

Fig. 8. Thermal diagram of the interaction of influencing factors.  

Table 5 
Interactions between the major elements that influence changes of the population density.  

C A + B Result Interpretation C A + B Result Interpretation 

x2 ∩ x3 = 0.453 <0.681 = x2 + x3 C > A + B ↑ x4 ∩ x7 = 0.438 <0.622 = x4 + x7 C < A + B ↑ 
x2 ∩ x4 = 0.608 <0.674 = x2 + x4 C > A + B ↑ x4 ∩ x13 = 0.547 <0.723 = x4 + x13 C < A + B ↑ 
x2 ∩ x5 = 0.570 <0.791 = x2 + x5 C > A + B ↑ x4 ∩ x19 = 0.680 >0.449 = x4 + x13 C > A + B ↑↑ 
x2 ∩ x7 = 0.445 <0.518 = x2 + x6 C < A + B ↑ x4 ∩ x20 = 0.641 <0.832 = x4 + x20 C < A + B ↑ 
x2 ∩ x13 = 0.563 <0.618 = x2 + x7 C > A + B ↑ x5 ∩ x7 = 0.627 <0.739 = x5 + x7 C < A + B ↑ 
x2 ∩ x19 = 0.620 <0.766 = x2 + x8 C < A + B ↑ x5 ∩ x13 = 0.606 <0.839 = x5 + x13 C < A + B ↑ 
x2 ∩ x20 = 0.569 <0.727 = x2 + x3 C > A + B ↑ x5 ∩ x19 = 0.704 <0.987 = x5 + x9 C < A + B ↑ 
x3 ∩ x4 = 0.560 <0.786 = x3 + x4 C > A + B ↑ x5 ∩ x20 = 0.674 <0.948 = x5 + x10 C < A + B ↑ 
x3 ∩ x5 = 0.618 <0.903 = x3 + x5 C < A + B ↑ x7 ∩ x13 = 0.233 <0.566 = x7 + x13 C < A + B ↑ 
x3 ∩ x7 = 0.563 <0.629 = x3 + x6 C < A + B ↑ x7 ∩ x19 = 0.538 <0.714 = x7 + x14 C < A + B ↑ 
x3 ∩ x13 = 0.561 >0.434 = x3 + x7 C > A + B ↑↑ x7 ∩ x20 = 0.506 <0.675 = x7 + x20 C < A + B ↑ 
x3 ∩ x19 = 0.692 <0.977 = x3 + x8 C < A + B ↑ x13 ∩ x19 = 0.585 <0.814 = x13 + x19 C < A + B ↑ 
x3 ∩ x20 = 0.656 <0.839 = x3 + x9 C < A + B ↑ x13 ∩ x20 = 0.557 <0.776 = x13 + x20 C < A + B ↑ 
x4 ∩ x5 = 0.618 <0.903 = x4 + x5 C < A + B ↑ x19 ∩ x20 = 0.565 <0.923 = x19 + x20 C < A + B ↑ 

Note: “C” denotes the interplay between two factors, xi∩xj; “A + B” denotes the addition of two factor q-values (q(xi)+q(xj)); “↑” denotes that xi and xj 
enhance each other; “↑↑” denotes a nonlinear enhancement of xi and xj. 
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Table 6 
Statistical significance of the detection factors at the 95% confidence level.  

Factors x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 

x1                     

x2 Y                    
x3 Y Y                   
x4 Y Y N                  
x5 Y Y Y Y                 
x6 N N N N N                
x7 Y N N N N Y               
x8 N N N N N N N              
x9 N N N N N N N N             
x10 N N N N N N N Y Y            
x11 N N N N N N N N N N           
x12 N N N N N N N N N N N          
x13 Y Y N N N Y Y Y Y Y Y Y         
x14 N N N N N N N Y Y N Y Y N        
x15 N N N N N N N N N N N N N N       
x16 N N N N N Y N Y Y Y Y Y N Y Y      
x17 N N N N N N N Y Y Y Y Y N Y Y N     
x18 N N N N N N N Y Y N Y Y N N Y N N    
x19 Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y   
x20 Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y N  

Note: Y implies that there are noteworthy differences between the two factors’ NDVI, with a 95% confidence interval. N indicates no significant difference between them. 
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Fig. 3b illustrates that there is a negative correlation between population density and DUC, DRO, and areas of construction land, all 
of which reached their maximum values at the 1st level (0–6,737, 0–726, and 0–3842 m) for 5,927, 5,971, and 2663 persons/km2, 
respectively. The population density showed a changing trend from increasing to decreasing as the DFR, DGR, and DWA increased, 
reaching maximum values at the 2nd (806–2555 and 1345–3027 m) and third (2823–4720 m) levels for 3,833, 2,298, and 2101 
persons/km2, respectively. The population density tended to increase with an increasing DFO, reaching a maximum of 3370 persons/ 
km2 at the 6th level (3722–4925 m). 

According to Fig. 3c, the population density tended to decrease with changes in geomorphic and TOR and an increasing NDVI, 
reaching maximum values at the 1st level (plain, 0–0.08, and 0.42) for 4,227, 2,183, and 11,691 persons/km2, respectively. The 
population density tended to increase and then notably decrease with changes in the AAT and LUDI, reaching maxima at the 7th 
(16.72–17.12 ◦C) and 8th (0–114.29) levels for 4242 and 9757 persons/km2, respectively. As elevation and AAP change, the 

Fig. 9. Population density according to the influence of factors and their levels.  
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population density showed an increasing to decreasing trend, with factors reaching their maximum values at the 2nd (465–618 m) and 
3rd (564.79–602.44 mm) levels for 3122 and 3183 persons/km2, respectively. 

5. Discussion 

Our simulation of population density features was based on established comparative DMSP/OLS and NPP-VIIRS nightlight data. 
This study has particular reference significance for population density estimation via remote sensing at the metropolitan area scale. 
However, certain problems require further investigation [40]. First, the two types of nightlight data used in this study were constructed 
at the county and raster scales. The ability to fit two types of nightlight and explore the optimal scale remains a problem [40,51]. 
Therefore, coordinating the advantages of the two types of data while accounting for population growth and increases in nighttime 
light brightness is a significant challenge in simulating population densities using nighttime light data [41]. Secondly, the rise in 
nighttime light intensity follows a roughly linear pattern, but since nighttime light data do not capture the economic activity of human 
society during daylight hours, they are incomplete [40,52]. Accurate measurement of changes in population activity using nightlight 
data requires more in-depth research [41]. 

The coupling of multiple data sources and technologies, such as remote sensing and GIS, has transformed the manner in which the 
distribution of human populations is examined in space and time [24]. At present, available statistical data use ‘year’ as the unit of 
time, which yields a low temporal resolution for spatial population data based on statistical data simulations. In this study, processing 
nighttime light data based on NDVI data helped to address the issue of spatial spillover of light [53], eliminates the interference of 
non-residential light in population simulations, and improves the population difference between grids with the same or similar light 
values. This study overcomes the limitations of traditional statistical data, which may suffer from inconsistencies in calibre, missing 
data, and low update frequency [54,55], by providing data sources that allow for the analysis of the spatial patterns of various eco
nomic indicators and enable fine-grained assessments of population activity levels at different scales [56]. 

A substantial correlation exists between regional population changes and the economic development level [57]. As the economy 
advances, wages and living conditions improve, making the region more appealing, resulting in increased population. The findings 
align with the outcomes documented by Qi et al. [57], Liu et al. [58], and Wang et al. [59]. The PTI, and PSI, as well as GDPC, were 
found to be highly correlated with population density, with correlation coefficients of 0.968, 0.894, 0.918, and 0.813, respectively. All 
fitted equations were quadratic polynomial equations. With an increase in the PTI, good infrastructure and comfortable living con
ditions also affect the investment environment of the city, leading to population aggregation and an increase in population density. 
According to the fitted equation, when the PTI is below 55.06%, population density exhibits a decreasing trend at first, but once the 
proportion exceeds 63.62, it sharply increases. When the PTI, and PSI increases, the population density decreases. With GDPC 
exceeding 84,834 yuan per person, population density continues to increase. Therefore, economic development brings about further 
population aggregation, resulting in economic aggregation [57]. 

The extent of land use measures the influence of human activities on the land system. It quantitatively describes the overall level 
and changes in land use, serving as a critical indicator for assessing the land use status in a specified region. Population density is highly 
correlated with the LUDI, with a correlation coefficient of 0.627. The fitted equation is a power function equation. As land use practices 
continue to evolve and cultivated land is transformed into construction areas (such as industrial, mining, transportation, and resi
dential areas), the population density on construction land substantially increased. These findings align with the outcomes docu
mented by Guo et al. [60]. 

The city serves as a hub for population concentration in the region, which has an economic agglomeration effect [61]. The 
development of urban economic agglomeration is accompanied by a large-scale influx of population [62]. The DUC reflects the ra
diation and driving effect of the economic and transportation infrastructure, which attracts migrants and influences the population 
density. Population density has a high correlation (− 0.667) with DUC. With an increase in DUC, the population density shows a 
downward trend. These findings align with those researched by Zhao et al. [61]. An increase in human mouth density has a negative 
effect on NDVI [63]. As the population concentration increases, there is a notable reduction in NDVI. The correlation coefficient 
between population density and NDVI was − 0.821, indicating a strong negative correlation. This suggests that human activities have a 
constraining impact on NDVI. Areas with high population densities show strong human activity and serious damage to vegetation 
resources [64]. Therefore, in areas with high population density and intense human activities, NDVI showed a marked decrease, which 
was negatively correlated, in line with findings by Xu et al. [63] and Zhao et al. [64]. 

The proximity of construction land has a significant influence on urban land use as it represents the cost of land development and 
impacts urban infrastructure and real estate, thereby influencing population concentration. Population density had a strong corre
lation (− 0.635) with the DCOL. As the DCOL increased, a decrease in population density was observed. However, the relationship 
between the size of construction land and population patterns is not a simple linear correlation, as found by Dong et al. [65]. 

The results of this study indicate that geographic detectors can effectively identify drivers and capture spatial heterogeneity. While 
there are numerous classification algorithms, such as K-means and SOM, available for partitioning, statistical methods for spatial 
differentiation remain limited [36]. Currently, the main methods for spatial differentiation include spatial anisotropy measurements 
and factor analyses of geographic detector q statistics [36]. When compared to conventional approaches such as principal component 
analysis and classical regression models [11,26,55], the geographic detector approach has no linearity assumptions or clear physical 
implications and is better able to reveal the spatial heterogeneity of driving factors. 

However, this study has some limitations. Due to the varied features of population distribution across different areas considered in 
this study, the applicability and accuracy for rural areas and the urban–rural fringe populations requires further exploration [21,23]. 
Using the same spatial model for the study area resulted in estimation errors [53]. Nighttime light data also have limitations; 
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background noise must be accounted for more effectively [66]. 
The simulation of population distribution using nighttime light data can be significantly impacted by non-residential lights, as well 

as the illumination from commercial and industrial areas, and roads, all of which affect the extraction of population distribution 
information [56]. It is worth mentioning that the accuracy of population distribution simulations using nighttime light data may be 
affected by the presence of non-residential lights, commercial and industrial areas, and road networks. In large-and medium-sized 
cities with dense populations, nighttime light data are saturated and do not reflect the differences in population distributions within 
the city. In contrast, in rural and mountainous areas with sparse populations, nighttime lights are dim, which makes it difficult to 
accurately express the population distribution [56]. Future studies on population spatialization should focus on improving the ac
curacy of simulation and the spatial-temporal resolution of population spatial data, by exploring new data sources and utilizing 
advanced techniques [56]. 

6. Conclusions 

We employed DMSP/OLS/NPP–VIIRS and NDVI data to estimate and map population density, while also using geographic de
tectors to analyze the individual and interactive effects of various factors on population density. This facilitated identification of the 
most suitable features for each major factor. Understanding the changes and driving mechanisms of population density has a positive 
influence in the rational planning of population spatial layouts. 

The model developed in this study demonstrated optimal performance in predicting population density, with a high R2 value 
(>0.889, P = 0.01) indicating a strong correlation with the estimated population density. This suggests that NDVI, DMSP/OLS/NPP, 
and VIIRS are reliable predictors for the spatial patterns of urban population density. 

Our analysis showed that the population density exhibited clear aggregating features and positive spatial correlations across the 
study area. From 2000 to 2020, the Global Moran’s I-index and Z-scores ranged from 0.843 to 0.939 and from 59.462 to 65.864, 
respectively, indicating a significant increase. The high population density values were found to cluster in central Chengdu, adjacent 
and peripheral districts, forming hotspots of local spatial clustering. Moreover, the areas with high population density expanded 
rapidly over time. 

Our analysis revealed that several factors were influential in the changes observed in population density, including the PPI, PTI, and 
PTI, NDVI, LUDI, DCOL, GDPC, and DUC. These factors exhibited interactive and nonlinear effects on population density, with 
mutually enhancing synergies. 
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