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ABSTRACT

Publicly available genomic data are a valuable re-
source for studying normal human variation and dis-
ease, but these data are often not well labeled or an-
notated. The lack of phenotype information for pub-
lic genomic data severely limits their utility for ad-
dressing targeted biological questions. We develop
an in silico phenotyping approach for predicting crit-
ical missing annotation directly from genomic mea-
surements using well-annotated genomic and phe-
notypic data produced by consortia like TCGA and
GTEx as training data. We apply in silico phenotyping
to a set of 70 000 RNA-seq samples we recently pro-
cessed on a common pipeline as part of the recount2
project. We use gene expression data to build and
evaluate predictors for both biological phenotypes
(sex, tissue, sample source) and experimental con-
ditions (sequencing strategy). We demonstrate how
these predictions can be used to study cross-sample
properties of public genomic data, select genomic
projects with specific characteristics, and perform
downstream analyses using predicted phenotypes.
The methods to perform phenotype prediction are
available in the phenopredict R package and the pre-
dictions for recount2 are available from the recount R
package. With data and phenotype information avail-
able for 70,000 human samples, expression data is
available for use on a scale that was not previously
feasible.

INTRODUCTION

RNA sequencing (RNA-seq) has become the gold standard
for assaying gene expression and has advanced our under-
standing of transcription (1–3). To date, tens of thousands
of samples have been profiled using RNA-seq technology,
and their data have been deposited into the public archive
(4); however, each individual study typically includes only

a small number of samples (average study size for human
RNA-seq projects using Illumina sequencing within the se-
quence read archive (SRA) is 24 samples). Without robust
sample sizes, reproducibility across studies has been limited
(5–8). Further, while the scientific community has ensured
that these data are publicly available, current repository
platforms do not make these data easily accessible for future
study. Data in public repositories are often not provided in
a consistent format, are not annotated clearly for easy use
by independent researchers, or have not all been processed
using the same methodology, all of which limits compara-
bility across studies. To assist in improving the utility of
the available human expression data in the public reposi-
tory, we previously developed the recount2 (9) resource
(https://jhubiostatistics.shinyapps.io/recount/) that includes
expression data for 70 000 human samples aligned using
Rail-RNA (10). The use of a processing pipeline makes di-
rect comparisons across studies easier. These data, which in-
clude expression estimates at the gene, exon, junction, and
expressed region levels for each sample, are all available in
the recount2 (9) resource and can be easily accessed us-
ing the R package recount, dramatically reducing previ-
ous barriers to accessibility.

While expression information is now available in re-
count2 (9), for a large number of these samples, pheno-
type information is not (Figure 1). For example, while there
is expression data available from the sequence read archive
(SRA) for 49 657 samples, information for the sex of indi-
vidual from which the sample was taken is only available
for 3640 (7.3%) samples. Clearly, without such critical sam-
ple information, downstream analytic utility is limited. Fur-
ther, as these data were initially generated in many differ-
ent labs, analysis using these data must be concerned about
unwanted sources of variation affecting their analyses (11).
It is critical to have technical phenotype information avail-
able, including information such as sequencing strategy em-
ployed, across samples.

To address this missing phenotype issue, we have built
predictors from the expression estimates themselves for a
number of biological and technical phenotypes (Figure 2).
Using the data within recount2 (9), which includes sam-
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Figure 1. Missing phenotype information. (A) Phenotype information is critical to answer questions about biology using expression data. (B) This critical
information is missing for many samples within the SRA (red boxes). Note that sample phenotype information begins with the 6,620th row, as this is the
first row in the dataset for which sex and tissue are available for the same sample. (C) Missingness is limited within the GTEx data. Expression data from
samples with accompanying phenotype information are used to build the predictors. ERs = expressed regions

Figure 2. General approach to phenotype prediction. To predict pheno-
type information, the training data are first randomly divided and the pre-
dictor is built. Accuracy is first tested in the training data. Upon achieving
sufficient accuracy (≥85%), the predictor is tested in the remaining half of
the training data set. Phenotypes can then be predicted across all samples
in recount2.

ples from the Genotype-Tissue Expression Project (GTEx)
(12,13) (N=9,538), The Cancer Genome Atlas (TCGA)
(http://cancergenome.nih.gov/) (N = 11 284), and the se-
quence read archive (SRA) (N = 49 657) (4), we have
identified regions that are able to accurately predict (1)
sex, (2) sample source (whether the sample was gener-

ated from a cell line or tissue sample), (3) tissue and
(4) the sequencing strategy (single or paired end) em-
ployed. With this critical sample information available for
all samples across recount2, in conjunction with the
recently-released MetaSRA (14), which provides normal-
ized sample-specific metadata across samples in the SRA,
the utility of the data increases such that accurate down-
stream analyses (i.e. differential expression analyses) are
possible.

Finally, we highlight three possible use cases to demon-
strate how the phenotypes predicted can be useful in both
their own right as well as for use in future analyses. First,
there has historically been a sex bias in biomedical research,
such that in both humans and in mice, samples from males
are utilized more frequently than females (15,16). Accord-
ingly, we demonstrate how predicted phenotypes can be
used to characterize the overall breakdown by sex for sam-
ples in the SRA. Second, we demonstrate how the phe-
notypes we have predicted can be used to identify studies
whose data may be of particular interest to researchers for
their analyses. Last, after identifying a study of interest,
we demonstrate how predicted phenotypes can be incorpo-
rated into an expression study to gain insight into biology.

MATERIALS AND METHODS

Sample summary

Human samples processed using Rail-RNA (10) and in-
corporated into recount2 (9) were compiled from the
v6 release of Genotype-Tissue Expression Project (GTEx)
samples, the sequence read archive (SRA), and the Cancer
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Genome Atlas (TCGA). The SRA data are comprised of
49 657 publicly available samples from 2034 distinct RNA-
seq projects. The GTEx samples include RNA-seq data for
9538 samples from 550 individuals and 30 tissues. And,
the TCGA samples contributed 11 284 samples from both
healthy and cancerous tissue samples. Detailed sample and
processing information can be found in Collado-Torres and
Nellore et al. (9).

Region level expression data summary

For prediction, as to not limit prediction to annotated re-
gions of the genomes, expressed region (ER) (7,17) level
data were utilized. All GTEx samples were normalized to a
library size of 40 million 100 base-pair reads to compute the
mean coverage, as available from recount2 (9). Expressed
regions were defined using a cutoff of 0.5 with the find-
Regions() derfinder (7) function resulting in 1 187
643 ERs. The coverage matrix for the ERs was computed
using version 0.99.16 of the recount.bwtool R pack-
age available at https://github.com/LieberInstitute/recount.
bwtool to obtain expression estimates at the same ERs iden-
tified in the GTEx data. ERs were then log2 transformed.
recount.bwtool has several scripts for computing the
coverage matrices for each project in recount2 using bw-
tool (18). The function coverage matrix bwtool()
is similar to coverage matrix() from the recount
package. It is faster and less resource-intensive but requires
the recount2 BigWig coverage files be available locally.
recount.bwtool is designed for use cases that require
computing coverage matrices for a large number of regions
and for a large number of samples, such as this one.

General approach to prediction

The GTEx data are well-characterized and are comprised of
data generated from hundreds of individuals, with each in-
dividual having been sampled at multiple different tissues.
Given the study design and well-characterized nature of
these data, when possible (sex, tissue), the GTEx expression
data were used to build the phenotype predictors. When
invariability of a phenotype within GTEx limited this ap-
proach (sample source, sequencing strategy), the SRA data
were used to train the predictor. The first step of our general
approach was to randomly sample half of the training data
set. Expression data from this subset of individuals com-
prised our training set. For each predictor, accuracy was
then assessed in samples from three tests sets: (i) The re-
maining samples from the training data set that were not
used to build the predictor (ii) TCGA and (iii) the data set
not used to build the predictor either SRA (in the case of
sex and tissue) or GTEx (in the case of sample origin and
sequencing strategy). Accuracy was assessed by compar-
ing the predicted phenotype to the reported phenotype in
any sample for which this information was available. Upon
achieving sufficient prediction accuracy (≥85% in the train-
ing data), phenotypes were then predicted across all samples
within recount2.

R package: phenopredict

We have built the R package phenopredictwhich can use
expression data and phenotype information from any study
to build a phenotype predictor. Functionality within this
package allows for (i) a predictor to be built for either con-
tinuous or categorical variables (build predictor()),
(ii) the predictor to be tested on the training data to as-
sess resubstitution error (test predictor()), (iii) data
to be extracted from a new data set for the same regions
upon which the predictor was built (extract data())
and (iv) phenotype prediction in this new data set (pre-
dict pheno()). Additionally, for analyses in which data
have to be filtered across multiple files (i.e. across chro-
mosomes), there are two functions (filter regions()
and merge input()) that can be used to limit the num-
ber of regions included for prediction from each file and
to merge the filtered regions prior to building the predic-
tor, respectively. Finally, to optimize prediction accuracy,
the function optimize numRegions() can be used to
determine the optimal number of regions to be used in
build predictor().

Building the predictor: build predictor()

Categorical variables. The predictor is built by first em-
ploying a linear model within limma’s lmFit() frame-
work (19) to select a set of discriminating regions for each
level in the categorical phenotype. In this framework, for
each level (l) in the phenotype (P),

E[Er | Pl ] = α0r + Plαr (1)

where Pl =
{

1, if level of phenotype
0, otherwise and Er is expression

at region r. The Pl design matrix minimally contains infor-
mation about the level l of the phenotype of interest (P),
but it can optionally include other covariates. To ensure pre-
dictors herein were as generalizable across data sets as pos-
sible, no covariates were included during region selection.
α0r and αr are the coefficients relating the expression of re-
gion r to phenotype Pl. We use limma (19) to moderate
variances across the regions tested, thus shrinking region-
wise sample variances. These moderated variances are uti-
lized in identification of regions most highly associated with
the phenotype of interest. For each level (l), the topT-
able() function from limma is used to chose the n most
significant regions. For predictions herein, the number of re-
gions (n) was optimized using optimize numRegions()
function within phenopredict. This choses the fewest re-
gions needed to maximize prediction accuracy in the train-
ing data; however, users can alternatively specify their de-
sired number of regions for prediction.

After determining the set or regions to be used for pre-
diction (S), validationCellType() from the R pack-
age minfi (20) is used to fit the model for each region r in
the set of regions selected S using Equation (1):

E[{Er }r∈S | P] = βr P (2)

where (E) is expression for every region (r) in the selected set
or regions (S) and P is an l × N matrix where l is the number
of levels in the phenotype and N is the number of samples
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in the training data. We fit the model subject to the condi-
tions that: (i) βr > 0∀βr , as proposed by Houseman et al.
(21) and implemented in the minfi (20) package and (ii)
no intercept term is included so that β̂r contains the mean
expression estimate for each region (r) across all levels (l) of
phenotype (P).

Continuous variables. The same approach as above is car-
ried out with the exception that, in Equation (1), we replace
the phenotype with a natural cubic spline basis Pl = sl(P)
(where l = 5 and sl is a natural cubic spline basis function).

E[Er | Pl ] = α0r +
∑

l

sl(P)αrl (3)

Selected regions are then modeled as in Equation (2). We
fit a single regression model including a spline basis for each
of the selected regions. For each region, we set the knots to
be equally spaced at the quantiles of all values. Since there is
zero inflation among the expression values, sometimes this
leads to multiple knots at zero. In these cases we set the first
knot at zero, and then distribute the other knots along the
quantiles of the non-zero values.

E[P | {Er }r∈S ] =
∑
l,r∈S

βrl sl (Er) (4)

Resubstitution error: test predictor()

Categorical variables. To assess prediction accuracy in
the training data, where truth is known, predictions
are made relating the coefficients (β̂r ) calculated by the
build predictor() function. Here, using the frame-
work established in projectCellType() from minfi
(20,21):

E[{Er }r∈S | β̂r ] = β̂rγ (5)

where β̂r are the estimates of mean expression for each level
(l) in phenotype (P) from Equation (2). γ̂ is an l × N matrix
containing the likelihood of belonging to each level in the
phenotype. For each sample in N, predicted phenotype is
subsequently assigned to maxl (γ̂ ). If maxl (γ̂ ) corresponds
to more than one level within the phenotype, the sample is
predicted as ‘unassigned.’ Finally, this function reports (i)
predicted phenotypes, (ii) reported phenotypes (when avail-
able) and (iii) resubstitution error (RE), where:

RE =
(

1 − # of samples predicted correctly
# of samples predicted

)
∗ 100 (6)

Continuous variables. Predictions are made from model 4
and we measure error as the root mean squared error from
the observed phenotype to the predicted phenotype in the
training set.

Extracting regions in a new data set: extract data()

Before prediction can be carried out in a new data set, ex-
pression data at the precise regions used to build the pre-
dictor must be extracted. extract data() can be used
to obtain expression estimates in a new data set at the same
exact regions selected by filter regions() and used to

build the predictor. By using expression from a fixed set of
genomic regions in the new data set, rather than identifying
a new set of predictive regions, we limit the possibility of
overfitting our model.

Phenotype prediction: predict pheno()

Categorical variables. Phenotype prediction in a new data
set occurs as in Equation (5) of test predictor() with
the exception that expression data in this case comes from
a new expression data set (E∗

r ), which contains expression
information for the same set of regions (r) upon which the
predictor was built, but from an independent set of samples
(N*), such that:

E[{E∗
r }r∈S | β̂r ] = β̂rγ

∗ (7)

Here, E∗
r contains the expression estimates at the same set

or regions used in Equation (2), but for the samples in this
new data set (N*). β̂r remains the estimates of mean expres-
sion for each level (l) in phenotype P) from Equation (2).
Here, however, γ ∗ is an l × N* matrix containing the like-
lihood of belonging to each level in the phenotype for this
new set of samples. Phenotype is assigned as described in
test prediction().

Continuous variables. Predictions are made from model 4
and we measure error as the root mean squared error from
the observed phenotype to the predicted phenotype using
the new expression data (E∗

r ) as the predictors.

Assessing accuracy

Categorical variables. The subset of samples within each
data set for which reported phenotypes were available were
used to assess accuracy, such that:

Accuracy = # of samples predicted correctly
# of samples predicted

∗ 100 (8)

Here, the number of samples predicted includes all samples
for which phenotype information was available and whose
reported value was included in our predictor (see Supple-
mentary Table S1). Using sex as an example, all SRA sam-
ples whose sex was reported as ‘male’, ‘M’, ‘Male’, ‘m’,
‘female’, ‘F’, ‘Female’ or ‘f ’ were included in the denom-
inator. However, samples whose reported sex was missing
(NA) or whose reported value was not meaningful (i.e.‘not
collected’, ‘not determined’, ‘Unknown’, etc.) were not in-
cluded in the calculation of accuracy. Sex was, however, pre-
dicted across all samples after accuracy assessment.

Continuous variables. Accuracy was again assessed using
the correlation coefficient (R2) and RMSE between the re-
ported and predicted values, for samples where information
was available.

Sensitivity and specificity. For all phenotypes included in
recount2, accuracy was further assessed by constructing
confusion matrices, to explicitly demonstrate what pheno-
types were predicted when predictions were different from
what was in the reference. Further, sensitivity and specificity
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were both calculated for every level of each predicted pheno-
type. Sensitivity was defined such that Sensitivity = TP/(TP
+ FN), where TP are the number of true positives and FN
are the number of false negatives. Specificity was defined
such that Specificity = TN/(TN + FP), where TN are true
negatives and FP are false positives.

Integration with recount2

Predicted phenotypes are available through the R package
recount. Predicted phenotypes can be included using the
add predictions() function. For each predicted phe-
notype, this function adds reported phenotype, predicted
phenotype, and prediction accuracy. The most recent re-
lease will be used by default; however, older versions will
remain accessible through recount. An example of this
function is provided at https://gist.github.com/ShanEllis/
?add pred.R and demonstrates how to add predicted phe-
notypes to the GTEx data within recount.

Using an established predictor for prediction in a new data set

To predict sex, age, sequencing strategy, or sample
source in a new data set using the predictors pre-
sented herein, users would first obtain the predictor data
using the following: data(prebuilt predictors,
package='phenopredict'). This imports the predic-
tion coefficients and region information for each of the
four predictors: predictor sex, predictor tissue, predic-
tor samplesource, and predictor sequencing strategy. The
predictor object for the phenotype the user is interested in
predicting (i.e. ‘predictor sex’ if interested in predicting sex)
would then be used as the predictordata argument in
the extract data() function within phenopredict.

Use case #1: Sex analysis within the SRA

Sex within the SRA was studied across the 49,657 samples
in recount2. Predicted sex was first summarized overall,
where each sample received a predicted sex of male, female,
or unassigned (when sex could not be disambiguated). Sec-
ondarily, sex was summarized by project. When all the sam-
ples within a project were of the same predicted sex, they
were classified accordingly as female only, male only, or
unassigned only; however, projects with samples of more
than one predicted sex were determined to be ‘mixed’. Fi-
nally, sample size broken down by sex within each project
type was summarized.

Use case #2: Using predicted phenotypes to identify studies
of interest

Predicted phenotypes can be used to identify samples or
studies of interest for future study. To exemplify this, con-
straints were placed on the predicted phenotype data to
search for a study within the cancer studies in recount2
requiring that possible projects must (i) employ paired
RNA-seq, (ii) not have reported sex included in the study
metadata, (iii) have ‘tissue’ as its predicted sample source
(rather than be derived from a cell line) and (iv) have at least
20 samples in the study. Studies fitting these criteria were
considered for use in Use case #3.

Use case #3: Using predicted phenotypes in analyses

After identifying three studies in case study #2 that fit
our criteria (‘SRP029880’, ‘SRP027530’, ‘SRP055438’),
the corresponding abstracts for each study were searched
within recount2 (9). It became immediately clear that
SRP055438 is a Crohn’s study in which some patients had
cancer, rather than a cancer study, and was thus excluded.
Between the other two studies, ‘SRP027530’ had a smaller
sample size (NSRP027530 = 20; NSRP029880 = 54) and the ab-
stract of this study included the breakdown of females and
male samples (22). Thus, despite the fact that sex was not
directly reported in or accessible from the SRA metadata, a
quick search made it clear that sex could be relatively easily
obtained for this study. As we were interested in studying the
effects of sex on an analysis that otherwise did not include
sex in their analysis, we moved to study SRP029880.

Gene-level count data were downloaded fromrecount2
(9) for project SRP029880. Raw counts were scaled to the
total coverage of the sample. Cancer status and sample id
were obtained from the reported SRA metadata field ‘title’.
Differential gene expression analysis was first carried out as
reported in the initial publication (23). Briefly here, DGEA
was carried out using the edgeR (24) R package, which as-
sumes a negative binomial distribution for expression to de-
tect differentially expressed genes. Both normal colon ep-
ithelium (NC) and liver metastases (MC) were compared
to primary colorectal tissue (PC) samples. To recapitulate
the analysis from the initial publication, no outlier genes or
samples were removed, no covariates were included, and no
adjustment was made for the fact that the PC samples were
used in both comparisons. As was done in the initial publi-
cation, to protect against hypervariable genes driving differ-
ences detected, gene dispersion was estimated for the scaled
gene counts for 58 037 genes across 54 samples (18 unique
individuals). For each gene (using the estimated dispersions
calculated), and each comparison (NC:PC, MC:PC) a neg-
ative binomial generalized log-linear model (glm) was fit. To
be in line with the initial publication (23), genes were consid-
ered statistically significant if the p-value was <0.0001 and
the log fold change (logFC) was ≥2. Finally, in Kim et al.
(23) ‘liver-specific genes’ were removed from the MC:PC
comparison in hopes of accounting for the different tis-
sue source of the two sets of samples. The initial publica-
tion noted 309 genes were removed; however, a list with 383
genes was referenced. As the 309 genes list was not pub-
lished, this list of 383 genes (25) was used to remove genes
from the MC:PC analyses herein.

Liver (N = 136) and colon (N = 376) samples from the
GTEx data were utilized for further comparison. GTEx
gene expression data (‘SRP012682’) were downloaded from
recount2 (9). Count data were scaled, and genes with
fewer than 5 reads average across samples were removed
from analysis. Differential gene expression analysis between
liver and colon for these 29,966 genes was carried out
as described above. Liver-specific genes, as defined above,
were again removed from analysis. Concordance at the top
(CAT) plots comparing genes differentially expressed (P-
value < 0.0001 and logFC ≥ 2) between GTEx liver and
colon samples and the results from both the NC:PC and
MC:PC comparisons were generated.

https://gist.github.com/ShanEllis/?add_pred.R
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Availability of data and materials

Analyses were all carried out in R 3.4.1. Code for
the R package phenopredict is available at https://
github.com/leekgroup/phenopredict. Code for prediction of
each phenotype is available at https://github.com/ShanEllis/
phenopredict phenotypes. Use case code is available at
https://github.com/ShanEllis/phenopredict usecase. The R
package recount.bwtool to extract region level data
from samples in recount2 is available at https://github.
com/LieberInstitute/recount.bwtool. The GitHub reposito-
ries that contain code used in this manuscript can be viewed
at the precise version that was used at time of publication.
The full code for these repositories can be downloaded via
GitHub using the particular commit versions in Supple-
mentary Table S8.

List of abbreviations

RNA-Sequencing (RNA-seq); Genotype Tissue Expression
Project (GTEx); The Cancer Genome Atlas (TCGA); Se-
quence Read Archive (SRA); expressed region (ER); gener-
alized log-linear model (glm); log fold change (logFC); col-
orectal cancer (CRC); normal colon epithelium (NC); liver
metastases (MC); primary colorectal tissue (PC); Differen-
tial gene expression analysis (DGEA); Root mean square
error (RMSE); concordance at the top (CAT)

RESULTS AND DISCUSSION

Phenotype prediction

We harnessed the inherent variability of expression data to
accurately predict important biological (i.e. sex, tissue, sam-
ple source) and technical (i.e. sequencing strategy) pheno-
types from the expression data itself. All phenotype pre-
dictors were built using the data available in recount2
(9). Data included within this resource include RNA-seq
data from (i) the GTEx Project (N = 9538), TCGA (N =
11 284) and the SRA (N = 49 657). Region-level expres-
sion estimates (7,17), which are annotation-agnostic, were
used for prediction. To build the predictors included here
and to enable future predictors to be built using this ap-
proach, we have developed the R package phenopredict,
which includes all the necessary functions to build and test
predictors from expression data. Number of both samples
used and regions included for predictions included herein
are summarized in Supplementary Table S1.

Regions used for prediction

For categorical variables, speed of building each predictor
is dependent upon both the number of levels in the cate-
gorical variable and the number of regions used for pre-
diction. Thus, the number of regions used for prediction
has to be minimized while maintaining prediction accuracy.
To optimize the number of regions included for prediction,
eight values (ranging between 10 and 200) for the numRe-
gions argument were tested for each predictor. For cate-
gorical variables, numRegions determines how many re-
gions should be selected for prediction from each level in
the phenotype; thus, the total number of regions can be up

to numRegions × levels. The minimum numRegions value
that maximized accuracy in the training set was then uti-
lized for phenotype prediction. This corresponded to the
numRegions argument being equal to 20 for both sex and
sequencing strategy (resulting in 40 total regions used for
prediction), 100 for sample source (200 total regions), and
80 for tissue (2281 total regions) (Supplementary Figure
S1).

To characterize these regions further, the genomic loca-
tion for each region was summarized. Aside from sex, where
regions were intentionally only selected from the sex chro-
mosomes, no single chromosome contributed >17.5% of
the regions used in any predictor (Supplementary Figure
S2A). Additionally, selected regions spanned the length of
the chromosomes, demonstrating no obvious regional bias
for prediction (Supplementary Figure S2B). Taken together,
this demonstrates that for each of the predictors, regions
across the genome are contributing to prediction. Finally,
to provide functional context, each region was assigned to
a genomic category. As these data are expression data, it
can be expected that most regions will overlap with anno-
tated genes. Among the regions used, depending upon the
phenotype, between 67.5% and 85.9%, overlapped with an-
notated genes (including the 5′, exons, and 3′ regions of the
gene). However, as the underlying data here are expressed
regions, expression outside of annotated exons is not sur-
prising. Further, due to the fact that differential expres-
sion at genes likely drives prediction for biological pheno-
types (sex, tissue, and sample source), we hypothesized that
a higher proportion of regions for these phenotypes would
overlap with annotated genes while regions for technical
phenotypes (such as sequencing strategy) may fall more fre-
quently outside of annotated genes, reflective of expression
differences due to technical artifacts. Here, 32.5% of the re-
gions for sequencing strategy fall outside annotated exons
relative to 14.1%, 15.0% and 19.5% for tissue, sex, and sam-
ple source, respectively, supporting the hypothesis.

Sex prediction

Sex prediction from RNA-seq data benefits from the bio-
logical fact that males and females differ in their sex chro-
mosome composition. To build a predictor for sex from ex-
pression data, the GTEx data were first split into a training
set (N = 4769) and a test set (N = 4769). The 40 regions (20
each from the X and Y chromosomes) that best discrimi-
nated males and females in the GTEx training data were
selected and the predictor built. In the GTEx training data,
when applying the predictor to the data upon which it was
trained, the resubstitution error (see Materials and Meth-
ods section) was 0.1%. Sex prediction was then carried out
in the GTEx test set, an expression data set in which the
data were generated by the same consortia but whose sam-
ples were not included to build the predictor. Prediction ac-
curacy was 99.8% in these data. Sex prediction was carried
out in data from TCGA (N = 11 284), a completely inde-
pendent and well-characterized data set, where prediction
accuracy was 99.0%, and in the SRA samples for which sex
information was available (N = 3640), where accuracy was
86.3% (Figure 3A).

https://github.com/leekgroup/phenopredict
https://github.com/ShanEllis/phenopredict_phenotypes
https://github.com/ShanEllis/phenopredict_usecase
https://github.com/LieberInstitute/recount.bwtool
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Figure 3. Prediction accuracy. Predictors for critical phenotype information were built from expression data available in recount2 for (A) sex, (B) tis-
sue, (C) sequencing strategy and (D) sample source. Samples for which reported phenotype information is available were used to determine prediction
accuracy. GTEx data are in purple, TCGA in pink, and SRA in teal.

A decrease in accuracy within the SRA was expected due
to the heterogeneity of the SRA data; however, to investi-
gate this drop in accuracy more closely, the study-wise ac-
curacy for all SRA studies where sex was reported (3640
samples across 211 studies) was determined. Median study
accuracy was 100% (range: 0–100%), with 72% of studies
having a prediction accuracy >90% (Supplementary Fig-
ure S3A). One relatively large study (’SRP040547’, N =
200) demonstrated notably low accuracy (1.14%) (Supple-
mentary Figure S3B). Upon closer inspection, sex was re-
ported to be ‘male’ in 88 samples and ‘N/A’ in the remain-
ing 112; however, only 44 of the 200 samples were predicted
to be ‘male’ and only one of these 44 samples predicted
to be male overlapped with the samples originally reported
to be male. This 2014 study looked to experimentally in-
fect human host cells with varying Toxoplasma gondii para-
site lineages to generate expression profiles. Discordant pre-
dicted and reported sex possibly suggests that infection al-
tered expression to such an extent on the X and Y chro-
mosomes that accurate sex prediction was impossible; how-
ever, an alternate hypothesis could be that sex was incor-
rectly reported in the SRA metadata. To investigate this
possibility, gene expression data from the Y chromosome
for this study were obtained from recount2. Twenty-four
genes with mean count across samples >100 were included
for analysis. Median expression across these genes for each
sample was subsequently calculated. We hypothesized that
male samples should show high expression at these genes,
while females, who lack a Y chromosome should not. Me-
dian log2(expression) was zero in both samples reported to
be male and those samples predicted to be female, while
samples predicted to be male had a median log2(expression)
of 6.3 (Supplementary Figure S4A). These results suggest

that misreporting in the SRA metadata is likely. Removing
this study from accuracy calculation only improves predic-
tion accuracy by 2.1% to 88.4%, demonstrating that no one
study is solely responsible for the decreased sex prediction
accuracy across the SRA. To assess if misreported sex was
widespread in studies with low sex prediction accuracy, we
carried out the same analysis in all studies with a predic-
tion accuracy <70%, with at least 25 samples, and with at
least ten genes with mean count >100. This analysis demon-
strated that sex is frequently misreported in SRA studies
with low sex prediction accuracy (Supplementary Figure
S4B–D). Taken together, these analyses support the hypoth-
esis that sex prediction accuracy is likely lower across the
SRA due to misreporting in the metadata and that the re-
ported accuracy for sex prediction across the SRA (86.3%)
herein is likely a conservative estimate.

Tissue prediction

Tissue prediction is more complex than sex prediction for
two reasons: (i) region selection must be carried out across
all chromosomes (not just the sex chromosomes) and (ii)
there are more than two levels for which a predictor must
be built. In the case of the data in recount2 (9), the GTEx
training data include information for 30 different tissues.
For each tissue, regions with distinct expression profiles rel-
ative to all the other tissues in the data set were selected for
inclusion in the predictor. For these analyses, 2281 regions
were selected across the autosomes and the sex chromo-
somes. Accuracy was assessed as above for the GTEx and
TCGA data: using the percentage of samples whose tissues
correctly predicted from their expression data as our metric.
Here, tissue prediction was correct in the GTEx training set
97.7% of the time (2.3% re-substitution error). Accuracy for
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tissue prediction was 96.6% in the GTEx test set (N = 4769)
and 76.8% in the TCGA data (N = 7317) (Figure 3B). We
note, however, that TCGA is a cancer data set that includes
samples from cancerous tissues as well as healthy control
tissue. When this analysis was stratified to separate healthy
tissue samples from cancer tissue samples, prediction was
accurate 92.7% of the time in healthy tissue (N=613) and
75.3% of the time in cancerous tissue (N = 6704) (Sup-
plementary Figure S5), suggesting that altered expression
within cancerous tissue samples may benefit from a separate
tissue predictor. Assessment in SRA was less direct as tis-
sue information was infrequently available in the metadata
available from the SRA. Instead, to find a metric to which
we could compare our predicted tissue types in SRA, a natu-
ral language processing tool, sharq (http://www.cs.cmu.edu/
~ckingsf/sharq/) was employed. sharq was previously used
to scrape the abstracts for a subset of studies included in
the SRA, extracting its best guess as to the tissue used for
study from each. Using this tool, tissue type was assigned
to 8951 SRA samples. These predictions (‘sharq beta’) were
previously made available in recount2 (9). Comparison
between the sharq beta predictions and our tissue predic-
tions from expression data were concordant in 51.9% of the
SRA samples (Figure 3B). By using NLP to predict tissue,
accuracy within the SRA is likely a lower bound, and one
could expect to see improved accuracy, had reported tissue
been directly available for comparison.

To assess this claim directly, we compared predictions
from the expression data and sharq beta predictions to re-
ported phenotypes for the subset of SRA samples where
tissue was reported (N = 10 830). Among these samples,
there were 336 unique reported tissues within the SRA with
1442 (13.3%) samples directly matching the predicted tis-
sue from the expression data and sharq beta predictions,
respectively. This relatively low concordance often reflects
nonuniform or distinct coding within the SRA. Specifically,
there are 1692 cases in which sharq beta and expression pre-
dictions are concordant with one another but discordant
with what is reported in the SRA. Of these, 1131 samples
(65.2%) include the predicted tissue in the reported tissue
(i.e. predicted tissue is ‘brain’; reported tissue is ‘brain mixed
human brain’). Of the remaining 561 samples (561/1131,
49.6%) concordant between sharq beta and expression pre-
dictions but discordant with reported tissue, there are a
number of explanations. To assess what could be going
on, we randomly sampled one sample from each of the 32
unique studies from which these 561 samples were gener-
ated. Of these 32 samples, (i) 62.5% of the time (20/32) the
predicted tissue was a more general term for the reported
tissue (i.e. predicted tissue is brain; reported tissue is ‘dor-
solateral prefrontal cortex’), (ii) 15.6% (5/32) of the time the
reported tissue was concordant with the predicted tissue,
but the reported tissue also included diagnosis (predicted
tissue is ‘adrenal gland’; reported tissue is ‘adrenal tumor’),
(iii) 9.3% of the time (3/32) the tissue reported did not in-
dicate an actual tissue (predicted tissue is ‘breast’ but the
reported tissue is ‘tumor’), or (iv) 12.5% of the time (4/32)
the predictions are discordant (i.e. predicted tissue is ‘liver’;
reported tissue is ‘brain’). Taken together these data sug-
gest that true accuracy is likely between the lower bound of
51.9% determined by comparison to sharq beta predictions

and the 87.5% accuracy found in this less rigid comparison
to the subset of SRA samples with defined tissue annota-
tions.

Sequencing strategy prediction

Technical sequencing information, such as whether single
or paired end sequencing was carried out, is important in-
formation for accurate downstream analysis. To determine
whether technical sequencing information could be pre-
dicted from expression data, we set out to predict sequenc-
ing strategy across recount2. This is necessary within the
recount2 resource, as, due to space limitations, raw .bam
files are not stored during alignment (9). As one cannot look
to the file structure of the raw data simply for confirmation
of sequencing strategy, there is further utility, beyond simply
being a proof of principle, in being able to recover this in-
formation from the expression estimates itself. As the GTEx
and TCGA data were all sequenced using a single sequenc-
ing strategy, they could not be used to generate the predic-
tor. Instead, to predict this phenotype, the SRA data were
split randomly, without stratifying by study or phenotype
of interest, into a training set (N = 24 829) and a test set
(N = 24 828). Forty regions that distinguished single end
sequencing libraries from paired end sequencing libraries
were identified and the predictor built. In the training set,
the resubstitution error was 8.9%. Accuracy was then as-
sessed in the SRA test samples (N = 24 828), GTEx (9538)
and TCGA (N = 11 284) samples, where accuracy for se-
quencing strategy prediction was 90.9%, 99.9%, and 94.1%,
respectively (Figure 3C).

Sample source prediction

To utilize data from a human RNA-seq experiment, it is
critical the analyst be aware whether the data were gener-
ated from tissue directly or from a cell line. To predict this
phenotype from the expression data as with the sequenc-
ing strategy predictor, regions were selected from the SRA
training set. Within this training set, 10 777 samples for
which available metadata clearly stated whether the sam-
ple came from a cell line (N = 4837; 44.9%) or a primary
tissue (N = 5940; 55.1%) were used to select 200 regions
upon which the predictor was built. The resubstitution er-
ror for this predictor was 10.8%. To assess accuracy in the
SRA test set samples, all samples for which sample source
information were utilized. Prediction accuracy was 89.2%
in these data. Applying this predictor across the GTEx (N
= 9538) and TCGA (N = 11 284) data demonstrated its
accuracy to be 97.0% and 99.8%, respectively (Figure 3D).
While the error rates within the SRA training and test sets
are higher than the sex and tissue predictors, this is unsur-
prising, as this predictor was built in the more heteroge-
neous SRA samples, where errors in reported phenotypes
are more likely (see ‘Sources of prediction error’) and ex-
pression data were generated across a number of labs.

Continuous variable prediction

In an attempt to predict age, 900 regions associated with
age were selected from the GTEx training data. While pre-
dicted and actual age were correlated in the training data

http://www.cs.cmu.edu/~ckingsf/sharq/
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(R2 = 0.96), the lack of correlation in the test data (R2

= 9.9 × 10−3) suggested limited predictability of this phe-
notype from expression data (Supplementary Figure S6).
This initial attempt to predict age was carried out agnos-
tic to sample tissue of origin. To alternatively test if age
could be predicted within tissue, regions associated with
age were identified across a number of tissues. Given the
limited strength of this relationship (Supplementary Fig-
ure S7), we did not pursue prediction of age from expres-
sion data by this approach further. Subsequently, predic-
tion for BMI and height were predicted using the same ap-
proach but using only the 900 regions for each phenotype
that optimized prediction in the training data. Results again
showed limited predictably of these phenotypes from ex-
pression data. As such, age, BMI and height predictions
have not been included for use. The results from these anal-
yses are available, however, on GitHub (https://github.com/
ShanEllis/phenopredict phenotypes). Given these results,
some phenotypes will likely be better identified through
other means––either by manually curating SRA metadata
(14) or through natural language processing (26).

Variance in prediction across data sets

This approach to prediction utilizes simple modeling and
interpretable predictors; however, the trade-off for simplic-
ity is that extreme expression estimates in future data sets
could pose a problem for accurate prediction. To assess this
as a potential issue, we calculated the variance for each of
the 40 regions used for sex prediction across each data set as
a test case. Two patterns are discernible from the variance
across data sets for these 40 regions (Supplementary Fig-
ure S8). First, we note that there is generally more variance
within the TCGA and SRA data relative to the GTEx sam-
ples. As the TCGA samples contain cancer expression data
and the SRA samples are extremely heterogeneous, both of
which are expected to increase variance in expression esti-
mates, this result is unsurprising. Secondarily, across the 40
sex prediction regions, expression variance is largely similar
across data sets at regions used for sex prediction, suggest-
ing that extreme outliers is largely not an issue. However,
there are a few regions that demonstrate increased variance
in the TCGA and SRA data. Given the overall sex predic-
tion accuracy, this finding suggests that even when more ex-
treme variance is seen within a data set, it does not prohibit
prediction. While more extreme variance does not largely
affect accuracy within sex prediction, a predictor which di-
rectly addresses or controls for these extreme values at the
sample level may see improved accuracy.

Assessing discordance

For each predicted phenotype, we report prediction accura-
cies for samples within each dataset (GTEx, TCGA, SRA).
By including information about the accuracy of our predic-
tions we make it possible for downstream models to incor-
porate this uncertainty. While the overall accuracy for any
of the predicted phenotypes assessed was at minimum 85%,
assessing phenotype accuracy at the sample level is non-
trivial. When available, we have included reported pheno-
type and utilized it to calculate sensitivity and specificity,

but this information is not available for many samples and
even when it is available, it may be incomplete or incorrect.
Phenotype files often use manual data entry and can them-
selves be prone to error (27). For example, when we look
at the 15 GTEx samples whose reported sex and predicted
sex disagree (Supplementary Table S2), 13 of these samples
come from the same individual (‘GTEX-11ILO’). Further,
no samples from this individual had a predicted sex con-
cordant with the sample’s reported sex. Together, this may
mean that this sample has mislabeled sex information. The
remaining two samples (‘SRR809065’ and ‘SRR658331’),
each have 12 other tissue samples from the same subject. In
both cases, the other 12 samples were predicted to be the re-
ported sex, supporting that these two samples are either in-
correct predictions or mislabeled samples that should likely
not be used for further analyses.

To assess discordance levels globally, sensitivity and
specificity were calculated for every level of each predicted
phenotype. Across predictions, mean sensitivity was 78.6%
(range: 18.6–99.1%) and mean specificity was 98.9% (range:
97.2–99.7%) (Supplementary Table S3). Upon closer in-
spection, confusion matrices (Supplementary Tables S4–S7)
demonstrate that these are likely conservative metrics for
tissue prediction, as inaccurate predictions are frequently
made to biologically similar tissues (Supplementary Figures
S9–S11). For example, ‘Fallopian Tube’ was often predicted
when the reported tissue was ‘Ovary’ or ‘Adipose Tissue’
was predicted when the reported tissue was ‘Breast’ (Sup-
plementary Figures S9–S11).

Sources of prediction error

We have reported measures of accuracy for each predictor;
however, both reporting error and prediction error affect
this measure. Prediction error is error attributable to true
limitations of our predictors. This is what we have aimed
to minimize in the construction of each of our predictors.
Reporting error is error attributable to mislabeling or mis-
reporting within the metadata provided with each data set.

To quantify the level of reporting error directly, the se-
quencing strategy phenotype was used. Unlike biological
phenotypes, where the truth is not always known, for se-
quencing strategy, a technical phenotype, whether the type
of reads in the archive (the truth) matched the strategy re-
ported within the SRA metadata could be used to esti-
mate the level of reporting error within recount. The reads
counted by Rail-RNA (10) were compared to the number of
spots reported in the SRA to obtain ‘the truth’. If a sample
was reported to be ‘single end’ sequencing but the counted
reads value exceeded the number of spots reported, the sam-
ple was determined to have a misreported ‘single end’ se-
quencing strategy when it should have been ‘paired end’.
Conversely, for samples labeled paired end where there were
exactly twice the number of spots as reads counted, this was
determined to be a case where a sample was misreported as
‘paired end’ when it should have been ‘single end’. Specifi-
cally, there were 207 samples (207/49 182; 0.42%) from 24
unique projects (24/2034; 1.18%) whose reported sequenc-
ing strategy in the SRA metadata was independently de-
termined to have been misreported within the SRA. This

https://github.com/ShanEllis/phenopredict_phenotypes
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suggests that sequencing strategy was misreported approx-
imately 1% of the time within the SRA.

In the context of the predictions for sequencing strategy
made from the expression data, in the SRA training data,
of the 224 samples determined to likely be misreported, 207
(92.4%) were also identified as discordant in the expression
predictions, suggesting that the true accuracy of sequenc-
ing strategy prediction is 92.0% (22834/24828), rather than
the reported 91.1%. Similarly, in the SRA test data, 239 of
the 251 (95.2%) samples determined to have been misre-
ported were also discordant between reported and predicted
sequencing strategy, suggesting that the true accuracy of se-
quencing strategy prediction is 92.8% (22798/24829), rather
than the 90.9% reported accuracy. This reporting error neg-
atively affects our accuracy measure, further supporting
that the accuracy measures we have are reported are con-
servative, lower-bounds for accuracy.

Use case #1: sex analysis within the SRA

There is a long history within the biomedical sciences favor-
ing the study of males relative to females (15,16). To assess
the prevalence of this bias within the SRA, we have ana-
lyzed the overall breakdown of sex in a number of ways.
First, we report that overall within the SRA, 52.1% of the
samples are predicted to be female, 40.4% are predicted to
be male, and 7.4% could not be disambiguated, suggest-
ing that there is no evidence for a male sex bias within the
SRA (Figure 4A). However, one important caveat is that
we do not yet have a handle on how many replicate samples
there are within the SRA. Looking specifically at a large
study within the SRA (SRP025982, N = 1720) (28), it be-
comes clear that this study, in assessing the accuracy and
reproducibility of RNA-Seq across platforms and labs, ana-
lyzed the same samples, which happened to be female, many
times. While this is a clear example of a case where replicate
samples are biasing the sex breakdown within SRA, we do
not yet have an estimate for how widespread this is across all
samples within recount2. Having an idea of the number
of repeated measures for each individual within the SRA
in the future will help to improve understanding of the of
overall breakdown of sex across the SRA.

When broken down by project type, it becomes clear
that almost half of the projects within the SRA (43.1%) in-
clude exclusively female samples. Of the remaining projects,
18.2% include exclusively male samples, 1.2% include only
samples that could not be disambiguated, and 37.4% of
studies include some combination of predicted sexes (Fig-
ure 4B). For projects where predicted sex includes samples
that are either female and unassigned or male and unas-
signed, one could reasonably assume that in many of these
cases, all samples were likely of one biological sex; however,
we will leave it up to future investigators to decide if this is
a fair assumption to make for their purposes.

Use case #2: Using predicted phenotypes to identify studies
of interest

There is a wealth of expression data within recount2 (9);
however, with regards to phenotype information, it is only
currently possible to filter on information contained within

the abstract. Using predicted phenotypes can help to fil-
ter out and identify studies of interest to a particular re-
searcher.

For example, we were interested in identifying a cancer
study in which sex was not reported. We hoped to assess
the effect of including predicted sex in the analysis of these
data. To identify such a study, we filtered through cancer
studies included in the SRA to identify studies fulfilling the
following criteria: expression data (i) predicted to be gen-
erated from paired end sequencing, (ii) where sex was not
reported in the SRA metadata, (iii) where the data were pre-
dicted to have come from a tissue (rather than a cell line),
and finally (iv) that had at least 20 samples. Upon apply-
ing these filters, we identified three studies within the SRA
meeting these criteria.

Use case #3: Using predicted phenotypes in analyses

Having identified studies of potential interest, we moved
forward with study SRP029880 to assess the utility of the
phenotypes we predicted (see Methods). This study includes
expression data from 54 samples from 18 unique individu-
als. For each individual, RNA-seq was carried out on a nor-
mal colonic epithelial sample (NC), the primary colon can-
cer epithelium (PC), and a metastatic cancer sampled from
the liver (MC). The initial analysis sought to identify gene
expression changes that correspond to aggressiveness of col-
orectal cancer (CRC). To do so, they authors carried out
differential gene expression analyses between NC and MC
samples (identifying 2,861 significant genes) and between
MC and PC samples (identifying 1846 significant genes).
Significance was defined such that P < 0.001 and logFC ≥ 2.
No covariates were included for analysis. The authors then,
in an attempt to remove the effects of the fact that the MC
samples were sampled from the liver while the PC and NC
samples were sampled from the colon, filtered out ‘liver spe-
cific genes (309 genes)’ using the TiGER database (25) from
their MC:PC results.

Here, with prediction data available, we can directly and
more appropriately correct for tissue differences between
samples and include sex in the differential gene expres-
sion analysis (DGEA). Given the experimental design, we
checked to ensure that, for each individual, the same sex was
predicted across each of the three samples. Predicted sex was
concordant across samples within individual for all samples
included for study. Analysis was first carried out as in the
initial publication (23), comparing NC:PC and MC:PC. We
note, however, that expression data utilized herein were ob-
tained from recount2 (9). Thus, rather than using nor-
malized FPKM, as was done in Kim et al. (23), expression
was instead summarized by scaling the gene counts (see Ma-
terials and Methods). These expression estimates were used
to carry out DGEA using the same software and cutoffs as
in Kim et al. (23). Despite using the same software, settings,
and thresholds used in Kim et al. (23), fewer genes (41.1%
and 66.9% less in MC:PC and NC:PC, respectively) were
detected to be significantly differentially expressed in our
analysis (Figure 5A). As a result, all further comparisons
utilized the DGEA results from our analysis, both with and
without covariate inclusion to remove the impact of the dis-
crepancy in number of genes identified.
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Figure 4. Predicted sex across the SRA Plots summarize predicted sex across the SRA showing (A) the distribution of predicted sex across SRA samples,
and (B) the distribution of project type, broken down by the predicted sex of samples in each project.

To assess the effects of covariate inclusion on the anal-
ysis, DGEA was carried out with either predicted sex or
both predicted sex and predicted tissue as covariates. For
each of the NC and PC samples, predicted tissue was either
‘colon’ or ‘small intestine.’ Within the MC samples, which
were sampled from the liver, four were predicted to be in-
testinal tissue, the site of the primary lesion, and fourteen to
be ‘liver’, the site of the metastases. Interestingly, cancer cell
lines do not always recapitulate the tissue from which they
were obtained, suggesting that cell lines derived from metas-
tases could, in certain cases, recapitulate the primary tissue
from which they were derived (30,31). Here, these findings
suggest, unsurprisingly, that the same may be the case at the
tissue level. Thus, if the MC samples were all simply labeled
‘liver’, not only would the results change but the analysis
would be completely confounded by tissue. In this case, us-
ing predicted phenotypes likely allows for a more appropri-
ate differential gene expression analysis to be carried out.

The effects of covariate inclusion were assessed using con-
cordance at the top (CAT) plots (29) comparing concor-
dance between genes identified as significant with and with-
out covariate inclusion. Upon inclusion of sex as a covariate
in the analysis, the results remain largely unchanged, where
9 of the 10 most significant genes and 97 of the top 100 genes
between analysis are concordant for the MC:PC compari-
son and 8 of 10 and 91 of 100 genes are concordant for the
NC:PC comparison (Figure 5B), suggesting that inclusion
of sex had little effect on the results of this analysis. How-
ever, upon inclusion of both predicted sex and predicted tis-
sue, the results are dramatically different, with concordance
at only 1 of the 10 most significant genes and 24 of the top
100 genes between analyses (Figure 5C). As the MC sam-
ples were obtained from a completely different tissue, this
finding suggests that many of the differences reported as sig-

nificant between MC and PC samples simply reflect tissue
differences between the samples, rather than differences as-
sociated with cancer aggressiveness, despite the removal of
‘liver-specific genes.’

To test this directly, the level of overlap between the afore-
mentioned differential expression analyses and a differen-
tial gene expression analysis comparing healthy liver and
colon in a completely independent set of samples from the
GTEx Project (Supplementary Figure S12A) was assessed.
Here, we hypothesized that if the MC:PC comparison is de-
tecting tissue differences, rather than cancer related differ-
ences, the comparison between MC:PC differential gene ex-
pression and healthy liver and colon tissue from the GTEx
data would show more overlap than would the NC:PC com-
parison to the GTEx data. The results demonstrate that 374
of the top 1000 genes demonstrating differential expression
in the GTEx data also are also in the top 1000 most differ-
entially expressed genes in the Kim et al. MC:PC compar-
ison, relative to overlap of 31 and 26 of the top 1000 genes
in either the NC:PC and MC:PC comparison where tissue
has been included in the model, respectively (Supplemen-
tary Figure S12B). These results support that, despite re-
moving the ‘liver-specific genes’ (25) from the MC:PC com-
parison, the differential expression results still reflect tissue
differences.

Finally, while inclusion of predictions improves the ac-
curacy of this analysis, we note that the the inclusion of
predicted phenotypes in downstream analyses is currently
limited, as sex and tissue predictions were made from the
expression data, the same data upon which the predictions
are modeled as covariates to look for expression differences.
Novel statistical approaches will be required to most appro-
priately utilize these predictions in downstream analyses.
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Figure 5. Differential gene expression analysis. (A) Number of genes reported significant in Kim et al. (23) and the analyses carried out here using their
data obtained from recount2. (B, C) Concordance at top (CAT) plots (29) comparing DGEA. The number of genes concordant between analyses are
plotted, where perfect agreement between analyses’ results would fall along 45-degree line (gray). DGEA where no covariates were included for analysis
(x-axis) were compared to (B) DGEA with sex included as a covariate and (C) DGEA with both sex and tissue included as covariates. NC = normal colonic
tissue; PC = primary colorectal cancer; MC = metastatic cancer (liver).

CONCLUSION

We demonstrate that accurate phenotype prediction from
expression data is possible for both biological and techni-
cal phenotypes and demonstrate, through three use cases,
how predicted phenotypes can be utilized going forward.
We have built predictors for sequencing strategy, sex, sam-
ple origin, and tissue. These predictors have been applied
to the samples within recount2 (9) and can be applied
to expression data generated in the future. Predicted phe-
notypes were generated using the R package phenopre-
dict and can be accessed in the R package recount using
the add predictions() function. We demonstrate how
predicted phenotypes can be used to characterize the sam-
ples currently within recount2, to identify samples and
studies of interest for future study, and how predicted phe-
notypes can be incorporated into analyses to improve ac-
curacy. Taken together, the availability of this critical phe-
notype information across the 70,000 samples currently in-
cluded within recount2 (9) make downstream analyses
with these expression data feasible.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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