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Abstract

Background—It has been known for more than 70 years that citrate is a major component of 

bone; comprising 1–2% weight of bone, and a concentration that is ~5–25-fold greater than the 

citrate concentration of most other tissues. This relationship exists in humans and in all 

vertebrates; which reveals that it is an indispensible and essential structural/functional component 

of bone. However, its implications relating to the structure and properties of bone, to the process 

of bone formation and regeneration, to bone disorders, and other issues have remained largely 

unknown and unaddressed. Recent studies have identified citrate as a structural component of the 

apatite nanocrystal/collagen complex, which is essential for imparting the bone properties of 

stability, strength, and resistance to fracture. This raises the issues of the status of citrate, and its 

source in normal bone formation.
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Methods—The present report investigated the association of citrate with the hydroxyapatite 

(mineral) component and with the collagen component of human cortical bone preparations. The 

bone preparations were subjected to demineralization procedures to extract the mineral 

component; followed by extraction of the collagen component in the residual demineralized bone. 

The extracts were assayed for citrate, calcium, and collagen.

Results—The results reveal, for the first time, the existence of two major pools of citrate in bone. 

One pool comprising ~65–80% of the total citrate is associated with the hydroxyapatite 

component; and another pool comprising ~20–35% of the total citrate is tightly bound to the 

collagen component of the apatite nanocrystal/collagen complex.

Conclusions—Citrate is an indispensible chemical and structural component of the apatite 

nanocrystal/collagen complex; and is required for manifestation of the biomechanical properties of 

bone. These results lead to a new concept of bone formation in which citrate incorporation 

(“citration”) in concert with mineralization must be included in the process of bone formation. 

Along with this relationship, osteoblast citrate production has recently been identified as the likely 

source of citrate. It is now evident that the role of citrate in normal bone formation and its 

implications in bone disorders and defects, and in bone repair and regeneration, now requires 

renewed attention and support for much needed research.
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Introduction

Dickens in 1941 [1] first reported that bone contained extremely high concentrations of 

citrate; a relationship that has been confirmed and established by many pursuant reports 

(reviewed in [2]). Most reports estimate the citrate concentration to be in the range of ~20–

100 μmols/gram dry weight. For comparison with soft issues, this would translate to ~5–25 

μmols/gram wet-weight; which contrast with soft tissues of <1μmol/gram wet-weight (with 

some exception such as prostate ~10 μmols/gram). About 90% of the total citrate found in 

the body resides in bone. Most notably, this high citrate concentration in bone is conserved 

in all “osteo-vertebrates”; as an evolutionary advancement from “chondro-vertebrates”. This 

attests to the fact that citrate must have an indispensable important role in the structural and 

functional properties of normal bone.

The discovery of this citrate relationship over seventy years ago initiated intense research by 

early investigators into the source and role of citrate in the structure of bone, its implications 

in bone formation and resorption, and other critical issues. However, these issues remained 

largely unresolved and/or highly speculative; due mainly to the absence of necessary 

research methodology and technology. Moreover, beginning ~1975, interest and research 

into these relationships of citrate as a major component of bone declined. Consequently, 

contemporary clinicians and biomedical investigators have largely ignored, or are unaware 

of the existence of citrate in bone; to the extent that it is not even described in recent 

textbooks and reviews of bone physiology and pathology [3,4].
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However, recent NMR/x-ray diffraction studies of bone by Hu et al., [4–6] and by Davies et 

al., [7] have identified that citrate is a bound component of the apatite nanocomposite-

collagen complex; and is essential for imparting the important biomechanical properties of 

bone such as its stability, strength, and resistance to fracture. This relationship reveals an 

indispensable role of citrate that has critical implications in virtually every aspect of bone; 

such as skeletal growth and development, injury and bone disorders, bone repair and 

regeneration, and more. It is especially notable that, despite the growing application of bone 

implants and regenerative medicine for osteoinductive bone formation, there exists no 

reported studies of the status of citrate in the bone product as compared to the host normal 

bone formation. This is especially relevant since osteogenesis that results in a bone product 

that does incorporate citrate as exists in normal bone, will not exhibit the manifestation of 

the important biomechanical properties of normal bone [4–6].

In this report, we focused on the status of citrate in bone in relation to the apatite/collagen 

complex. The results reveal (for the first time as best that we can determine) the existence of 

two important major pools of citrate: apatite-associated citrate; which, in combination with 

calcium, is readily extracted by demineralization of bone; and following demineralization, 

another pool of citrate that is strongly bound to the collagen complex. Thus, a new 

understanding is evolving of the citrate relationship in bone; which has important 

implications in normal bone formation, in bone disorders and bone defects, and in 

osteoinductive regenerative medicine.

Methods

For this study, we believed it to be important to establish the status of zinc in human bone; 

rather than from animal bone studies to be translated to human bone. To achieve this we 

elected to employ bone preparations that we obtained from LifeNet Health, Inc (hereafter 

referred to as LifeNet). The studies were conducted with their GC-mineralized cortical 

particulate (250–300 micron) preparations. The bone preparations are obtained from 

deceased donor material. The donors have been screened and found to be medically suitable 

for use as a bone donor. The cortical bone is sourced from long bones (femur, tibia, fibula or 

humerus). The cortical bone is milled into chunks of approximately 1 cm then ground to the 

final 250–1000 micron range using a Tekmar grinder (the material is kept cool during 

processing). Final sizing is accomplished using USP sieves. All work is preformed 

aseptically in a clean room, and processed using the LifeNet proprietary Allowash XG 

technology (described at (http://www.accesslifenethealth.org/innovation/allowash_xg) with 

a final low dose of gamma irradiation to allow for a sterility claim. In summary, the process 

“removes greater than 99% of bone marrow and blood elements from the internal bone 

matrix....and renders allograft bio-implants sterile without compromising their 

biomechanical or biochemical properties.” In addition, our results below demonstrate that 

the mineralized cortical bone preparations exhibited citrate and calcium levels within the 

expected range of reported bone concentrations. Therefore, we are confident that these bone 

preparations are highly appropriate for the determination of the status of citrate in human 

bone; and likely better than we could achieve by laboratory preparations of human bone 

samples.
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The mineralized cortical bone particles were subjected to various extraction procedures in 

accordance with the aim of the experiments. Therefore, the specific extraction procedures 

are described below, along with the description of the experiment and the results obtained.

The bone extracts were assayed for citrate by the acetic anhydride/pyridine method [9]. 

Calcium was assayed with the calcium colorimetric assay kit (BioVision, Inc). Collagen was 

determined by the Sirius Red collagen reagent kit as described by the vendor (Chondrex, 

Inc). Proteins in the extracts were separated by 8% SDS-polyacrylamide gel electrophoresis 

and stained with Coomassie blue; and collagen was identified by Western blot analysis with 

collagen type 1 antibody (Sigma-Aldrich).

The experiments were conducted in duplicate or triplicate to establish the consistency of the 

results, which are represented in the following Results section.

Results

Since reported citrate concentrations of normal bone vary considerably over a range of ~20–

100 μmols/gram, we determined the concentration of total citrate in bone particle 

preparations that were to be employed in this study. For this, we “solubilized” the bone 

particles in 1M HCl with stirring at 65C for 1 hour; followed by homogenization in a motor-

driven Dounce homogenizer; followed by sonication until the presence of bone particles was 

no longer visible. This extract was assayed for citrate to represent the total concentration of 

citrate in the mineralized bone. The preparations generally exhibited total citrate 

concentrations from ~60–100 μmols/gram (~1.2–2.0% gram weight) which is in the 

expected range of citrate values as reported by others [2]. Consequently, we established that 

this source of human bone was suitable for the following studies of the status of citrate in 

bone.

The major aim of this study was to determine the relative pool of the total citrate in bone 

that might be associated with the hydroxyapatite component and with the collagen 

component, both of which comprise the hydroxyapatite nanocomposite/collagen complex of 

bone. We focused on calcium because of its relationship for the binding of citrate in the 

mineral apatite component and in the apatite-collagen complex component (discussed 

below). To achieve this, we employed procedures to obtain serial extractions of the 

mineralized human cortical bone preparations designed to obtain the apatite mineral fraction 

(demineralization), followed by extraction of the protein/collagen component of the 

demineralized bone. This required a demineralization procedure that would result in 

efficient extraction of the mineral component without accompanying extraction of the 

collagen component.

Citrate composition of cortical bone extracted with 0.5 M HCl

The extraction procedure employed in the following experiment is represented in Figure 1. 

The mineral component was obtained by employing a relatively mild HCl extraction; so as 

to eliminate or minimize any accompanying extraction of collagen from the apatite-collagen 

complex. The procedure was based on a demineralization process employed by LifeNet; and 

also shown to minimize accompanying protein extraction [10]. The cortical bone particle 
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preparation was suspended in 0.5 M HCl at room temperature for 5 minutes with constant 

stirring; after which the suspension was centrifuged at 11,000 g for 10 minutes and the S1a 

supernate was collected. The residual bone particle pellet was again re-suspended in fresh 

0.5 M HCL and the procedure repeated to obtain the S1b supernate; followed by repeated 

extractions to obtain S1c, S1d, and S1e supernates; the total of which collectively comprise 

the S1 extraction of the mineral component (i.e., the apatite component) of the bone particle 

preparation. As shown in Figure 1, extractable calcium was successively decreased and was 

complete by the end of the demineralization procedure. Therefore, “S1 total” reflects the 

total extractable calcium obtained by this 0.5 M HCl demineralization process.

The P1 pellet represents the residual demineralized bone preparation, which contains the 

protein/collagen component. We employed the guanidine-HCl procedure [10] to extract the 

protein component from the P1 pellet (Figure 1). The method extracts essentially all of the 

bone collagen, which comprises more than 90% of the extracted proteins.

Figure 1 shows that 90% of the total calcium and 66% of the total citrate are recovered in 

the mineral extract (S1) of the bone. Nearly all of the remaining citrate is recovered in the 

guanidine-extracted protein component of bone (S2 and S3); which contained no detectable 

calcium. While this demonstrates negligible calcium in S2, it does not necessarily reflect the 

calcium level in S3. We considered that the presence of 0.5 M EDTA in S3 could strongly 

bind calcium, and therefore would not be detected by the calcium assay chromogen (0-

cresolphthalein) that we employed. We determined this possibility by adding known 

concentrations of calcium to aliquots of the S3 extract, and by adding EDTA to known 

concentrations of calcium; and observed that EDTA prevented the detection of calcium. 

Therefore the status of calcium in the S3 extract is unknown; but we deal with this issue in 

the experiment below (Figure 2).

It was important to establish the expectation that the mineral component contained minimal, 

if any, extracted collagen; and that the guanidine protein extracts contained virtually all of 

the collagen component of the bone preparation. The Sirius assay indicated that collagen 

was negligible in the 0.5 M HCl demineralization S1 extract; and that essentially all of the 

collagen was extracted by guanidine extracts S2 and S3 (Figure 1). Confirmation was 

obtained by SDS-PAGE electrophoresis and Western blot analyses of the extracts. The 

results (Figure 1) demonstrate that the demineralization extract (S1) contained little 

detectable protein and no detectable collagen. Slight detection of protein is evident in the 

residual S4 extract; which did not contain detectable collagen; and the guanidine extracts 

(S2 and S3) contained essentially all of the collagen extracted from the bone. Therefore the 

demineralization procedure with 0.5 M HCl under the mild conditions achieved the 

requirement of effective demineralization without accompanying extraction of collagen. 

Thus, it seems well-founded from these results that the citrate pool (~33% of the total 

citrate) that resides in the demineralized bone is strongly bound to a collagen complex.

Citrate composition of cortical bone extracted with EDTA

For further corroboration, we then conducted an experiment in which the HCl extraction of 

the mineralized cortical bone preparation was replaced by EDTA treatment of the 

mineralized bone. This procedure eliminates the possible acid hydrolysis and provides a 
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more specific extraction of calcium to relate to citrate extraction. The EDTA extraction 

(Figure 2) was followed by the same guanidine-HCL extractions of the residual 

demineralized bone preparation as employed in the preceding experiment (Figure 1). Since 

EDTA interferes with the calcium assay method that we employ, we determined calcium in 

these extracts by energy dispersive x-ray fluorescence analysis. The results (Figure 2B) 

show that essentially all of the extractable calcium in the mineralized bone preparation was 

recovered in the EDTA S1 extract; along with ~78% of the total citrate. The Sirius assay of 

S1 (not shown) was negative; thereby demonstrating the absence of extracted detectable 

collagen by the EDTA demineralization procedure.

The guanidine extracts (S2 and S3) contained ~16% of the total citrate and no detectable 

calcium. However the residual protein extract S4 exhibited some citrate and calcium; which 

is possibly due to calcium and citrate release from some collagen following the guanidine 

extraction. Nevertheless, the EDTA extraction of calcium revealed the existence of two 

pools of citrate very similar to that obtained by the 0.5N HCl demineralization procedure. 

Collectively, these results reveal that ~75% of the citrate component in bone is associated 

with the apatite nanocrystal structure; and ~25% of the total citrate is complexed 

predominantly with the collagen component of the residual protein in the demineralized 

bone.

Citrate composition of LifeNet demineralized cortical bone

The preceding experiments were conducted with the mineralized human cortical bone 

preparations, which we demineralized in accordance with the procedures described above. In 

the following experiment, we determined the status of citrate in the demineralized human 

cortical bone preparation obtained from LifeNet (DGC-Demineralized Cortical Particulate, 

250–1000 microns). The demineralized bone particles were subjected to the procedure we 

employed in Figure 1, which we employed for the mineralized cortical bone preparation. 

Table 1 shows that the guanidine extracts (S2+S3) contained ~82% of the total citrate and 

~98% of the collagen. Thus it is evident that the LifeNet demineralized bone preparation 

retained the citrate pool that is strongly complexed with collagen; as we identified to exist in 

mineralized bone. It is also evident that the major pool of citrate that we identified to be 

incorporated in the apatite component of the mineralized bone has been largely extracted by 

the demineralization process. The values presented in Table 1 are based on the weight of the 

demineralized bone preparation, which is not comparable to the preceding experiments 

based on the weight of mineralized bone preparation. Nevertheless, these observations 

corroborate the results obtained in the preceding experiments relative to the identification of 

the pools of citrate.

Citrate composition of cancellous bone extracted with 0.5 M HCl

The preceding experiments were conducted with human cortical bone preparations. The 

following experiment was performed with human cancellous bone preparation obtained 

from LifeNet (OCAN-Mineralized Cancellous Particulate; 250–1,000 micron). The purpose 

was to determine if the two pools of citrate identified in cortical bone also existed in 

cancellous bone.
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The cancellous bone preparation was extracted as shown in Figure 1A for cortical bone. The 

results (Table 2) revealed a citrate distribution pattern in cancellous bone that is nearly 

identical to cortical bone (Figure 1B). The total citrate was comprised of the two major 

pools identified in cortical bone; i.e., the mineral (apatite) pool, and the tightly bound 

collagen complex pool. However, whereas the citrate pool in the mineral component of 

cortical bone represented ~65–80% of the total citrate, in the cancellous bone it comprised 

~50% of the total citrate. Therefore, the % of total citrate bound to collagen is greater in 

cancellous versus cortical bone. Nevertheless, the results with cancellous bone further 

established the relationship of the presence of a major citrate pool associated with the 

hydroxyapatite component, and a major citrate pool that is bound to the collagen complex.

Discussion and conclusion

The presence of high citrate levels in bone has been well established for more than 70 years. 

Yet, the status of citrate in relation to the chemical/structural organization of bone has 

remained unknown. In this report, we identify for the first time that the total citrate in 

mineralized bone consists of two major and distinct pools of citrate. In cortical bone, one 

pool of citrate is associated with the mineral component of bone and comprises ~65–80% of 

the total citrate; and another pool of citrate is strongly bound to the collagen complex and 

comprises 20–35% of the total citrate. However, we must recognize that the former possibly 

includes some “free” citrate mainly as calcium citrate; which, if so, might comprise ~5–10% 

of the total citrate as reported to exist in dentine [11]. In any event, this does not detract 

from the identification of the two major pools of citrate as we have described. Cancellous 

bone contains similar total citrate as compact bone; and also exhibits the two major pools of 

citrate although the distribution is of the order of ~50% in each pool. Although this initial 

study focused on a limited source of human bone preparations, we believe that further 

studies will demonstrate that this citrate relationship will likely exists in all bones and in all 

vertebrates.

The identification for the first time of these two major pools of citrate was dependent upon 

conditions that would permit the demineralization of the bone to obtain the mineral (apatite) 

component, without extraction of the collagen component as a “contaminant” of the mineral 

extract. Under such conditions, the residual demineralized bone should retain the citrate pool 

that is bound to the collagen complex. We achieved these criteria by employing 0.5 M HCl 

under mild extraction conditions for effective demineralization of the mineralized bone 

preparation, which did not contain any detectable collagen; followed by extraction of the 

collagen component of the residual demineralized bone (Figure 1). Similar results were 

obtained with EDTA extraction under conditions in which the calcium is extracted from the 

mineralized bone in the absence of accompanying collagen extraction.

HCl is widely used for demineralization; however, higher HCl concentrations, longer 

extraction periods, and other bone disruptive conditions have generally been employed. 

Those conditions will result in the extraction of the collagen complex. Notably, the amount 

of extracted collagen increases greatly when the HCl concentration exceeds 0.5 M [9]. For 

these reasons, earlier studies (such as [11,12]) failed to identify the pools of citrate as we 

now describe. Instead, such studies reached conclusions that all or most of the bone citrate 
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existed as a peptide/protein complex; which was extracted with the mineral component. We 

experienced this when we treated the mineralized bone particles with 1.0 M HCl at 65C 

followed by homogenization. With this protocol, nearly all (>90%) of the total citrate was 

extracted with the protein component (including collagen); which is not representative of the 

in situ status of citrate in bone.

An important issue is the relationship of the two pools of citrate to the structural and 

functional properties of bone. Some early investigators [13,14] proposed that the citrate in 

bone is incorporated at the surface of the hydroxyapatite nanocrystal; however, the 

technology required to establish that relationship did not exist. Hu et al., [4–6] recently 

reported that the citrate is strongly bound in the apatite nanocrystal at the surface of the 

collagen fibril; thereby forming an apatite-citrate-collagen nanocomposite. The importance 

of the citrate incorporation is that it limits the size of the apatite nanocrystal at ~3 nm, which 

is optimal to obtain the mechanical properties, to increase stability, to prevent fracture; and 

also to provide better biocompatibility in tissue repair [4–6]. In a subsequent report, Davies 

et al., [7] proposed that the citrate bridges the layers of mineral platelets that comprise the 

mineral component of bone. Seemingly, these are opposing views when one assumes that a 

single pool of citrate exists in the apatite nanocrystal/collagen complex. However, our 

identification of the two major pools of citrate supports the presence of a citrate pool in the 

apatite (mineral) component, and another citrate pool that is tightly bound to the apatite 

nanocrystal/collagen complex.

The integration of our results with the observations and interpretations presented by the 

studies of Hu et al., [4–6,15] and Davies et al., [7], leads us to propose a new concept as is 

represented in Figure 3. This concept considers that most of the citrate in cortical bone (and 

~50% in cancellous bone) is associated with the mineral component, possibly as proposed 

by Davies et al., The concept also supports the view of Hu et al., that there exists a citrate 

component which is strongly bound as a collagen complex. This seems evident from the 

existing pool of citrate that is not extracted by the demineralization process; and which 

appears with the extraction of collagen from the resulting demineralized residue. While this 

concept seems reasonable based on presently available information, we recognize that 

subsequent research is required to establish its validity, or to require modification of the 

concept. In any event, it is becoming increasingly evident that the requirement for citrate 

incorporation in normal bone formation is as essential as calcium or any other recognized 

component. It is apparent that the importance of citrate incorporation in bone should no 

longer be ignored or minimized.

It also becomes evident that the incorporation of citrate in bone is not a random process; but 

must be coordinated with mineralization during formation of the hydroxyapatite/collagen 

complex. However, the source of citrate required to achieve this event during bone 

formation remains unknown. A widely held early and contemporary view is that the blood 

plasma citrate is the source of citrate in bone; especially in combination with the transport of 

calcium from plasma into bone. However, evolving evidence casts serious doubt regarding 

plasma citrate as the source of citrate [2,16]. Instead, the more likely source of citrate is its 

synthesis and production by the osteoblasts during bone formation. This is supported by our 

recent studies, which now demonstrate that the osteoblasts are specialized functional 
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metabolic citrate-producing cells; and that this capability occurs during osteogenic 

differentiation of the mesenchyme cells [2,16]. In addition, the osteoblasts do not exhibit 

expression of the citrate transporter (NaCT; Slc13A5) that would be necessary for the 

transport of citrate from plasma [16]. Therefore, osteoblast de novo citrate production and 

incorporation into bone (“citration”) likely occurs in concert with mineralization during 

bone formation as represented in Figure 4. This concept of the formation of a 

mineralization-citration-collagen complex should replace the conventional contemporary 

view, which has excluded citrate incorporation from the apatite-collagen complex in bone 

formation.

The concept provides a new understanding that should be considered in relation to the 

factors and conditions associated with the formation of new bone that represents the 

structural-functional properties of normal bone. It is also important for understanding the 

implications of citrate in bone disorders. For example, vitamin D-deficient rickets is 

characterized by loss of bone citrate, and is treatable by vitamin D and citrate therapy [1,17–

20]. Yet, the role of vitamin D in bone citrate metabolism and production remains unknown. 

Also, it is highly likely that the loss of citrate contributes to the problem of bone fractures 

associated with osteoporosis; especially since vitamin D and zinc (also involved in citrate 

metabolism [2]) are implicated in osteoporosis treatment [21,22]. However, no reported 

studies of citrate in osteoporosis exist.

The results of this study conducted with mineralized and demineralized human bone 

preparations calls attention to the emerging development of the employment of implanted 

bone preparations, synthetic platforms, and/or stem cell therapy to induce osteogenesis for 

the generation of new and replacement bone. An optimal goal of bone regeneration is that 

the osteoinduced bone product should exhibit the structural/functional/biomechanical 

properties of the normal native bone. This cannot be achieved if the regenerative bone 

process does not include the appropriate incorporation of citrate into the structure of the new 

bone. However, there is no information or reported studies relating to the citrate content and 

its incorporation in osteoinductive bone products that results from implanted human bone 

preparations, or synthetic platforms, or stem cell therapy. Also no information exists 

regarding the conditions and factors that might be required to induce the “citration” process 

in regenerating bone. In summary, the evaluation of the “quality” of the newly generated 

bone requires the determination of the status of citrate.
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Figure 1. The relative citrate and calcium composition in the mineral and protein extracts of 
human cortical bone preparation
(A) The demineralization/protein extraction procedure. (B) Citrate and calcium levels of the 

bone extracts (%=% of total). (C) Determination of protein (Coomassie Blue stain) and 

collagen (Western blot) composition of the bone extracts.
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Figure 2. The relative citrate and calcium composition in the mineral and protein extracts of 
human cortical bone preparation demineralized with EDTA
(A) The demineralization/protein extraction procedure. (B) Citrate and calcium levels of the 

bone extracts. (% values are % of “Total”).
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Figure 3. 
Concept of the incorporation of two pools of citrate in the structure of the apatite 

nanocrystal/collagen complex.
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Figure 4. 
The concept of the role of the osteoblasts for citrate production and the process of citration 

for the incorporation of citrate in bone formation.
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Table 1

Citrate, calcium and collagen composition of life net demineralized cortical bone extracts.

Extract CITRATE μmols (%) CALCUIM μmols (%) COLLAGEN* rel values (%)

S1 0.36 (7.2) 5.0 (65.8) 3.0 (0.9)

S2 0.13 (2.6) 2.5 (32.9) 148.2 (44.1)

S3 3.97 (79.4) 0 (0) 180.9 (53.7)

S4 0.54 (10.8) 0.1 (1.3) 4.6 (1.3)

Total 5.00 (100) 7.6 (100%) 336.7 (100)

% is the % of the “Total” values

*
Collagen values are relativesirius red assay values.
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Table 2

Citrate and calcium distribution in human mineralized cancellous bone extracts.

Extract* Citrate μmols (%) Calcium μmols (%)

S1a 0.549 99.1

S1b 0.316 38.8

S1c 0.147 17.0

S1d 0.097 0

S1e 0.054 0

S1 total 1.163 (51) 154.9 (100)

S2 0.401 (19) 0 (0)

S3 0.633 (28) 0 (0)

S4 0.029 (1) 0 (0)

Total 2.226 (100) 154.9 (100)

*
Extracts are described in Figure 1. %=% of Total.
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