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Abstract
Forest buffers are a primary tool used to protect wetland-dependent wildlife. Though imple-

mented widely, buffer efficacy is untested for most amphibian species. Consequently, it

remains unclear whether buffers are sufficient for maintaining amphibian populations and if

so, how wide buffers should be. We present evidence from a six-year, landscape-scale

experiment testing the impacts of clearcutting, buffer width, and hydroperiod on body size

and condition and biomass of breeding adults for two amphibian species at 11 vernal pools

in the northeastern United States. We randomly assigned treatments (i.e., reference, 100m

buffer, 30m buffer) across pools, clearcut to create buffers, and captured all spotted sala-

manders and wood frogs. Clearcuts strongly and negatively impacted size, condition, and

biomass, but wider buffers mitigated effect magnitude and duration. Among recaptured indi-

viduals, for example, 30m-treatment salamanders were predicted to be about 9.5 mm

shorter than, while 100m-treatment salamanders did not differ in length from, reference-

treatment salamanders. Similarly, among recaptured frogs, mean length in the 30m treat-

ment was predicted to decrease by about 1 mm/year, while in the 100m and reference treat-

ments, length was time-invariant. Some, but not all, metrics recovered with time. For

example, female new-captured and recaptured salamanders were predicted, respectively

and on average, to weigh 4.5 and 7 g less in the 30m versus reference treatment right after

the cut. While recaptured-female mass was predicted to recover by 9.5 years post-cut, new-

captured-female mass did not recover. Hydroperiod was an important mediator: in the

100m treatment, cutting predominately affected pools that were stressed hydrologically.

Overall, salamanders and female frogs were impacted more than male frogs. Our results

highlight the importance of individualized metrics like body size, which can reveal sublethal

effects and illuminate mechanisms by which habitat disturbance impacts wildlife popula-

tions. Individualized metrics thus provide critical insights that complement species occur-

rence and abundance-based population assessments.
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Introduction
Globally, forest ecosystems are experiencing intensifying stress as growing human populations
demand more developed and agricultural land and larger volumes of forest products [1, 2].
Whether owners develop, harvest, or conserve their forests is a complex decision driven by
global economic trends [1, 3]. Over the last two decades, increasing awareness that forests pro-
vide critical ecosystem services catalyzed interest in sustainable management programs that
allow forest owners to harvest timber while maintaining ecosystem functions and biodiversity
[4–6]. Developing sustainable forest-management plans can be difficult even for common spe-
cies, however, given our sometimes rudimentary understanding of the complex interactions
between forest components and ability to predict species’ responses to disturbance [7].

Amphibians can be particularly challenging to accommodate given their complex life cycles
and diverse habitat needs [8]. In temperate forests, many amphibian species occupy wetlands
during their egg and larval stages, but migrate hundreds of meters into adjacent forest as juve-
niles and adults (e.g., [9–11]). Forest harvesting can alter both the wetland and upland habitat
of these species, with potentially negative consequences for population persistence [8]. In gen-
eral, timber harvesting, especially clearcuts, is locally associated with reduced abundance and
survival of numerous amphibian species across various forest types (e.g., [12–14]). Responding
to such scientific evidence, public pressure, economic incentive, and personal ecological ethic,
some forest managers in temperate ecosystems have indicated willingness to integrate amphib-
ian habitat needs into forest management plans [15–17].

Forested buffers are a primary tool used to protect amphibians in such plans. Though buff-
ers are implemented widely, their efficacy is untested for most amphibian species. Thus, it
remains unclear whether buffers are sufficient for maintaining viable amphibian populations
in working forests and if so, how wide buffers should be. Most studies that recommend
amphibian buffers are based on observational data from unbuffered landscapes (e.g., [18–20]).
After reviewing the movement characteristics of 32 species across such landscapes, Semlitsch
and Bodie [9] suggested that a 290-m life zone, centered like a buffer around a wetland, is nec-
essary to protect the core habitat of most wetland-dependent amphibian species. Scientists and
conservation planners frequently reference the need for a protective 290-m life zone, but pol-
icy-makers are slow to embrace such large constraints on land use [21–23]. Compared to devel-
opment and intensive agriculture, however, forestry can be a temporary disturbance. Because
forests typically regenerate for several decades post-cut, habitat conditions are dynamic and
amphibians may be able to persist even if buffers considerably smaller than 290 m are used [14,
21, 24].

Only a handful of studies have intentionally tested the impacts of buffer-mediated forest
cutting on amphibians, however, and these have limited inference. Most were restricted to
stream-side habitats (e.g., [25, 26]), used narrow buffers (i.e.,<35 m; e.g., [27–29]), and were
conducted in northwestern North America. For some, forestry impacts were confounded by
other management treatments or time of harvest [30, 31]. Some focused solely or partly on
terrestrial species [29, 32] or only sampled in or extremely close to streams [33, 34]. SSSuch
studies have limited applicability for amphibians that breed in lentic habitats, especially since
post-breeding migrations for such species often extend far beyond 35 m.

To strengthen the scientific basis for making decisions about buffer width, we present evi-
dence from a six-year, landscape-scale experiment testing the interactive impacts of clearcut-
ting and buffer width on breeding-adult demography for two amphibian species at natural
vernal pools in an industrial forest in the northeastern United States. To our knowledge, this is
the first experiment to evaluate buffer efficacy for pool-breeding amphibians. In a previous
paper issuing from this experiment [35], we showed that narrow buffers result in reduced
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recaptures of mature spotted salamanders (Ambystoma maculatum) and wood frogs (Litho-
bates sylvaticus) and altered sex ratios for spotted salamanders. Here, we assess how body size
and condition and population biomass vary in response to buffer width for breeding adults of
both species. Note that competitive and predaceous interactions between larvae of these two
species can influence individual body size and condition and population biomass [36–38], but
we assumed such influence was comparable across pools (because both species were abundant
at all pools) and did not assess interspecies interactions in this study.

Amphibian body size and condition are correlated with and can be proxies for multiple fit-
ness measures including fecundity [39, 40], survival [41, 42], endurance [43, 44], and immunity
[45, 46]. Biomass measures productivity and indexes energetic contributions of amphibian
populations to aquatic and terrestrial components of forest ecosystems [47, 48]. Understanding
how buffer width relates to body size and condition can provide important insights into the
indirect pathways by which forestry affects amphibian populations [49]. Similarly, knowing
how adult biomass changes in response to buffer width can help clarify how cutting influences
ecosystem energy flows. Previous research suggests that forest cutting is associated with
reduced amphibian size and body condition, but studies examining such indirect forestry
effects are relatively rare, were not conducted in buffered landscapes, and produced results that
were inconsistent across species and age classes (e.g., [50–52]). Nonetheless, we expected that
clearcutting would exert negative effects on amphibian body size and condition and adult bio-
mass in our landscape, but that buffers would mitigate these effects. Because narrow buffers
provide less forest habitat than wide buffers, we specifically predicted that as buffer width
decreased across experimental treatments, the following characteristics of spotted-salamander
and wood-frog breeding populations would also decrease:

1. individual-adult length, mass, and body condition; and

2. total breeding-adult biomass.

Methods

Study Site, Treatments, and Sampling
We conducted this research in a 700 km2 area of Hancock andWashington counties, Maine,
USA (45°0’52”N, 44°48”32”N; 68°28’11”W, 67°53’10”W). Our entire study site was located in
an industrial forest in Maine’s northern-interior climate zone and at the northern limit of the
Downeast Ecoregion [53]. While micro-climate and micro-topographical conditions varied
slightly across the site, all of our study pools were subjected to similar overall climatic and
land-use conditions. For detailed descriptions of the site, experimental design, and sampling
methods, see [35].

All pools were fish-free. Amphibian species composition was similar across pools, with the
following species occurring at all pools: Ambystoma maculatum, Lithobates sylvaticus, Noto-
phathalmus viridescens, Lithobates clamitans, Pseudacris crucifer, Lithobates catesbeianus, and
Lithobates palustris. Ambystoma laterale and Anaxyrus americanus were present at all but two
and one of the pools, respectively. Three additional species were rarely trapped during the
experiment; these included: Desmognathus fuscus (a stream salamander; one individual),Hyla
versicolor (23 individuals across seven wetlands), and Lithobates septentrionalis (11 individuals
across six wetlands). Abiotic conditions were also similar across pools and compared to other
woodland pools in the region (Table 1; [54, 55]). In particular, specific conductance values
were relatively low and pH levels were somewhat acidic.
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Between fall 2003 and spring 2004, the landowner created experimental buffers by clearcut-
ting forest around the study pools. We randomly assigned each of the 11 pools to one of three
treatments: reference (i.e., uncut; N = 3), 100m buffer (N = 4), or 30m buffer (N = 4). Pools in
the two buffer treatments had, respectively, a 100-m or 30-m-wide upland buffer encircling the
pool and a 100-m-wide concentric clearcut around the buffer (Fig 1).

In summer and fall 2003, we surrounded each of the 11 pools with a drift fence / pit fall trap
array [56]. From 2004 to 2009, we opened traps in the spring after ice-out and closed traps
when a pool was dry for at least seven consecutive days or in the fall when hard frosts curbed
amphibian movement. We checked pitfall traps daily during periods of frequent amphibian
movement (i.e., April-May and July-September) and every one to five days during periods
when amphibians were less active (i.e., June and October-early November). For 2009, we did
not open traps at one 30m-buffer pool because the pool was inaccessible. Our analysis is robust
to this missing data, however [57].

Using the pitfall traps, we captured, counted, and sexed all adult spotted salamanders and
wood frogs exiting the pools. For each individual, we also measured snout-vent or snout-uro-
style length (hereafter SVL) and mass. To distinguish recaptures from new-captures and mini-
mize the chances of counting the same individual more than once a year, we marked all exiting
adults with a pool-specific toe-clip [58]. For any individual that returned to a pool the same
year it was toe-clipped, we only analyzed data from its first visit. For more information on the
rationale behind, and potential limitations of, this marking method, see [35]. Post-processing,
we released each animal on the opposite side of the fence from which we captured it.

We measured hydroperiod for each pool in each year as the number of days the pool held
water between ice-out (i.e.,< 75% of the pool was covered in ice) and the day the pool dried
completely. To facilitate analyses, we assigned a hydroperiod end date of October 28th to pools
that did not dry in a given year. We used this date because these pools still held water on this
date, but it was late enough in the year that most amphibians at our study pools were inactive.

Statistical Analyses
To test the relative impacts of buffer treatment and hydroperiod on several measures of breed-
ing-amphibian body condition and biomass, we conducted linear mixed effects regressions
(LME) using the “lme” function in S-Plus 8.0 (Insightful Corporation, Seattle, WA, USA). We
defined our study population as all adults that migrated to a pool and attempted to breed in a
given year. Our results thus apply to a subset of each species’ total local population and do not
account for adult salamanders that skipped breeding in a given year or juveniles. For the rest of
this paper, we refer to our study population as the “breeding” population.

Table 1. Mean (± SE) of vernal pool abiotic characteristics by forestry treatmenta.

Treatment pHb Specific Conductance (μS) Water Temperature (°C) Depth (m)c

Reference 5.60 ± 0.10 18.74 ± 1.40 14.12 ± 0.74 0.94 ± 0.18

100m 5.92 ± 0.14 31.34 ± 5.65 15.39 ± 1.25 1.14 ± 0.12

30m 5.92 ± 0.06 23.32 ± 1.05 16.27 ± 0.87 1.12 ± 0.19

a Forestry treatments were: reference (i.e., uncut), 100m buffer, and 30m buffer. See Fig 1.
b pH, specific conductance, and water temperature were measured at each pool in May of 2007, 2008, and 2009, using an Orion model 230A pH meter

and a YSI model 85 conductivity meter.
c Measured as the single greatest depth in each pool across May 2007, 2008, and 2009.

doi:10.1371/journal.pone.0143505.t001
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We assessed body condition using three size metrics: SVL, mass, and a body-condition
index (BCI). We used the BCI as a relative measure of energy reserves. We calculated the BCI
as the residuals of an ordinary least-squares regression of mass on SVL. To obtain normal
residuals for the BCI, we square-root transformed the mass and SVL data for salamanders and
log-transformed mass and SVL for frogs. We calculated separate BCIs for each sex within each
species. Residual-based condition indices are an appropriate tool for our study for the following
reasons. First, by calculating separate BCIs for each sex within each species, we avoided the
scaling issues that result when comparing BCIs across groups known to differ in size due to
heterauxesis and allomorphosis [59]. Second, after transformation, our data did not violate the
critical, testable assumptions inherent to BCI analysis, namely: mass and SVL were linearly
related, BCI was independent of SVL, and SVL is a reliable indicator of structural size [60–62].
Finally, residual-based condition indices outperform similar measures of condition and accu-
rately parallel energy reserves in a variety of species [61–63].

We calculated biomass as the sum of the mass of all individuals, with separate biomasses
calculated for each species and each sex at each wetland in each year. For each individual
counted, but not weighed (N = 328 and 748 [or 9% and 11%], for spotted salamanders and
wood frogs, respectively), we assigned a mass equivalent to the imputed mean mass for its
respective category. We could not determine the sex of 22 spotted salamanders and 27 wood
frogs that we found dead in traps. We did not use dead individuals in the biomass analysis. To
meet the assumptions of LME, we used ln(biomass + 0.5) as the y variable in all biomass analy-
ses, except for recaptured male spotted salamanders, for which we used the untransformed
biomass.

Fig 1. Experimental design implemented at 11 natural vernal pools in east-central Maine, USA.Undisturbed buffers of either 100m (left; n = 4) or 30m
(right; n = 4) were left adjacent to pools and 100m wide clear cuts were created around the buffers. Forest beyond the clear cut was undisturbed. No cutting
occurred at reference vernal pools (not shown; n = 3).

doi:10.1371/journal.pone.0143505.g001
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Our predictor variables were: buffer treatment, mean-pool hydroperiod (i.e., the mean
hydroperiod for each pool across the six study years), standard deviation of pool hydroperiod
(calculated for each pool across the six study years), an interaction between treatment and
mean-pool hydroperiod, and a pair of numeric dummy variables representing an interaction
between treatment and study year. We used the first dummy variable (cut.year) to distinguish
whether a pool was clearcut or not. We used the second dummy variable (30m.year) to indicate
marginal impacts to 30m buffer pools. This treatment X year interaction allowed us to evaluate
whether impacts to the cut treatments recovered with time. We defined ‘recover’ as: being
restored to values similar to those in the reference treatment, after deviating from reference-
treatment values at some prior time.

We performed separate regressions for each combination of capture status (i.e., new-capture
or recapture) and sex, within each species, for a total of eight regression models per size metric.
We treated year and pool ID as crossed random effects [57] in all models, except when the
model would not converge with crossed effects, in which case we simplified the model to
include either a random intercept for year or for wetland, whichever provided a better model
fit, as determined by likelihood ratio tests (LRTs). Among the simplified models, we used year
random intercepts for the SVL of new-captured and recaptured male wood frogs, the BCI of
recaptured female wood frogs, and the BCI of male and female recaptured spotted salamanders.
Similarly, we used wetland random intercepts for the BCI of new-captured male wood frogs.
We also modeled the variance-covariance structure for each regression to account for heteroge-
neous variance across groups and correlation among individuals from the same wetland (S1
Appendix). We used LRTs to optimize the variance-covariance structure of each model, ANO-
VAs to assess the overall significance of each fixed effect, and t tests to determine the signifi-
cance of different treatment levels (α = 0.05). We used treatment contrasts to compare the
reference treatment to each respective cut treatment (i.e., by default, there was no direct com-
parison between the 100m and 30m treatments; [57]). Based on an a priori decision, when the
hydroperiod interaction was not significant, we removed this interaction from the model and
refit the model for the remaining fixed effects. In their final forms, all models satisfied the
assumptions of LME. See [35] for further details on the dummy variables used in the year X
treatment interaction and the model-selection process.

Ethics and Data Deposition Statements
We conducted all of the research in accordance with the rules of the Institutional Animal Care
and Use Committee at the University of New Hampshire (IACUC-UNH). IACUC-UNH
approved our research protocol, as detailed in permits: 020601 and 050604. None of the cap-
tured species were protected or endangered under federal or state law. We conducted the
research on private land, with permission from the landowner. For these reasons, no additional
permits or permission were needed to conduct this work. The data used in this study are avail-
able from the Dryad database (http://dx.doi.org/10.5061/dryad.62ks6).

Results
Over the six study years, the 11 vernal pools produced over 47 kg of breeding spotted salaman-
ders and 64 kg of breeding wood frogs. This biomass represented 3624 breeding spotted sala-
manders and 6521 breeding wood frogs. Descriptive statistics are provided in Table 2 for size
and body condition and in Table 3 for biomass.
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Spotted Salamanders
In general, we found that spotted salamanders were smaller and had worse body condition at
30m, compared to reference, pools. For some, but not all, combinations of capture status, sex,
and size metric, we observed partial recovery of the size metric at 30m-buffer pools over the six
study years. We found less consistent relationships between treatment and biomass than
between treatment and body size/condition. All results presented in this section were statisti-
cally significant, unless otherwise indicated.

Recaptured female salamanders were, throughout the study and on average, predicted to be
9.1 mm shorter at 30m versus reference pools (Table 4; Fig 2). (Note: no females were recap-
tured at 30m-buffer pools in 2009). Similarly, in the first recapture year (i.e., 2005), the average

Table 2. Mean and variability of predictor and amphibian size variables, by species, capture status, sex, and forestry treatment.

Mean ± SE Range

Mean hydroperiod (days) 126.0±6.0 44.8–197.0

SD hydroperioda (days) 31.8±1.6 6.3–48.8

SVL/SULb (mm) Mass (g) BCIc

Mean ± SE Range Mean ± SE Range Mean ± SE Range

Spotted Salamander

recapture F Reference 82.4±1.0 67.0–99.0 18.1±0.5 8.1–26.0 0.204±0.042 -0.637–1.082

100m 82.6±0.5 61.0–100.0 17.4±0.2 7.3–28.0 0.098±0.024 -0.942–0.912

30m 75.0±0.7 55.0–90.0 13.1±0.3 6.5–22.9 -0.096±0.035 -0.794–0.580

M Reference 74.8±0.6 60.0–90.0 14.0±0.3 8.9–21.0 0.242±0.027 -0.514–1.034

100m 73.1±0.4 54.0–98.0 12.8±0.1 7.3–21.0 0.146±0.018 -0.715–1.009

30m 67.1±0.6 51.0–85.0 9.8±0.2 5.5–20.5 -0.040±0.030 -0.685–0.849

new-capture F Reference 82.3±0.6 61.0–101.0 17.3±0.3 7.5–31.0 0.094±0.026 -0.883–1.188

100m 81.7±0.3 53.0–102.0 16.5±0.1 7.1–26.9 0.032±0.015 -0.979–1.939

30m 74.8±0.4 53.0–95.0 12.7±0.2 6.0–25.0 -0.157±0.017 -1.153–0.962

M Reference 73.6±0.5 55.0–96.0 12.3±0.2 5.7–22.2 0.053±0.020 -0.638–0.825

100m 72.5±0.3 52.0–96.0 11.6±0.1 5.3–24.0 -0.013±0.012 -1.589–1.103

30m 65.4±0.3 51.0–95.0 8.9±0.1 4.5–18.9 -0.128±0.011 -0.742–0.719

Wood Frog

recapture F Reference 51.9±0.3 44.0–58.0 13.1±0.2 8.8–18.0 0.031±0.013 -0.318–0.434

100m 51.0±0.4 35.0–59.0 12.8±0.2 6.6–19.3 0.044±0.014 -0.313–0.454

30m 49.8±0.5 35.0–56.0 11.0±0.3 5.3–17.8 -0.045±0.021 -0.243–0.445

M Reference 44.1±0.2 31.0–56.0 9.1±0.1 4.8–14.0 0.020±0.008 -0.462–0.488

100m 44.5±0.2 31.0–54.0 9.2±0.1 4.1–13.4 0.020±0.010 -0.409–0.710

30m 43.4±0.3 31.0–56.0 8.8±0.2 5.5–14.3 0.011±0.015 -0.273–0.542

new-capture F Reference 49.9±0.1 33.0–60.0 12.1±0.1 3.7–20.8 0.011±0.006 -0.915–0.656

100m 49.6±0.2 37.0–60.0 12.1±0.1 5.0–22.0 0.022±0.006 -0.518–0.555

30m 48.6±0.2 35.0–59.0 10.9±0.1 3.8–21.5 -0.043±0.007 -0.958–0.606

M Reference 44.1±0.1 33.0–55.0 9.0±0.1 3.3–19.0 0.014±0.004 -0.777–0.635

100m 43.0±0.1 30.0–61.0 8.7±0.1 4.2–19.6 0.005±0.005 -0.729–0.821

30m 42.6±0.1 27.0–53.0 8.3±0.1 4.1–13.8 -0.033±0.005 -0.638–0.611

a Standard deviation of pool hydroperiod.
b Snout-vent or snout-urodyle length.
c Body condition index. Obtained via ordinary least squares regression of mass on SVL/SUL. Mass and SVL/SUL were square-root transformed for

salamanders and log-transformed for frogs, prior to regression. BCI measures relative energy reserves. BCI > 0 indicates better body condition than

BCI < 0. Mean BCI may not equal zero because BCI was calculated over recaptured and new-captured animals combined, for each sex.

doi:10.1371/journal.pone.0143505.t002

Forest Buffers and Amphibian Size and Biomass

PLOS ONE | DOI:10.1371/journal.pone.0143505 November 23, 2015 7 / 31



recaptured female at the 30m-buffer pools was predicted to weigh 7 g less, and have worse
body condition, than her reference-pool counterpart. However, mass and BCI were both pre-
dicted to recover to mean reference levels by about 9.5 years post-cut. Conversely, recaptured-
female body condition at the 100m-buffer pools worsened with time, so that by the study’s end,
100m-pool BCI was predicted to be about two times lower than the mean reference BCI. BCI
also decreased, in all treatments, with increasing hydroperiod duration and variability. Addi-
tionally, recaptured female biomass was predicted to decrease by about 58% per year at 30m-
buffer pools, but tended to increase (i.e., was marginally significant) by about 2.4% per each
additional day of mean hydroperiod in all treatments. Finally, SVL, mass, and biomass did not
differ significantly between the 100m and reference treatments.

New-captured female spotted salamanders were predicted to weigh, on average and for the
duration of the study, 4.5 g less at 30m-buffer pools than at reference pools (Fig 3). They also
tended to have persistently worse body condition at 30m-buffer pools. During the first year
post-cut, new-captured females were predicted to be, on average, 7.3 mm shorter in the 30m
versus reference treatment. SVL at 30m-buffer pools was predicted to recover to mean refer-
ence levels by about 14 years post-cut. For new-captured female biomass, the 30m and refer-
ence treatments did not differ, but 100m-treatment biomass depended on mean pool
hydroperiod. Short-hydroperiod pools were predicted to produce much lower biomass in the

Table 3. Mean and variability of total annual breeding amphibian biomass by species, forestry treatment, capture status, and sex.

Adult Biomass (g)

Species Sex Treatment Mean ± SE Range Total

Spotted Salamander

recapture F Reference 71.2±17.2 0–227.2 1068.4

100m 160.0±66.5 0–1273.4 3199.1

30m 52.2±14.6 0–240.5 992.3

M Reference 102.6±23.1 0–286.0 1539.5

100m 171.8±48.8 0–750.8 3435.9

30m 55.7±12.0 0–191.6 1057.8

new-capture F Reference 214.8±26.1 29.6–436.0 3866.9

100m 390.5±108.9 0–2158.6 9373.1

30m 213.9±32.0 27.4–551.5 4920.4

M Reference 179.6±33.1 0–570.9 3232.9

100m 383.1±96.7 0–1493.5 9195.4

30m 210.8±37.2 45.0–819.7 4848.7

Wood Frog

recapture F Reference 99.3±25.7 0–337.8 1489.2

100m 74.9±27.1 0–515.4 1498.8

30m 33.9±11.0 0–175.2 645.0

M Reference 222.1±82.6 26.3–1347.7 3331.4

100m 106.9±25.9 0–421.6 2137.5

30m 55.5±11.5 0–189.8 1054.4

new-capture F Reference 498.2±87.5 109.8–1319.2 8968.2

100m 341.3±55.2 17.8–1049.5 8192.3

30m 329.1±48.9 22.7–897.5 7570.2

M Reference 600.7±139.8 88.2–2765.9 10812.0

100m 385.4±69.6 27.5–1386.3 9249.4

30m 390.1±50.5 51.8–855.2 8972.3

doi:10.1371/journal.pone.0143505.t003
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Table 4. Linear mixed regression results showing the relative impact of forestry treatment, hydroperiod, and study year on size, body condition,
and total annual biomass of breeding spotted salamanders and wood frogs.

Size Metric Predictorc F value(df)
j t value(df)

l Coefficient ± SE

Spotted Salamander

Recaptured Females

SVLa (mm) treatment(30m)d 3.61(2,312)* -2.10(312)* -9.089±4.336

intercept 683.04(1,312)*** 26.13(312)*** 86.708±3.318

mass (g) treatment(30m) 7.90(2,6)* -3.89(6)* -8.938±2.296

30m.yeare 4.28(1,300)* 2.07(300)* 1.049±0.507

intercept 64.15(1,300)*** 8.01(300)*** 20.062±2.505

BCIb treatment(30m) 6.38(2,301)* -2.01(301)* -0.385±0.192

cut.yearf 5.78(1,301)* -2.40(301)* -0.066±0.027

30m.year 4.28(1,301)* 2.07(301)* 0.105±0.051

mean.hydrog 7.91(1,301)* -2.81(301)* -0.002±0.001

sd.hydroh 7.46(1,301)* -2.73(301)* -0.005±0.002

intercept 15.25(1,301)** 3.91(301)** 0.530±0.136

biomass (g) 30m.year 16.37(1,47)** -4.05(47)** -0.734±0.181

mean.hydro 4.00(1,47)
• 2.00(47)

• 0.024±0.012

New-captured Females

SVL (mm) treatment(30m) 4.78(2,1079)* -2.53(1079)* -7.820±3.095

30m.year 5.75(1,1079)* 2.40(1079)* 0.660±0.275

intercept 397.14(1,1079)*** 19.93(1079)*** 84.855±4.258

mass (g) treatment(30m) 3.25(2,1051)* -2.34(1051)* -4.461±1.905

intercept 51.52(1,1051)*** 7.18(1051)*** 19.008±2.648

BCI treatment(30m) 2.34(2,1054)
• -1.96(1054)

• -0.229±0.117

biomass (g) treatment(100m)i*mean.hydro 7.91(2,45)* 3.88(45)** 0.040±0.013

treatment(100m) 6.62(2,45)* -3.48(45)* -5.212±1.496

intercept 21.21(1,45)*** 4.61(45)*** 5.564±1.208

Recaptured Males

SVL (mm) treatment(30m) 5.38(2,478)* -3.05(478)* -9.778±3.201

intercept 415.79(1,478)*** 20.39(478)*** 79.218±3.885

mass (g) treatment(30m) 7.31(2,473)** -3.53(473)** -4.796±1.359

30m.year 3.05(1,473)
• 1.75(473)

• 0.373±0.214

intercept 92.18(1,473)*** 9.60(473)*** 15.321±1.596

BCI treatment(30m) 5.15(2,468)* -3.17(468)* -0.439±0.138

mean.hydro 5.54(1,468)* -2.35(468)* -0.001±<0.001

intercept 6.73(1,468)* 2.59(468)* 0.297±0.114

biomass (g) treatment(100m)*mean.hydro 4.24(2,45)* 2.90(45)* 3.038±1.047

treatment(100m) 3.15(2,45)
• -2.50(45)* -314.310±125.594

sd.hydro 3.62(1,45)
• -1.90(45)

• -3.457±1.818

intercept 4.19(1,45)* 2.05(45)* 251.847±123.053

New-captured Males

SVL (mm) treatment(30m) 4.36(2,1444)* -2.73(1444)* -7.820±2.865

cut.year 3.15(1,1444)
• 1.77(1444)

• 0.500±0.282

30m.year 5.39(1,1444)* 2.32(1444)* 0.556±0.239

intercept 398.02(1,1444)*** 19.95(1444)*** 77.363±3.878

mass (g) treatment(30m) 6.78(2,1410)* -3.01(1410)* -3.620±1.204

30m.year 22.70(1,1410)*** 4.76(1410)*** 0.409±0.086

mean.hydro 3.27(1,1410)
• -1.81(1410)

• -0.015±0.008

(Continued)
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Table 4. (Continued)

Size Metric Predictorc F value(df)
j t value(df)

l Coefficient ± SE

intercept 78.92(1,1410)*** 8.88(1410)*** 14.336±1.614

BCI treatment(30m) 11.02(2,1410)*** -3.22(1410)* -0.274±0.085

30m.year 12.03(1,1410)** 3.47(1410)** 0.043±0.012

mean.hydro 3.62(1,1410)
• -1.90(1410)

• -0.001±<0.001

biomass (g) treatment(100m)*mean.hydro 4.28(2,45) * 2.91(45)* 0.030±0.013

treatment(100m) 4.53(2,45) * -2.90(45)* -4.409±1.522

cut.year 3.79(1,45)
• 1.95(45)

• 0.172±0.088

30m.year 9.45(1,45)* -3.07(45)* -0.269±0.088

intercept 16.56(1,45)** 4.07(45)** 5.202±1.278

Wood Frogs

Recaptured Females

SULa (mm) 30m.year 4.21(1,284)* -2.05(284)* -1.284±0.626

intercept 473.14(1,284)*** 21.75(284)*** 53.190±2.445

mass (g) intercept 89.78(1,236)*** 9.48 (236)*** 14.303±1.509

BCI treatment(30m) 4.44(2, 231)* -2.97(231)* -0.221±0.074

sd.hydro 5.97(1,231)* -2.44(231)* -0.002±0.001

biomass (g) treatment(100m)*mean.hydro 6.10(2,45)* 3.49(45)* 0.038±0.011

treatment(100m) 5.94(2,45)* -3.33(45)* -5.794±1.741

treatment(30m) -1.89(45)
• -5.005±2.654

intercept 14.18(1,45)** 3.77(45)** 4.958±1.317

New-captured Females

SUL (mm) cut.year 5.50(1,2041)* 2.34(2041)* 0.349±0.149

intercept 1019.22(1,2040)*** 31.93(2041)*** 50.362±1.577

mass (g) cut.year 5.55(1,1869)* 2.36(1869)* 0.229±0.097

intercept 116.32(1,1869)*** 10.78(1869)*** 12.572±1.166

BCI nsk

biomass (g) treatment(100m)*mean.hydro 3.45(2,56)* 2.63(56)* 0.015±0.006

treatment(100m) 5.98(2,56)* -3.45(56)* -2.931±0.850

30m.year 5.58(1,56)* -2.36(56)* -0.268±0.113

intercept 59.07(1,56)*** 7.69(56)*** 5.737±0.746

Recaptured Males

SUL (mm) 30m.year 3.91(1,706)* -1.98(706)* -0.914±0.462

sd.hydro 11.44(1,706)** -3.38(706)** -0.045±0.013

intercept 2064.37(1,706)*** 45.44(706)*** 44.803±0.986

mass (g) sd.hydro 6.35(1,684)* -2.52(684)* -0.033±0.013

intercept 202.99(1,684)*** 14.25(684)*** 9.559±0.671

BCI sd.hydro 2.90(1,685)
• -1.70(685)

• -0.002±0.001

biomass (g) 30m.year 3.50(1,47)
• -1.87(47)

• -0.518±0.277

mean.hydro 7.11(1,47)* 2.67(47)* 0.015±0.006

intercept 5.21(1,47)* 2.28(47)* 2.471±1.083

New-captured Males

SUL (mm) intercept 5523.34(1,3082)*** 4.32(3082)*** 44.060±0.593

mass (g) sd.hydro 5.86(1,2932)* -2.42(2932)* -0.022±0.009

intercept 432.10(1,2932)*** 0.79(2932)*** 9.403±0.452

BCI sd.hydro 5.60(1,6)
• -2.37(6)

• -0.002±0.001

biomass (g) mean.hydro 5.11(1,58)* 2.26(58)* 0.008±0.004

(Continued)
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100m, compared to the reference, treatment. For each additional day of mean hydroperiod,
however, biomass at the 100m-buffer pools was predicted to increase by about 3.8%. Finally,
SVL, mass, and BCI did not differ significantly between the 100m and reference treatments.

For recaptured male spotted salamanders, both SVL and BCI were lower at 30m-buffer
pools than reference pools and failed to recover to reference levels. On average, recaptured
males were predicted to be 9.8 mm shorter at 30m-buffer pools. During the first recapture year,
recaptured males were also predicted to weigh, on average, about 4 g less at 30m versus refer-
ence pools. A marginally significant 30mXyear interaction suggests recaptured male mass
would take about 11 years to recover to mean reference levels. Recaptured male body condition
and biomass were also influenced by hydroperiod. For all treatments, body condition declined
with increasing mean hydroperiod and pools with more variable hydroperiod tended to sup-
port lower total biomass. For short-hydroperiod pools, we also found less biomass in the 100m
versus the reference treatment, but the associated coefficient and standard error were quite
large and should be cautiously interpreted. Nevertheless, for each additional day of mean
hydroperiod, 100m biomass was predicted to increase by 2.5 g. Finally, SVL, mass and BCI did
not differ significantly between the 100m and reference treatments.

New-captured male spotted salamanders were predicted, on average, to be 6.8 mm shorter,
weigh 3.2 g less, and have worse body condition, at 30m-buffer pools than at reference pools
during the first year post-cut (Fig 4). However, all three size metrics were predicted to recover
with time at the 30m-buffer pools. The predicted recovery periods were, respectively: 8, 10, and
9 years, for SVL, mass, and BCI. Conversely, biomass at 30m-buffer pools was predicted to
decrease by about 9% each year. Biomass at 100m-buffer pools depended on year and mean
hydroperiod. During the first year post-cut, on average, less biomass was predicted at 100m
versus reference pools. For each successive year, however, 100m biomass was predicted to
increase by about 19%, so that by 3.5 years post-cut, similar amounts of biomass were predicted
from typical 100m and reference pools. We also found that short-hydroperiod pools had much

Table 4. (Continued)

Size Metric Predictorc F value(df)
j t value(df)

l Coefficient ± SE

intercept 43.91(1,58)*** 6.63(58)*** 4.775±0.721

a SVL = snout-vent length; SUL = snout-urodyle length.
b Body condition index. BCI > 0 indicates better body condition than BCI < 0.
c All models included the following predictors: treatment, mean pool hydroperiod, standard deviation of pool hydroperiod, a treatmentXyear interaction, and

a treatmentXmean.hydro interaction. Based on an a priori decision, we dropped the treatmentXmean.hydro interaction from the model if the interaction

was not significant. Only significant fixed-effect results are shown.
d Categorical variable, coded 0 = reference treatment and 1 = 30m treatment.
e Dummy variable representing the marginal impact of the 30m treatment over the six study years.
f Dummy variable representing the difference between the reference treatment and the two cut treatments, over the six study years.
g Mean pool hydroperiod in days.
h Standard deviation of pool hydroperiod in days.
i Categorical variable, coded 0 = reference treatment and 1 = 100m treatment.
j We used F tests to assess overall significance of each variable. We provide results just once for each categorical variable.
k None of the independent variables were significant predictors of female new-capture wood frog body condition.
l We used t tests to compare between individual levels of categorical predictors.

*** p < 0.0001

** p < 0.001

* p < 0.05
• 0.05 � p <0.1

doi:10.1371/journal.pone.0143505.t004
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less biomass in the 100m versus reference treatment, but biomass increased at 100m-buffer
pools by about 2.9% per additional day of mean hydroperiod. Though body mass and BCI did
not differ significantly between the 100m and reference treatments, a marginally significant
result indicated SVL increased by 0.5 mm per year in the 100m treatment. Finally and for all
treatments, new-capture male mass and body condition tended to decrease as mean hydroper-
iod increased.

Wood Frogs
For wood frog size and biomass generally, females and recaptured adults were more sensitive
to buffer treatment than males and new-captured adults, respectively. Additionally, hydroper-
iod was a strong predictor across size metric, sex, and capture status. All results presented in
this section were statistically significant, unless otherwise indicated.

For recaptured female wood frogs, BCI (Fig 5) and biomass (marginally significant) were
predicted to be, on average, lower at 30m-buffer pools than at reference pools, and did not
recover during the study. Specifically, biomass in the 30m treatment was only about 1/3rd of
that in the reference treatment. Further, SVL was predicted to decrease by 1.32 mm/year at the
30m-buffer pools. At short-hydroperiod pools, biomass was lower in the 100m versus reference
treatment, but for each additional day of mean hydroperiod, 100m biomass was predicted to
increase by about 3% (Fig 6). Body condition worsened as hydroperiod variability increased.
Finally, recaptured female mass was unrelated to treatment, year, or hydroperiod; and SVL and
BCI did not differ significantly between the 100m and reference treatment.

For new-captured female wood frogs, biomass in the 30m treatment was predicted to
decrease by about 14% per year. Similar to recaptured females, new-captured female biomass
at short-hydroperiod pools was lower in the 100m versus reference treatment, but 100m bio-
mass was predicted to increase with each additional day of mean hydroperiod by about 1.4%.
In both cut treatments, SVL and mass were predicted to increase post-cut, by 0.3 mm/year and
0.2 g/year, respectively. Finally, BCI was unrelated to treatment, year, or hydroperiod.

For recaptured male wood frogs, SVL and biomass were predicted to decrease at 30m-buffer
pools by 0.9 mm/year and about 44% per year, respectively (Figs 6 and 7; the pattern was margin-
ally significant for biomass). Similarly, but across all treatments, as hydroperiod variability
increased, SVL, mass, and BCI (marginally significant) decreased, such that for each additional
day of hydroperiod variability, frogs were predicted to be 0.04 mm shorter and weigh 0.03 g less.
Conversely, for each additional day of mean hydroperiod, recaptured male biomass was predicted
to increase by about 1.5%. Recaptured male mass and BCI were unrelated to treatment. Finally,
both SVL and biomass did not differ significantly between the 100m and reference treatments.

For new-captured male wood frogs, for every additional day of hydroperiod variability,
body mass was predicted to decrease by 0.03 g and BCI tended to decrease. For each additional
day of mean hydroperiod duration, however, biomass was predicted to increase by about 1.5%.
SVL, body mass, BCI, and biomass of new-captured males were all unrelated to treatment and
year; SVL also did not differ with hydroperiod.

Discussion
This is the first landscape-scale experiment to test how buffer width affects the impacts of forest
clearcutting on amphibian body size, condition, and biomass at natural vernal pools. As

Fig 2. Mean (±1SE) size of recaptured breeding female spotted salamanders at 11 vernal pools in east-central Maine, USA. A) Snout-vent length
(SVL; mm) across three experimental forestry treatments and B) body condition index (BCI) by forestry treatment and study year. Treatments were: reference
(uncut), 100m undisturbed buffer, and 30m undisturbed buffer.

doi:10.1371/journal.pone.0143505.g002
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Fig 3. Mean (±1SE) size of new-captured breeding female spotted salamanders at 11 vernal pools in east-central Maine, USA. A) Body mass (g)
across three experimental forestry treatments and B) snout-vent length (SVL; mm) by forestry treatment and study year. Treatments were: reference (uncut),
100m undisturbed buffer, 30m undisturbed buffer.

doi:10.1371/journal.pone.0143505.g003
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Fig 4. Mean (±1SE) size of breedingmale spotted salamanders at 11 vernal pools in east-central
Maine, USA. A) Body condition index (BCI) of recaptured males across three experimental forestry
treatments and B) body mass (g) of new-captured males by forestry treatment and study year. Treatments
were: reference (uncut), 100m undisturbed buffer, and 30m undisturbed buffer.

doi:10.1371/journal.pone.0143505.g004
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Fig 5. Mean (±1SE) size of recaptured breeding female wood frogs at 11 vernal pools in east-central Maine, USA. A) Body condition index (BCI)
across three experimental forestry treatments and B) snout-urodyle length (SUL; mm) by forestry treatment and study year. Treatments were: reference
(uncut), 100m undisturbed buffer, and 30m undisturbed buffer.

doi:10.1371/journal.pone.0143505.g005

Forest Buffers and Amphibian Size and Biomass

PLOS ONE | DOI:10.1371/journal.pone.0143505 November 23, 2015 16 / 31



Fig 6. Total annual biomass (g) of recaptured breeding wood frogs at 11 vernal pools in east-central
Maine, USA. A) Mean (±1SE) biomass of male frogs by forestry treatment and study year and B) biomass of
female frogs by forestry treatment and mean pool hydroperiod (days). Treatments were: reference (uncut),
100m undisturbed buffer, 30m undisturbed buffer.

doi:10.1371/journal.pone.0143505.g006
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Fig 7. Mean (±1SE) size of new-captured breeding female wood frogs at 11 vernal pools in east-central
Maine, USA. A) Body mass (g) and B) snout-urodyle length (SUL; mm) by forestry treatment and study year.
Treatments were: reference (uncut), 100m undisturbed buffer, and 30m undisturbed buffer.

doi:10.1371/journal.pone.0143505.g007
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hypothesized, we generally found that amphibians were smaller, had lower energy reserves,
and supported less biomass at pools with a narrow 30m buffer versus 100m-buffer or reference
pools. The response at 100m-buffer pools was typically mediated by hydroperiod: short-hydro-
period pools had less biomass in the 100m versus reference treatment. Overall, spotted sala-
manders were more affected than wood frogs and recaptured adults were more sensitive than
new-captured adults. Though some size and condition metrics started to recover during the
first six years post-cut, other impacts persisted or worsened. Our study demonstrates that clear-
cutting is associated with strong sub-lethal effects on local amphibian populations. These
effects potentially signal reduced population resilience, which could alter local and regional
population and community dynamics. Wider buffers helped mitigate the magnitude and dura-
tion of these effects.

Size and Condition
Mechanisms. Food energy is allocated to one of four uses: maintenance, growth, repro-

duction, or storage. As ectotherms, amphibians have low maintenance costs and efficiently
convert food to biomass [64]. Various factors can disrupt this efficiency, causing reallocation
of energetic investments and reduced body size and condition. In clearcuts, high temperatures
and low humidity [65–67] can elevate metabolic rates [68, 69] and maintenance costs [42, 70],
while inhibiting foraging [71, 72]. Higher predation risk [12, 73] or less prey in cuts or along
cut edges could also limit food intake [70, 74]. Such problems can compound if robust individ-
uals claim prime buffer habitat, ‘despotically’ forcing stunted individuals into the cut [49, 51,
75]. Alternatively, individuals may avoid the cut by remaining in the buffer, causing over-
crowding. This could limit food consumption and elevate maintenance costs, through
increased competition for prey and shelter [76–78], predation risk [12], and the stress associ-
ated with competitive interactions and predator avoidance [79–81]. With increased mainte-
nance and reduced food intake, individuals would be forced to invest less in reproduction,
growth, and/or storage. Negative feedback, whereby small adults produce small eggs [39, 82],
which become disadvantaged larvae [76, 83, 84], which metamorphose into stunted adults [85–
87], could reinforce this pattern. Alternatively, large or well-conditioned adults might be killed
during cutting or emigrate to other pools [88] leaving small, weak individuals behind.

Overall, reduced size and body condition suggest poor habitat quality in the 30m treatment
[81, 89, 90]. By comparing SVL, mass, and condition, we can discern how habitat degradation
altered energy allocation across treatments, species, sexes, and capture classes and start to eluci-
date mechanisms by which timber harvest influences amphibian populations. For recaptured
spotted salamanders, SVL showed no recovery during the six study years, whereas female mass
and condition were predicted to recover by about 9 years post-cut and male mass by about 11
years. Clearly, recaptured adults did not invest in structural growth, but prioritized mainte-
nance, reproduction, and, for females, storage. These recovery trajectories suggest recaptured
salamander size and condition take 10+ years after a clearcut to either rebound or adjust to
reduced habitat carrying capacity [81]. Among new-captures, by contrast, the SVL of both
sexes and male mass and body condition, were recovering by the experiment’s end. New-cap-
tured salamanders include immigrants and residents who previously refrained from breeding.
New-capture recovery trajectories suggest several possible conclusions. First, 30m-treatment
habitat alterations were least severe for male new-captures. Second, large (long) immigrants
perceived the 30m treatment as viable habitat only after several years of cut regeneration.
Finally, resident new-capture salamanders adopted differing allocation strategies, with some
breeding shortly after the cut, at the expense of structural growth; and others prioritizing
growth by delaying breeding for several years post-cut.
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Among recaptured wood frogs in the 30m treatment, mean SVL decreased over time, sug-
gesting that frogs invested less energy in structural growth and/or mean age declined over the
course of the study. Similarly, females had persistently poor body condition, indicating insuffi-
cient food in-take to amass fat reserves. However, buffer treatment did not influence either
sex’s mass or male body condition, suggesting recaptured frogs favored maintenance, repro-
duction, and (among males) fat storage, over growth. Previous research from unbuffered land-
scapes also found anuran growth constrained in clearcuts versus uncut forest [51, 91, 92]. In
the current study, we differentiate between sexes and capture classes, demonstrating that both
male and female recaptured frogs experience reduced growth in habitat disturbed by clearcut-
ting, even when frogs can freely move between a 30m buffer, clearcut, and forest beyond the
cut. By contrast, new-captured frog size and condition did not differ across treatments, imply-
ing that immigrant frogs traversed cuts without significant energetic losses.

In general, spotted salamanders experienced stronger negative effects in the 30m treatment
than wood frogs. We suggest three explanations for this inter-species difference. First, both
species migrate on rainy nights when desiccation is unlikely [11, 93, 94], but wood frogs are
more vagile [88, 95, 96] and may cross cuts more quickly [10, 11], spending fewer days exposed
to severe clearcut conditions. Further, salamanders may be more likely to linger in clearcuts,
because salamanders primarily shelter in underground burrows [97–99]. In our cuts, stumps
were mostly left in place and no mechanical site preparation occurred, such that burrow struc-
ture may have been largely preserved [11]. Because aboveground weather is more extreme in
clearcuts than forests [10, 65, 67], salamanders in cuts may be trapped in burrows for extended
periods, minimizing foraging, and thereby negatively impacting size and condition [70, 100].
Wood frogs, however, frequently shelter in leaf litter [93, 101]. Since young clearcuts have less
litter than forests [51, 102, 103], frogs likely minimized time in cuts, only entering to migrate
through to distant forests [10]. Finally, spotted salamanders may be more sensitive to terrestrial
density dependence than wood frogs. Though both species may crowd into 30m buffers, the
consequences may be more negative for salamanders for various reasons. For example, burrows
are likely scarcer than leaf litter and salamanders may be forced to share burrows or remain
unsheltered. Forced sharing may increase agonistic interactions, causing greater stress [80] and
physical trauma [104, 105]. In turn, salamanders may limit foraging to avoid competitive inter-
actions [104, 106] or expend more energy while foraging over a broader area [81]. Small sala-
manders may also be forced into suboptimal edge or cut habitat by larger competitors [49, 51,
107], negatively reinforcing their stature.

Implications. Reduced size and body condition are linked to numerous individual traits
that can scale up to detrimentally impact local and regional populations. We categorize indi-
vidual traits into reproductive, performance, and survival effects. Among the reproductive
impacts, small size is associated with decreased clutch mass and volume [39, 108], egg size [39,
82, 108], egg nutrition [39], number of eggs [82, 109, 110], mating success [111–113], and sur-
vival during breeding [112]; and increased time to maturity and, for salamanders, inter-breed-
ing interval [81, 82]. Poor body condition can alter mating behavior [114, 115], leading to
lower reproductive success [115, 116]. Small size can limit performance through reduced sta-
mina [43, 117, 118], jump distance [44, 119], and migration distance [97, 120], which may
inhibit an animal’s ability to escape predators or access good-quality habitat. As for survival,
small individuals tend to store fewer lipids [82, 86, 121] and dehydrate faster [42, 122], leading
to lower survival, especially under severe weather conditions [86, 123, 124]. Body size also
influences population spatial structure: small individuals may be competitively excluded from
prime habitats [51, 107] or crowd around water sources [125].

Ultimately, individual effects can alter local and regional population dynamics. Small
amphibians of poor body condition are vulnerable to extreme weather and other stressors
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[42, 126, 127], can depress breeding population size through delayed maturity [128, 129] or
skipped breeding events [130–132], and may have low reproductive success [39, 108, 127]. A
population of vulnerable individuals is likely less resilient to disturbance and other stressors
and may rely excessively on immigration or adult survival to persist [20, 133, 134]. Reduced
reproductive success may also translate to fewer or less robust dispersers [135, 136], depressing
gene flow and altering regional population dynamics. Where a local population siphons immi-
grants from the regional disperser pool and produces less viable dispersers, it may act as a
regional sink. Though total breeding-adult abundance was not reduced, we did find that both
species’ breeding-population structure was altered, with fewer recaptured amphibians and
female salamanders present at 30m-buffer pools, confirming that this treatment did indeed
serve as sink habitat and that reproductive potential was diminished [35].

Biomass
Mechanisms. Analyzing how adult-amphibian biomass varied across treatments is key to

understanding how clearcuts alter ecosystem flows and community interactions. Adult spotted
salamanders and wood frogs are important predators of forest-floor invertebrates [137–139]
and efficiently convert invertebrate to amphibian biomass [64, 140]. In turn, both species are a
vital food source for decomposers and larger predators [71, 137, 140]DDD. Adults also pro-
vide high-quality food to vernal-pool communities via eggmass deposition or if adults perish
while breeding [47, 71, 141]. Consequently, both species are an important conduit for the flow
of forest nutrients and energy into vernal pools and link multiple trophic levels in both subsys-
tems [47, 141, 142]. As long-lived, fossorial adults, spotted salamanders also enhance soil fertil-
ity and stabilize ecosystem fluxes [140]. Despite these contributions, few studies have
examined forestry impacts on amphibian biomass. Available studies show amphibian biomass
is generally lower in recent cuts, but none included buffers in the study design [102, 143, 144];
but see [71].

In our experiment, clearcutting was associated with reduced amphibian biomass, but more
strongly in the 30m than the 100m buffer treatment. In fact for both species, biomass at 30m-
buffer pools declined over time, suggesting deteriorating habitat quality or a lagged response to
cutting. For wood frogs, biomass and SVL declined in tandem at 30m-buffer pools, suggesting
reduced structural growth as the reason for diminished biomass. For spotted salamanders, bio-
mass fell despite some recovery of individual size and condition and relatively stable breeding
abundances [35], suggesting no single driver of salamander biomass loss.

At 100m-buffer pools, adult biomass production was mediated by hydroperiod, such that
short-hydroperiod, 100m-buffer pools produced much less biomass than short-hydroperiod
reference pools. For spotted salamanders, this pattern mirrored adult abundance [35], not size.
For wood frogs, no particular driver was apparent, but only females were affected. It is unsur-
prising that biomass and hydroperiod were related, since hydroperiod is a determinative force
in vernal-pool systems, influencing species distributions [55, 145, 146], community composi-
tion [147–149] and larval growth [150–152] and survival [100, 153, 154]. It is well established
that spotted salamander and wood frog abundance generally increase with vernal-pool hydro-
period [155–157]. If one considers only short-hydroperiod pools, however, the biomass differ-
ence between 100m and reference pools is striking. Apparently, cutting degraded habitat
quality in the 100m treatment, but this only occurred, or was only apparent, if the population
was also stressed hydrologically.

Implications. Adult biomass was reduced at 30m-buffer pools and short-hydroperiod
100m-buffer pools, limiting the amount of high-quality food available to amphibian predators
and detrivores in and around these pools [71, 141]. Lower biomass also likely means reduced
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nutrient and energy subsidies from forests into pools and modified food webs in both subsys-
tems [47, 141]. Salamander biomass declines may additionally serve to destabilize ecosystem
processes, since their biomass is a long-term storage location for nutrients and energy [140].
With less salamander biomass, resources may flow more quickly through food webs, resulting
in more extreme population fluctuations at other trophic levels [71, 140].

Conclusions
Traditionally, researchers use species occurrence and abundance to assess disturbance impacts
[49, 89, 90]. While valuable, such metrics describe population responses, which may only be
discernable after multiple breeding cycles [81, 92, 158]. Individualized metrics, like body size
and condition, may be more sensitive since population changes only accrue after enough indi-
viduals are affected. Individual metrics can forewarn lagged population responses, reveal sub-
lethal effects that undermine population resilience, and illuminate mechanisms driving popula-
tion responses [81, 89, 90]. Condition, in particular, is often used to index habitat quality since
it represents individual fat reserves, which are a function of prey availability and the metabolic
demands of a habitat [89, 90, 159]. By contrast, biomass is an infrequently used metric that
extends abundance data and connects population changes to ecosystem processes [48, 160].

The reduced body size and condition that we observed indicate clearcutting degraded
amphibian habitat quality in the 30m treatment. In response, individuals shifted energy alloca-
tion away from structural growth and, in many cases, fat storage. Individual costs of energetic
redistribution are substantial, but collective costs may be greater, and potentially include con-
strained local reproductive output and altered regional population dynamics. Our biomass
results also suggest that habitat quality declined at 30m-buffer pools, but further indicate syner-
gistic effects of cutting and hydroperiod in the 100m treatment. More broadly, our biomass
results imply that clearcuts altered food-web dynamics and ecosystems fluxes, within and
between forests and vernal pools. Forest managers wishing to minimize amphibian size, condi-
tion, and biomass impacts should use buffers that are greater than 30 m wide and incorporate
hydroperiod into management decisions. Where amphibian conservation is a primary objec-
tive and hydroperiod is short (i.e.,< 4 months; [55, 155, 156]), buffers wider than 100 m may
be necessary. Where amphibians are one of several concerns, buffering pools with hydroper-
iods longer than four months may provide the greatest conservation-investment return. Note
that our results describe amphibian response to a single clearcut configuration (i.e., circular,
100-m wide). Different responses might be observed with alternative clearcut designs, but
investigating other designs was beyond the scope of our project. Similarly, we did not examine
the potential impacts of predator and competitor community composition, microhabitat, or
water chemistry on our response variables. Though we recognize this as a potential study limi-
tation, we do not expect that these factors significantly influenced our cross-treatment analyses
for multiple reasons. First, we designed our experiment and statistical analysis to minimize the
potential impacts of such within-pool factors. Second, all study pools were fish-free and similar
with regard to amphibian community composition and basic water chemistry parameters.

Additional research is needed to understand how individual impacts scale up to influence
local and regional population dynamics and ecosystem function. Particular attention should be
paid to the potential for differential effects across diverse landscapes. While multiple previous
studies from various bioregions similarly demonstrate decreased amphibian body size and con-
dition in response to habitat disturbance (e.g., [91, 159, 161]) and weather stress [127, 162,
163], other studies suggest more complex interactions between individual responses and expo-
sure to stressful conditions (e.g., [164–166]). Likewise, though logging often exerts negative
effects on amphibian populations, this may not be universal. For instance, populations of

Forest Buffers and Amphibian Size and Biomass

PLOS ONE | DOI:10.1371/journal.pone.0143505 November 23, 2015 22 / 31



species that evolved in frequently disturbed landscapes may adapt more easily to habitat
changes wrought by timber harvests. This appears to be the case, for example, with generalist
anuran species in the temperate eucalyptus forests of New South Wales, Australia [17]. Differ-
ent processes may dampen the negative effects of logging in other landscapes.

Our landscape is largely forested and our cuts regenerated mostly undisturbed. Clearcut
structure and micro-climate can change rapidly with regeneration [51, 71, 167]. Cuts that are
initially unsuitable for amphibians should regain suitability with time [71, 143, 168]. Though
cutting strongly impacted individual amphibians, especially in the 30m treatment, certain met-
rics, like recaptured salamander mass, started to rebound by the study’s end. In this landscape,
there seems to be a vulnerability window of 8 to 14+ years post-clearcut, when adult body size,
condition, and biomass are reduced and local populations may be particularly sensitive to addi-
tional disturbance or stressors. If regeneration continues undisrupted and habitat quality
improves, individual traits likely recover and the vulnerability window closes. Lacking addi-
tional stressors, local population persistence and abundance may remain relatively stable and
regional population dynamics may be little affected. Recent genetic studies from our landscape
support this hypothesis. While clearcutting strongly impacted individual amphibians and
increased population vulnerability at many of our focal pools, spotted salamander and wood
frog populations across the broader industrial forest demonstrated high genetic connectivity,
suggesting regional population resilience [169, 170].

Ultimately, forest managers must consider the cumulative impacts of cutting on a landscape
and whether additional stressors are likely to compound the local effects of any single cut.
Existing practices, including strategic clearcut rotation on a multi-decadal interval [5, 171],
may be sufficient to maintain amphibian connectivity with minimal buffering, given current
climatic conditions and forest-product demand. If projections for the northeast are accurate,
however, and summers become hotter [172] with more frequent droughts [173], while forest
harvests intensify [2], landscape resistance to amphibian movement may increase [11, 174]
and regional connectivity be disrupted. In this case, buffers will be a critical tool for maintain-
ing local population resilience in forestry-based landscapes. More broadly, we expect stronger
negative impacts to amphibian body size, condition, biomass, and connectivity in suburban
and urban landscapes, where a greater proportion of the land area is permanently altered and
the inter-pool matrix is less permeable [175–177]. In this context, buffers may be essential to
local population resilience, but only when combined with conservation of connective habitat to
simultaneously ensure the possibility of rescue and recolonization from the broader meta-pop-
ulation [22, 178] and if the design is tailored to the specific region and landscape [17, 19, 179].
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