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Abstract: Availability of efficient development tools for data-rich IoT applications is becoming ever
more important. Such tools should support cross-platform deployment and seamless and effective
applicability in a variety of domains. In this view, we assessed the versatility of an edge-to-cloud
system featuring Measurify, a framework for managing smart things. The framework exposes to
developers a set of measurement-oriented resources that can be used in different contexts. The
tool has been assessed in the development of end-to-end IoT applications in six Electronic and
Information Technologies Engineering BSc theses that have highlighted the potential of such a system,
both from a didactic and a professional point of view. The main design abstractions of the system
(i.e., generic sensor configuration, simple language with chainable operations for processing data
on the edge, seamless WiFi/GSM communication) allowed developers to be productive and focus
on the application requirements and the high-level design choices needed to define the edge system
(microcontroller and its sensors), avoiding the large set-up times necessary to start a solution from
scratch. The experience also highlighted some usability issues that will be addressed in an upcoming
release of the system.

Keywords: IoT; edge computing; end-to-end systems; development tools; embedded systems
and devices

1. Introduction

In the emerging Internet of Things (IoT) paradigm, data collected from the field
fuel a variety of applications (e.g., monitoring, prediction, maintenance, etc.) in multiple
domains [1]. An IoT ecosystem involves two major sides: the edge and the cloud. Cloud
services are needed to support data access and management. These services are typically
developed and maintained through platform-as-a-service frameworks. Edge devices, on
the other hand, are getting ever more relevant as fully integrated tools in a seamless
computation continuum from the field to the cloud. Executing code in proximity to data
sources aims at reducing latency, energy consumption, and bandwidth occupation [2].
The generic edge device term involves a variety of devices, ranging from FPGAs and
devices with few KBs of memory to families of microcontrollers (e.g., [3]), smartphones,
and high-performance Machine Learning (ML)-enabled microcontrollers (e.g., the Coral
Dev Board [4]). In order to increase scalability, the IoT paradigm promotes a hierarchical
structure of connected devices, dynamically organizing the data processing to optimize
overall resource consumption.

In this context, there is a growing need to provide developers with tools able to
support efficient design and implementation of applications, allowing them to focus on the
application logic rather than on the implementation details (e.g., about the management
of connection and delivery of information packets, organization of the data processing
across various stages from the field to the cloud). Despite the use of common components
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(e.g., databases, application programming interfaces, protocols), the development and
deployment process is challenging and time-consuming.

The availability of efficient application development tools is key to the success of
any digital ecosystem. Commercial companies (e.g., Amazon, Microsoft, Google) have
established efficient IoT ecosystems based on powerful cloud services, but they rely on
proprietary technologies, with very limited interoperability and development opportunities
for third parties.

In this context, we are interested in analyzing the research question about the ability
of a non-vendor-locked, interoperable framework to support effective and efficient devel-
opment for a variety of IoT applications in different application domains. Versatility is
very important both from a didactic (students can be exposed to and practice with very
different use cases) and business (a company, especially small/medium, could rapidly
prototype/develop a wide application portfolio) point of view. Thus, our analysis also
investigates what the main design abstractions are in order to support cross-application-
domain versatility. This also involves understanding the knowledge level needed from
developers using such a tool.

In this paper, we address this question exploiting Measurify, a cloud-based (but
not vendor-locked), open-source, measurement-oriented framework, for managing smart
things in IoT ecosystems. Measurify includes Edgine (Edge engine), a cross-platform
edge computing system designed to support developers building the edge side of IoT
applications. Our investigation consisted of assessing the versatility of Measurify in the
development of a set of apps in a variety of domains (business, environment, and sport).
As developer users for our analysis, we chose Electronic and Information Technology
Engineering BSc students doing their final thesis. This target on one hand intends to assess
the simplicity of development (given the elementary professional level of the subjects), on
the other hand it stresses the importance of didactics (and didactic tools) to allow growing
a new generation of electronic system designers with hands-on experience in end-to-end
IoT applications (and not “only” on specific aspects).

The remainder of the manuscript is organized as follows. Section 2 gives an outlook of
the state of the art. Section 3 presents the Measurify and Edgine platforms that manage the
cloud and edge side, respectively. Section 4 presents a set of IoT applications developed
with the proposed system in three main areas: business, environment, and sports. In
Section 5, results are analyzed and discussed. Section 6 draws the conclusions and proposes
possible directions for future works.

2. Related Work

Edge devices have become increasingly important in the Internet of Things (IoT)
scenario [1] as fully integrated instruments in a continuously operating computing flow
from the field to the cloud. Such an edge computing paradigm [5], which moves the
computation (including sophisticated artificial intelligence (AI)) as close as possible to the
data sources [2], aims at reducing latency, energy consumption, and bandwidth usage.

Given the vast application potential, industry giants are deeply engaged in developing
hardware and software solutions in the field. Google released the Edge Tensor Processing
Unit (TPU) [6] and Cloud IoT Edge [7]. The former is an application-specific integrated
circuit (ASIC) created specifically to run AI at a peripheral level, while the latter is an
edge computing platform that extends the capabilities of Google Cloud data processing
and Machine Learning (ML) to edge devices. The idea is to build AI models on the cloud,
then use them on IoT edge cloud devices by exploiting the potential offered by the Edge
TPU hardware accelerator. This circuit is also able to run TensorFlow Lite [8], a platform
that provides a set of tools allowing the user to convert TensorFlow [9] neural network
(NN) models into simplified and reduced versions, suitable for edge devices. Recently, a
further reduced version of TensorFlow Lite has been released, namely, TensorFlow Lite
Micro, which is specifically designed to run ML models on digital signal processors (DSPs),
microcontrollers, and other devices with limited memory [10].
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Within its offer of cloud services (AWS), Amazon provides the IoT solution Green-
grass [11], which simplifies the inference of ML locally on devices through archetypes
created, trained, and optimized in the cloud. The AWS IoT Greengrass has the Lambda
runtime [12], which is a serverless computation service that allows running code without
provisioning or managing any infrastructure, automatically managing the underlying
compute resources. The minimum hardware requirements are 1 GHz processor frequency
and 128 MB of RAM.

Microsoft provides Azure IoT Edge [13], a service that allows distributing cloud
workloads and running them on IoT peripheral devices. Latency is reduced as the data
is processed locally, with the possibility of using Microsoft’s Project Brainwave [14], a
deep learning platform for real-time AI inference in the cloud and on the edge. Peripheral
devices can also work in conditions of poor Internet connection, thanks to Azure device
management that automatically synchronizes the most recent status of the devices after
reconnecting to the network. IoT Edge supports numerous languages, including C, C#,
Java, Node.js, and Python. Microsoft also released EdgeML [15], a suite of ML algorithms
designed for deployment in low-resource contexts. The published results on the use of
EdgeML for training in the cloud in conditions of limited computing power indicate the
quality of the project [16–21].

IBM developed Edge Application Manager [22], an intelligent, secure, and flexible
platform that provides a management tool for edge processing. The proposed solution
is autonomous, i.e., it allows a single administrator to manage scale, variability, and
frequency of change of application environments across endpoints simultaneously. Edge
endpoints run on Red Hat Open-Shift [23] containers. IBM Edge Application Manager also
supports AI tools for deep learning and voice and image recognition, as well as video and
acoustics analysis.

Considering cross-platform support, computational resource allocation algorithms
have been developed in [24] in order to improve the performance of vehicular networks,
which is a key IoT application. The system uses the k-nearest neighbor (kNN) algorithm
for selecting the execution platform (e.g., cloud computing, mobile edge computing, or
local computing), and reinforcement learning (RL) for the resources allocation task. The
simulation results show that, compared to the basic algorithm in which all activities are
performed on the local or mobile edge computing server, the resource allocation scheme
allows a significant latency reduction by around 80%.

To deal with the problem of energy consumption of IoT devices, [25] suggests vir-
tualization, particularly container-based virtualization, which also enables handling the
multi-platform and multi-OS challenge. In this context, [26] presents a performance evalua-
tion study that shows the strengths and weaknesses of several low-power devices when
handling container-virtualized instances opposite to native executions.

Due to its flexibility and the tight connection to IoT devices, edge computing embodies
several very different use-cases. Debauche et al. [27] propose this approach to exploit
a modular climatic enclosure through IoT devices virtualization. This facilitates the ex-
ploitation of common semantic rules for each user about a common use-case. The Docker
container technology is used to deploy the needed software on the local device [28]. A
cloud interface is also used to collect data coming from local installations and visualize
them. A similar approach is employed in [29], which investigates a smart IoT-based method
for firefighting, collecting data coming from heterogeneous sources (i.e., drones, wearable
technologies, etc.). As the system’s reactive speed is crucial for this kind of task, a sim-
ulation is performed in this perspective, which results in a 50% improvement in system
latency. On the other hand, [30] focuses on edge video surveillance. In detail, it is shown
how, when the system has a failure, maintenance takes a long time to locate, while faulty
data waste storage space on the cloud. The proposed model makes a real-time assessment
of the usefulness of the video data and warns the end-users of possible failures. In this way,
faulty video data are directly handled on the edge rather than being uselessly uploaded to
the cloud. Another edge computing-based architecture was developed in the air pollution
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monitoring system presented in [31]. The system’s sensors gather the air quality data in
real-time and transmit it to an edge device that processes and analyzes them. The prototype
works on Arduino boards and relies on the IBM Watson IoT platform [32]. The final model
reduces the computational burden over sensing nodes up to 70%. In [33], an IoT-based
manufacturing context following the edge computing approach is analyzed. Results show
that this paradigm, compared to traditional approaches (i.e., cloud-based), provides band-
width optimization, real-time operation, and increased agility and security levels. The
authors of [34] propose an edge computing simulation framework for IoT heterogeneous
devices, which allows users to test their application in an easy and configurable manner.
The simulator is able to model various features, including device heterogeneity, application
composition, a variety of IoT communication protocols, device movement and mobility,
and battery. This allows developers to test their prototypes and identify criticalities in an
end-to-end approach.

Table 1 summarizes and compares the above presented edge-computing systems. We
do not know whether these systems exploit specific features of the cloud service on which
they are hosted, as this is not specified in the corresponding papers.

Table 1. Outlook of edge-computing case-studies.

Ref. Application
Domain(s) Edge Device Sensors Cloud Services Publicly

Available
Edge ML
Support

[27] Climatic enclosures Jetson Nano Temperature, humidity,
light, soil moisture - 8 4

[29] Firefighting Intel Fog
Reference Design

Wearables, infrared
camera, toxic gas, camera Amazon EC2 8 4

[30] Video surveillance - Camera Microsoft Cognitive
Services 8 8

[31] Air pollution
monitoring Arduino Gas, temperature,

humidity IBM Cloud 8 8

[33] Manufacturing
active maintenance Raspberry Pi - Private cloud 8 4

[34]
Multiple: health,

buildings,
self-driving cars

Simulated
generic IoT

device
Multiple virtual sensors IoTSim-Edge 4 8

In this wide landscape, the proposed Edgine framework aims at offering a solution
for efficient development, with two main perspectives. On the one hand, it intends to
abstract as much as possible from the application domain (e.g., [35]) to foster the re-use
of code and knowledge. On the other hand, it is built exclusively on open-source and
cloud/edge-provider independent technologies. This aims at quickly developing fully
portable applications, which is a key advantage in the rapidly evolving IoT world. To
summarize, cross-domain versatility is a major goal of our research, which does not look to
be a major concern of other studies.

3. Materials and Methods

An IoT system relying on the edge computing paradigm typically involves three
main components:

• a field device that collects data from the surrounding environment via sensors;
• an execution engine, operating on the field, capable of interpreting and processing the

field data in order to send to the cloud only higher-level, relevant information;
• a cloud server that collects data from the periphery. Third-party applications interact

with the server in order to manage the available field execution engines and to support
data queries by the analysts.

This article presents a generic, flexible architecture that we designed to implement
an end-to-end system that could be deployed to enable the IoT paradigm in a variety of
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application domains. This section focuses on the architecture of the cloud server (namely,
Measurify) and the field execution engine (namely, Edgine). In the next section, while
describing our operational experience with a set of real-world applications, we will indicate
some field devices that have been used and configured to collect data from the field.

3.1. Measurify Cloud API

Measurify is a cloud-based, abstract, and measurement-oriented platform we devel-
oped to manage intelligent objects in IoT ecosystems. Measurify models these objects as
web resources by exposing them through APIs that respect a Representational State Trans-
fer (REST) architecture. In this way, remote access to data and resources occurs through
a platform-independent HTTPS interface, which supports the development of applica-
tions that make use of these objects. Table 2 provides an outlook of the main Measurify’s
resources. More details can be found in [36].

Table 2. Outlook of the main Measurify resources.

Element Description

Measurement Value of a feature measured by a device for a specific thing.

Thing A generic object target of a measurement (i.e., within which a
measurement is performed).

Device A sensor that provides measurements of a thing.
Feature A physical dimension measured by a device.

Script
A JSON string that contains information on how to manipulate, store,

and transmit streams of measurements coming from devices. This is the
program to be executed by a field device.

Tag Labels attachable to resources, to better specify them.

Users Users (with roles and rights) that have access to the resources of the
current application.

Not only does Measurify collect all the information sent from the field by an Edgine
instance, but it also provides the interface to the developer for remotely programming a
deployed field execution engine (Edgine). Each Edgine instance can access a tenant space
within a Measurify cloud installation by providing its credentials. If authenticated by
Measurify, the Edgine will receive a JSON Web Token (JWT), which must be inserted in the
header of all subsequent HTTPS requests to guarantee the authorization. The high-level
block diagram of the overall edge-cloud system is summarized in Figure 1, which shows
both the configuration and the execution phases of a generic IoT eco-system application
supported by the Measurify platform. In the configuration phase, the developer specifies
things, devices, features, user roles/rights, and scripts pertaining to the new application. In
the execution phase, the devices collect, process, and send measurements to the cloud that
can be queried by authorized users. The two phases are not mutually exclusive in terms of
time, and, for instance, a developer may add new things, features, scripts, etc., also during
the execution.

Measurify relies on the MongoDB [37] and Node.js [38] open source technologies.
More details on the implementation can be found in [36].
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Figure 1. Measurify cloud API architecture.

3.2. Edgine Runtime System

Edgine is a cross-platform edge system able to parse from the cloud and locally
run scripts associated with (some of) its available resources. The idea is to have a set of
generic, limited-resource devices that are deployed in the field and can be dynamically
programmed by a remote developer/user through a cloud server (namely, Measurify). This
allows to seamlessly exploit a set of field-deployed devices for various kinds of tasks, even
in different application domains. In an edge-to-cloud continuum computing perspective,
the Edgine abstraction has been designed for remote system configuration in terms of
settings (e.g., configuration of the available sensors) and executable scripts.

The Edgine’s runtime lifecycle consists of two parts: an initialization and a continuous
loop. In the start-up, Edgine connects to the API to download its description, in particular
the list of scripts to be executed and the parameter values for its configuration. During the
loop, Edgine executes each assigned script in sequence. Data are then sent through a POST
request on the dedicated cloud API route, providing, in the body of the request, also trace-
ability information such as the identification of the device, the script that generated it, and
a timestamp. During the execution, malfunctions may occur that can be reported in detail
to the cloud. In case of network failures/issues, data are locally stored in a buffer to be sent
again when the connection returns stable. Figure 2 shows a block diagram of a field device
executing an Edgine module and communicating with a Measurify server. The picture
shows that the device performs field measurements in an environment (characterized by
one or more things). The device does this by executing a script downloaded from the server.
Before the executable instructions, the device had to download a descriptor specifying the
usable sensors, the communication parameters, and the executable script(s), as we will
see in the next paragraph. Table 3 synthesizes the HTTP requests during the two phases
of start-up (authentication and download of the scripts) and infinite loop (upload of the
measurements). A schematic structure of the Edgine–Measurify overall end-to-end system
architecture is depicted in Figure 3. At a high level, the picture shows a downstream (cloud
to edge) of commands and an upstream (edge to cloud) of measurements (i.e., data).
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Table 3. HTTP requests performed by Edgine.

Request Type Object Description

POST Login credentials Login into the cloud, JWT is received as a response.

GET Resource description
and executable script(s)

Description of the in-use resource and executable
script(s) are retrieved from the cloud.

POST Measurements Edge-processed data are shipped to the cloud.
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Figure 3. Edgine–Measurify overall end-to-end system architecture.

An Edgine’s life cycle is characterized by the execution of a set of macro-processes:
access to the cloud; request from the server its (of the Edgine) virtual description; obtain
from the server the executable script(s); consequent local configuration; read data from
edge sensors; process such data through the downloaded scripts; store processed data on
the cloud.
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Thus, after successful authentication, the Edgine requests from the server its own
virtual representation. This includes identity, configuration parameters, functionalities, and
identifiers of the scripts (script-type resources in Table 2) to be downloaded, parsed, and
executed. A script (e.g., Figure 4) is a composition of simple operations whose implementa-
tion is preloaded into Edgine. The “code” field of a script document specifies the chain of
operations applicable by the Edgine to a given feature’s raw input stream before delivery to
the cloud. Each instruction is performed on its input data stream, which is the output of its
preceding instruction. The first stage of the chain is applied to raw sensor input data. In the
Figure 4 example, the instructions concern the parsing of the available light feature value
(expressed in lux), the filtering of all samples whose value is lower than a specific threshold
(e.g., 20,000 lux), and the final shipment to Measurify. This example allows the user to
monitor lighting in a room. The value on the cloud may then be read, for instance, by a
mobile app that notifies the user that the sampled value has fallen below the threshold. At
present, the set of supported instructions is reported in Table 4. It appears that the featured
set of operations allows basic processing of time-series, avoiding overloading the network
and unloading the cloud server as per the edge-computing paradigm [2].
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Table 4. Operations currently available in the Edgine script language.

Operation Description

Send Sends to the API all the elements of the data stream.

Map A new data stream is created by performing a simple
arithmetic operation between two operands.

Max/min A new data stream is created containing only the
min/max value among the values in the input stream.

Window/sliding window

A new data stream is created by applying a two-operand
function on an accumulator, initialized to the value of
the second argument, and on each input element, for a

number of values indicated by the size of the
window/sliding window.

Filter A new data stream is created using only the elements of
its input stream that have a value within a specified range.

Average/median/standard deviation
A new data stream is created by taking the

average/median/standard deviation of a specified
number of samples in its input stream.

The data upload to the cloud can take place in two possible ways: continuously,
i.e., data are sent as soon as they are processed, or in batches, in which case the script
specifies the number of measures to be reached so that they are sent in bulk.

Another important aspect that was considered during the development of the Edgine
module consists in the communication interface. To this module, we applied the same main
criterion as to the overall platform, which is to keep it as abstract as possible from the hard-
ware for the sake of portability. To that end, classes have been created to allow developers
to switch from Windows/Linux/macOS PC platforms to Arduino through macros. The
main difference between the two platform types concerns the Internet connection. In an
Arduino environment, WiFi network connection parameters have to be specified in the
code. This is because network connectivity is automatically provided by the system, which
is also designed to perform a reconnection in case of signal loss. On the other hand, in
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PC-type devices, the network connection (and reconnection) is not automated, since a PC
user exploits the user interface (UI) of the hosting operating system (OS) to choose, at the
system level, among all the available networks. Furthermore, automating the connection
would have required different implementations for different OSs, complicating the system.
Exploiting such switchable network connection classes, Edgine is now available on the
main PC OSs (i.e., Windows, Linux, and macOS) and the following Arduino and Arduino-
style boards: Arduino MKR WiFi 1010, Arduino UNO WiFi Rev.2, Arduino NANO 33 IoT,
Arduino MKR VIDOR 4000 WiFi, Espressif ESP32-WROVER, and Espressif ESP8266.

4. Results

This section intends to assess the ability of the presented toolchain to serve differ-
ent requirements in quite different application contexts. To this end, we describe six
Edgine–Measurify-based real-world applications, covering three major areas: business,
environment, and sport. Notably, the applications have been developed by students of
the third year of an Electronic and Information Technology Engineering BSc course doing
their final thesis, under the supervision of the first author of this paper. This highlights the
simplicity of the system, which can also be exploited for real-world designs by technicians
with no specific professional experience.

4.1. Business Use-Cases

In the following, we describe two use-cases deploying Edgine in the business field. In
this sector, real-time performance and the ability to also work off-line (e.g., edge devices
installed in remote places in which the connection is unstable) are major advantages with
respect to typical cloud computing data flows [39].

4.1.1. Shock Monitoring

The first application involves the realization of an embedded system for the evaluation
of shocks/bumps. The specific use-case considered the logistics and transport sectors,
in which it is fundamental to make sure that the shipped goods arrive intact at their
destination. The typical steps of the utilization of the proposed system are depicted in
Figure 5.
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From a developer perspective, the system involves handling two distinct phases:

• the shock monitoring phase, in which data from sensors are retrieved and processed;
• the package integrity check phase, which requires inspecting the history of the detected

bumps stored in a database.
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The deployed edge system includes a SparkFun 9DoF IMU Breakout-LSM9DS1 sensor,
which houses a three-axis accelerometer, a three-axis gyroscope, and a three-axis magne-
tometer. The sensor is connected to an Arduino MKR WiFi 1010, with a microSD card
support, the MKR MEM Shield, to add external memory allowing local storage in case
of failures while connecting to the cloud. The LSM9DS1 sensor is connected to the board
through the Inter-Integrated Circuit (I2C) serial protocol, whereas the MKR MEM Shield is
through a Serial Peripheral Interface (SPI).

According to the workflow presented in the previous section, the system automati-
cally establishes a connection to a specified WiFi network and logs into Measurify with a
username, a password, and a tenant. Then, information regarding the thing under mea-
surement is retrieved from the cloud through a GET request, along with scripts to be
executed. Measurements are then sent to the server (after local storage, in case of lack of
network connectivity). The login and information retrieving phases are performed only
once (in the Arduino setup function). On the other hand, the sensor data processing and the
shipping of the results to the cloud are performed cyclically (in the Arduino loop function).
Regarding shocks monitoring, the code is inspired by [40], where bidimensional shock
detection is used in vehicle collisions to calculate where the car bumped. We adapted
it in a three-dimensional way for our use-case. If the magnitude of the shock is higher
than the set threshold (named sensitivity), the shock value is sent to Measurify, indicating
that a collision occurred. The executable script exploits the filter operation (Table 4), so to
select over-threshold values only. The point of impact’s location is also computed and sent
to Measurify.

Data visualization for online package integrity check is achieved by designing a web
page that features a table reporting the last five impacts and their location (Table 5 shows an
example). The location of the impact is inferred from the values of the impact angles in the
three dimensions (namely Angle XY, Angle YZ, and Angle XZ). To facilitate understanding,
six pictures are provided, each one showing a side of the packaging (Figure 6). The
graphical representation shows the intensity of the impact by using a four-key color scale:
gray if no impact is detected, green for a slight bump, yellow for a moderate one, and red if
an intense shock was detected. The color is set by looking at the impact magnitude value,
which is represented in Table 5.

Table 5. Report of the five most recent shocks occurred.

Time Magnitude Angle XY Angle YZ Angle XZ

12 September 2021, 16:45:50 3 251 230 254
12 September 2021, 16:45:50 6 270 185 268
12 September 2021, 16:45:50 3 92 353 252
12 September 2021, 16:45:50 3 93 341 260
12 September 2021, 16:45:50 4 67 287 277

Sensors 2022, 22, x FOR PEER REVIEW 10 of 20 
 

 

From a developer perspective, the system involves handling two distinct phases: 
• the shock monitoring phase, in which data from sensors are retrieved and processed; 
• the package integrity check phase, which requires inspecting the history of the de-

tected bumps stored in a database. 
The deployed edge system includes a SparkFun 9DoF IMU Breakout-LSM9DS1 sen-

sor, which houses a three-axis accelerometer, a three-axis gyroscope, and a three-axis mag-
netometer. The sensor is connected to an Arduino MKR WiFi 1010, with a microSD card 
support, the MKR MEM Shield, to add external memory allowing local storage in case of 
failures while connecting to the cloud. The LSM9DS1 sensor is connected to the board 
through the Inter-Integrated Circuit (I2C) serial protocol, whereas the MKR MEM Shield 
is through a Serial Peripheral Interface (SPI).  

According to the workflow presented in the previous section, the system automati-
cally establishes a connection to a specified WiFi network and logs into Measurify with a 
username, a password, and a tenant. Then, information regarding the thing under meas-
urement is retrieved from the cloud through a GET request, along with scripts to be exe-
cuted. Measurements are then sent to the server (after local storage, in case of lack of net-
work connectivity). The login and information retrieving phases are performed only once 
(in the Arduino setup function). On the other hand, the sensor data processing and the 
shipping of the results to the cloud are performed cyclically (in the Arduino loop function). 
Regarding shocks monitoring, the code is inspired by [40], where bidimensional shock 
detection is used in vehicle collisions to calculate where the car bumped. We adapted it in 
a three-dimensional way for our use-case. If the magnitude of the shock is higher than the 
set threshold (named sensitivity), the shock value is sent to Measurify, indicating that a 
collision occurred. The executable script exploits the filter operation (Table 4), so to select 
over-threshold values only. The point of impact’s location is also computed and sent to 
Measurify. 

Data visualization for online package integrity check is achieved by designing a web 
page that features a table reporting the last five impacts and their location (Table 5 shows 
an example). The location of the impact is inferred from the values of the impact angles in 
the three dimensions (namely Angle XY, Angle YZ, and Angle XZ). To facilitate under-
standing, six pictures are provided, each one showing a side of the packaging (Figure 6). 
The graphical representation shows the intensity of the impact by using a four-key color 
scale: gray if no impact is detected, green for a slight bump, yellow for a moderate one, 
and red if an intense shock was detected. The color is set by looking at the impact magni-
tude value, which is represented in Table 5. 

Table 5. Report of the five most recent shocks occurred. 

Time Magnitude Angle XY Angle YZ Angle XZ 
12 September 2021, 16:45:50 3 251 230 254 
12 September 2021, 16:45:50 6 270 185 268 
12 September 2021, 16:45:50 3 92 353 252 
12 September 2021, 16:45:50 3 93 341 260 
12 September 2021, 16:45:50 4 67 287 277 

 
Figure 6. The graphical interface of the shock monitoring web page. Figure 6. The graphical interface of the shock monitoring web page.

4.1.2. Tank Level Monitoring

The second industrial use-case concerns a system for monitoring the level of rainwater
in a tank that acts as an accumulator for an aqueduct. The embedded system relies on an



Sensors 2022, 22, 713 11 of 20

Arduino MKR GSM 1400 board and an HC-SR04 ultrasonic sensor. For this application,
memory has also been expanded thanks to an Arduino MKR SD Proto Shield, which allows
storing data samples in case of connectivity issues. The basic operation principle of the
device is shown in Figure 7.
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Such as for the other embedded applications, there is a setup phase followed by a loop
one. The only difference concerns the script associated with the resource in use. In this
case, the application’s logic simply relies on a filter operation, based on which only samples
whose values exceed one of two thresholds (above a maximum or below a minimum) are
shipped to the cloud. As the tank is located in a wood area far from the landline, the
system includes a GSM module installed in the board in order to send SMSs to notify the
maintainer of the tank of the potential risk.

In order to monitor and visualize the acquired data, a cross-platform mobile app
(i.e., working on both iOS and Android devices) has been developed in Flutter, an open-
source framework for building natively compiled, multi-platform applications from a single
codebase [41]. The three main pages of the app are shown in Figure 8.
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4.2. Environmental Use-Cases

A typical IoT application domain is given by environmental monitoring (e.g., [42–45]).
This subsection presents two use-cases in this perspective. The first one monitors the
air quality in a room, whereas the second allows checking the status of a plant and its
surrounding environment.

4.2.1. Air Quality Monitoring

This project concerns the realization of a system that monitors the concentration of
harmful gases present in a closed environment, following an approach similar to the one
proposed in [31], aiming at reducing the system complexity by taking into consideration
only three toxic gases and monitoring them with a single sensor. The monitored gases are
carbon monoxide (CO), nitrogen dioxide (NO2), and methane (CH4). The board used is
an Arduino MKR WiFi 1010, whereas the gas sensor is a MiCS-6814, which communicates
to the board through I2C. The application life-cycle is the same as in the previous cases.
Data samples are periodically sent to the cloud (as specified in the script), together with the
identifier of the measured type of gas.

Similar to the other cases, a web page has been created to visualize data in graphical
and tabular formats. Table 6 shows an example of carbon monoxide measurements, while
Figure 9 displays a graphical view in which sample values are plotted over time.

Table 6. Measurements of the air quality system related to CO concentration in tabular format.

Date Time Concentration (ppb)

21 January 2020 19:47 6044.16
21 January 2020 19:18 6044.16
21 January 2020 18:48 6193.68
21 January 2020 18:18 6472.43
21 January 2020 17:48 7155.01
21 January 2020 17:18 8858.53

Sensors 2022, 22, x FOR PEER REVIEW 12 of 20 
 

 

4.2. Environmental Use-Cases 
A typical IoT application domain is given by environmental monitoring (e.g., [42–

45]). This subsection presents two use-cases in this perspective. The first one monitors the 
air quality in a room, whereas the second allows checking the status of a plant and its 
surrounding environment. 

4.2.1. Air Quality Monitoring 
This project concerns the realization of a system that monitors the concentration of 

harmful gases present in a closed environment, following an approach similar to the one 
proposed in [31], aiming at reducing the system complexity by taking into consideration 
only three toxic gases and monitoring them with a single sensor. The monitored gases are 
carbon monoxide (CO), nitrogen dioxide (NO2), and methane (CH4). The board used is an 
Arduino MKR WiFi 1010, whereas the gas sensor is a MiCS-6814, which communicates to 
the board through I2C. The application life-cycle is the same as in the previous cases. Data 
samples are periodically sent to the cloud (as specified in the script), together with the 
identifier of the measured type of gas. 

Similar to the other cases, a web page has been created to visualize data in graphical 
and tabular formats. Table 6 shows an example of carbon monoxide measurements, while 
Figure 9 displays a graphical view in which sample values are plotted over time. 

Table 6. Measurements of the air quality system related to CO concentration in tabular format. 

Date Time Concentration (ppb) 
21 January 2020 19:47 6044.16 
21 January 2020 19:18 6044.16 
21 January 2020 18:48 6193.68 
21 January 2020 18:18 6472.43 
21 January 2020 17:48 7155.01 
21 January 2020 17:18 8858.53 

 
Figure 9. Measurements of the air quality system related to CO2 concentration in graphical format. 

4.2.2. Plant Monitoring 
This application aims at remotely monitoring plants and flowers. The chosen micro-

controller is an Arduino Uno WiFi Rev 2, and three sensors are attached to it: a Sparkfun 
TSL2561 luminosity sensor, a DHT22 Pro v1.3 air-humidity and temperature sensor, and 
a DFRobot SEN0193 soil moisture capacitive sensor. The luminosity sensor provides data 
in Lux units and allows the user to know if the plant is receiving enough light, and the 
air-humidity and temperature sensor returns samples in °C and %RH, respectively, that 

Figure 9. Measurements of the air quality system related to CO2 concentration in graphical format.

4.2.2. Plant Monitoring

This application aims at remotely monitoring plants and flowers. The chosen micro-
controller is an Arduino Uno WiFi Rev 2, and three sensors are attached to it: a Sparkfun
TSL2561 luminosity sensor, a DHT22 Pro v1.3 air-humidity and temperature sensor, and a
DFRobot SEN0193 soil moisture capacitive sensor. The luminosity sensor provides data
in Lux units and allows the user to know if the plant is receiving enough light, and the
air-humidity and temperature sensor returns samples in ◦C and %RH, respectively, that
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give information regarding the environment where the plant is growing. Finally, the soil
moisture sensor allows understanding whether the plant needs more water. In addition,
a TFT screen has been installed on the Arduino device to visualize data directly from the
source if necessary (Figure 10).
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As the application involves heterogeneous measurements, Measurify records four
features (one for each type of measurement), and the related scripts allow defining different
sample times and processing steps for these different physical quantities.

As for other use-cases, in order to make data easier to interact with, a Flutter mobile
app has been developed, namely Plant Monitor. The main pages of the app are shown
in Figure 11. The app allows for an overview of the monitored plants but also graphs
over time for each feature taken into consideration. Moreover, the scan interval can be set
directly from the app.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 20 
 

 

give information regarding the environment where the plant is growing. Finally, the soil 
moisture sensor allows understanding whether the plant needs more water. In addition, 
a TFT screen has been installed on the Arduino device to visualize data directly from the 
source if necessary (Figure 10). 

 
Figure 10. The plant monitoring system screen for local inspection. 

As the application involves heterogeneous measurements, Measurify records four 
features (one for each type of measurement), and the related scripts allow defining differ-
ent sample times and processing steps for these different physical quantities. 

As for other use-cases, in order to make data easier to interact with, a Flutter mobile 
app has been developed, namely Plant Monitor. The main pages of the app are shown in 
Figure 11. The app allows for an overview of the monitored plants but also graphs over 
time for each feature taken into consideration. Moreover, the scan interval can be set di-
rectly from the app.  

    
(a) (b) (c) (d) 

Figure 11. The plant monitoring app: (a) login page; (b) report on the monitored plants; (c) temper-
ature graph over time; (d) scan interval settings. 

4.3. Sports Use-Cases 
The level of miniaturization of edge devices has enabled applying digital technolo-

gies to sports activities by means of wearable devices (e.g., wristbands, cardio-bands, 
smartwatches, etc.), and devices that can be attached to sports tools (e.g., shoes, tennis 
rackets, motorbikes, cars, etc.) (e.g., [46–50]). This sub-section described two sports appli-
cations developed by applying the Edgine–Measurify platform. 

  

Figure 11. The plant monitoring app: (a) login page; (b) report on the monitored plants; (c) tempera-
ture graph over time; (d) scan interval settings.

4.3. Sports Use-Cases

The level of miniaturization of edge devices has enabled applying digital technologies
to sports activities by means of wearable devices (e.g., wristbands, cardio-bands, smart-
watches, etc.), and devices that can be attached to sports tools (e.g., shoes, tennis rackets,
motorbikes, cars, etc.) (e.g., [46–50]). This sub-section described two sports applications
developed by applying the Edgine–Measurify platform.
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4.3.1. Smart Bike

This project aims at monitoring an enduro mountain bike (MTB) on a descent along a
path in order to allow athletes to evaluate their performance. The following dimensions
have been considered:

• Speed trend over time;
• Elevation profile of the route;
• Travel time;
• Maximum lean angle of the bike;
• Maximum slope of the route;
• Number of front fork compressions;
• Maximum speed reached.

In order to retrieve information about speed and time, a Grove–Hall sensor has been
employed. This, attached to the front fork of the bike, allows counting the revolutions of the
wheel so that speed, time, and space traveled can be deduced. For the number of front fork
compressions, an ultrasonic sensor, the DFRobot SRF05, has been used. This, also installed
on the fork, measures the distance from the front hub, which decreases when compressions
occur. The elevation profile of the route has been measured through a Grove–Barometer
BMP280, which detects the atmospheric pressure (in hPa). This measure is then converted
to an altitude value as described in [51]. Lastly, to calculate the lean angle of the bike and the
route slope, an accelerometer and a gyroscope were needed. Based on such requirements, it
was decided to opt for an Arduino Nano 33 IoT board, which includes a built-in LMS6DS3
sensor, so that no other installation on the MTB was needed. Due to the presence of sensors
operating at a voltage higher than 3.3 V (hall sensor and ultrasonic sensor work in the
range 0–5 V) a logic level shifter, the Pololu 4-channel, was also employed to avoid system
failures or damages. The final prototype, including the board and the sensors mounted on
the MTB, is shown in Figure 12.
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Figure 12. The smart bike main components: (a) the front fork with the ultrasonic sensor and the
hall sensor; (b) the main core of the system, including a led and a buzzer to check if the system
is running correctly; (c) the inside of the core, where the Arduino board is installed, and a battery
powers the system.

In the execution loop, the edge system, after retrieving data samples from the sensors,
connects to Measurify exploiting the Edgine library and, for each feature, sends the script-
processed results to the cloud. By using the operations specified in Table 4, the scripts
simply mandate the acquisition rate of the various signals and the expected computation
(e.g., the maximum, within the specified sliding window). As in the previous use-cases,
a Flutter mobile app has been developed. This allows the user to gather, in real-time, all
the information about the smart bike and see informative graphs about the path traveled.
Figure 13 shows the main page of the app along with a graph of the speed evolution during
a tour.
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4.3.2. Smart Racket

The last application example in the sports area concerns the realization of a tennis
racket support to collect data about an athlete’s strokes. The rationale of this project is
bound to the need for supporting both professional, amateur, and novice tennis players
through collection of raw data and elaboration of statistics during workouts and matches.

The work, which is in progress, involves the implementation of a system able to
measure speed, rotation, and point and angle of impact in order to allow distinguishing the
various types of strokes. Six different types of strokes have been considered:

• Serve;
• Forehand groundstroke;
• Backhand groundstroke;
• Overhead smash;
• Forehand volley;
• Backhand volley.

Accelerometer and gyroscope sensors are needed for this purpose. Since the Arduino
Nano 33 IoT board has a built-in LMS6DS3 sensor, we chose it as the development board.
The sensor raw data themselves are not sufficient to distinguish among the six types of
strokes. Therefore, the first goal of the application is to support the creation of a dataset for
each class. Then, a neural model will be trained with this dataset to recognize the strokes
following an edge learning approach [52].

The proposed method aims at improving the work done in [53], where a motion
sensor is attached to the racket to classify the stroke type between three classes: serve,
groundstroke, and volley. Additionally, for the serve stroke, a regression model is proposed
to estimate the ball speed, whereas two other models are proposed for groundstroke and
volley: a regression and a physical one. The physical model is best suited for skilled players
who have constant stroke gestures, while the regression model is more appropriate for
beginners, who have varying stroke gestures.

The Edgine system is expected to process data locally and send to the Measurify
information needing minimal post-processing. A mobile app will be developed to show,
in real-time, aggregate data of a tennis match obtained through scripts ad hoc created for
the resource (e.g., number of forehand groundstrokes, maximum serve speed, percentage
of forehand groundstrokes compared to backhand groundstrokes, etc.). This will require
interfacing Edgine with the outcomes of an embedded neural network classifying the raw
sensors’ time-series into the six mentioned classes. The final prototype is expected to have
a structure similar to that shown in Figure 14. Due to the reduced dimension of the racket
handle, the board will be inserted in the throat of the racket, protected by a pitted case.
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5. Discussion

Table 7 provides a quantitative outlook of the six use-cases presented in the previous
section. It appears that a whole end-to-end IoT application, featuring an edge device, a
cloud installation, and a client (web/mobile app), is regularly built in less than one man
month, by a third year Electronic Engineering BSc student. The time includes familiarization
with the framework. This has allowed the students (i.e., the application designers) to focus
on the application requirements, which is of key importance for a proper application design.
There is a variance due to the application complexity, which is typically reflected by the
number of sensors to use and features to measure. However, the value of the variance is
limited, and the development time is quite predictable. This is important for an Engineering
BSc thesis project, but also in the business field. While the sample of students is limited, we
argue that they are representative of a normal knowledge level at the end of an Information
Technology Engineering BSc course.

Table 7. Quantitative observation of the presented use-cases.

Use-Case Edge Device No.
Sensors

No.
Features

Measurify
Configuration (h) Edgine (h) Client

Development (h)

Shock monitoring Arduino MKR
WiFi 1010 1 4 35 50 30

Tank level
monitoring

Arduino MKR
GSM 1400 1 1 30 40 40

Air quality
monitoring

Arduino MKR
WiFi 1010 1 3 35 50 25

Plant monitoring Arduino Uno
WiFi Rev 2 3 4 40 50 40

Smart bike Arduino Nano
33 IoT 4 6 45 60 35

Smart racket Arduino Nano
33 IoT 1 6 in progress in progress in progress

According to the students directly involved in the thesis projects, the benefits of using
the Measurify framework for developing an end-to-end IoT application were manifold.
First, the ease of use and installation of the system allowed the developer to focus on
dataflow design rather than on the aspects of cloud interfacing, thus considerably reducing
the development time. Furthermore, the possibility of preparing scripts chaining a limited
set of instructions made it possible to achieve the projects’ objectives in a logical and
precise way.

The main issues encountered concerned the need for the developer to hardwire the
SSID credentials in the code and a certain difficulty in understanding the interaction of
the edge system with the cloud. In particular, since the HTTPS requests made by Edgine
are hidden within the library, there is no immediate feedback for the user regarding the
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successful storage of data in the cloud server. This stage of understanding the framework’s
functioning and preparing it for the intended purpose has significantly lengthened devel-
opment times, but the elementary professional level of the subjects must also be taken
into consideration.

Comparing the achieved results with the state-of-art case studies reported in the
Related work section, we can sum up strengths and weaknesses of the presented system.
The Edgine–Measurify framework is characterized by a clear versatility, which is due to
its powerful design abstractions, and it allows the developers to manage heterogeneous
use-cases while maintaining the same system architecture. This has clear implications on
application robustness, as the applications exploit a widely used and tested (in various
contexts) generic system.

In the workflow supported by the system, for creating a new applications, it suffices
to configure a Measurify installation (device and feature resources, plus relevant tags,
if needed), along with the script(s) needed in the edge environment. The exploitation
of non-cloud-vendor-locked software makes the system portable across cloud systems.
Edgine is also platform-independent, which makes the system work on a large variety of
development boards and OSs, and it can also be used in a simulated environment [35]. On
the other hand, the main limitations of the current release concern the restricted operations
pool (along with the lack of support for on-the-edge ML inference) and the inability of the
send operation to manage multidimensional data, which restricts the operational field of
the system.

6. Conclusions

As IoT technologies are increasing the capability of collecting huge quantities of data
from the field, the availability of tools for creating new, data-rich applications is becoming
ever more relevant. In our view, such tools should be characterized by wide usability, in
terms of (i) independence of the specific edge/cloud platform, (ii) open-source availability,
and (iii) seamless and effective applicability in a variety of IoT domains.

In this manuscript, we assessed the versatility of an end-to-end system featuring a
measurement-oriented framework for managing smart things (namely, Measurify, which is
available open-source at: measurify.org, accessed on 27 December 2021). The framework,
accessible through RESTful APIs, exposes to developers a set of resources that can be used
in very different contexts.

Our experience with BSc thesis projects in the last academic year has shown the
potential of such a system—both from a didactic and a professional point of view—and
helped us to identify strengths and weaknesses.

The design abstractions in Measurify and Edgine (generic sensor configuration, sim-
ple language with chainable operations for processing time-series on the edge, seamless
WiFi/GSM communication) allowed developers to be productive and focus on the actual
application requirements and the high-level design choices to define the edge system (mi-
crocontroller and its sensors), skipping the huge set-up times needed to start a solution
from scratch. Moreover, robustness of the resulting application strongly benefits from the
exploitation of an extensively tested framework. The experience also highlighted some
usability issues, particularly concerning the network connection specification and the lack
of user feedback about the data upload to the server.

New releases of the framework will include a credential retrieving function from an
encrypted file (at the moment, WiFi credentials are put in plain text in the main function).
A significant extension will concern the support of the execution on the edge of ML models,
that will be dynamically configurable from the cloud, according to the Measurify paradigm.
These models will be handled with new specific operations of the script language. In
addition, real-time estimations of system memory usage and power consumption will be
provided through the interface of the Edgine script language, so to allow monitoring the
functional behavior of the system. Finally, support for the delivery of more complex data
types is foreseen. At present, the send operation only supports 1D float samples, while

measurify.org
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multi-dimensionality would allow more efficient data preparation and transfer and bulk
sending of more complex data types (e.g., images) as well.

Concerning user assessment, further qualitative and quantitative experiments should
be performed in two main directions. One involves professional users, thus considering
more complex projects, also possibly implying an extension of the operation set, as antici-
pated above. A further direction involves tests with engineering students in order to better
understand the didactical value and implications of the tool.
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