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Purpose: To develop and validate a risk score assessable in real-time using only retinal
thickness-related values measured by spectral domain optical coherence tomography
alone for use in population-based glaucoma mass screenings.

Methods: A total of 7572 participants (aged 35–74 years) underwent spectral domain
optical coherence tomography examination annually between 2016 to 2021 in a
population-based setting. We selected 284 glaucoma cases and 284 controls, matched
by age and sex, from 11,487 scans in 2016. We conducted multivariable logistic regres-
sion with backward stepwise selection of retinal thickness-related variables to develop
the diagnosticmodels. The developed risk scoreswere applied to all participants in 2018
(9720 eyes), and we randomly selected 723 scans for validation. Additional validation
using the Humphrey field analyzer was conducted on 129 eyes in 2020. We assessed the
models using sensitivity, specificity, the area under the receiver operating characteristic
curve and positive and negative predictive values.

Results: The best-predicting model achieved an area under the receiver operating
characteristic curve of 0.97 (95% confidence interval, 0.96–0.98) with a sensitivity of
0.93 and specificity of 0.91. The validation dataset showed a positive predictive value
of 90.8% for high-risk scorers, corresponding to 6.2% of the population, and negative
predictive value of 88.2% for low-risk scorers, corresponding to 85.2%. Sensitivity and
specificity for glaucoma diagnosis were 0.85 and 0.91, whenwe set the risk score cut-off
at 90 points out of 100.

Conclusions: This risk score could be used as a valid index for glaucoma screening in a
population-based setting.

Translational Relevance: The score is feasible by installing a simple computer appli-
cation on an existing spectral domain optical coherence tomography and will help to
improve the accuracy and efficiency of glaucoma screening.

Introduction

Glaucoma remains the major leading cause of
blindness worldwide.1 The worldwide prevalence of
glaucoma, including primary open-angle glaucoma
and primary angle-closure glaucoma, was estimated
to be 3.54% in 2013, for a total of 64.3 million cases

among those aged 40 to 80 years, and this number
is expected to increase to 111.8 million in 2040.2
Despite its high prevalence, previous epidemiological
studies demonstrated that 50% to 90% of people with
glaucoma are undiagnosed and are unaware that they
have glaucoma.3,4

To prevent restrictions on daily life from visual
field loss and blindness, it is important to detect the
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disease at an early stage so that it can be treated in
an early and appropriate manner.5 Glaucoma mass
screening in population-based settings using single
or multiple ophthalmologic examinations is expected
to prevent reduction in vision related quality of life
from glaucoma progression.6–9 Although glaucoma
mass screening programs are not common in most
developed countries, two recent studies from China10
and India,11 home to 40% of the world’s popula-
tion with glaucoma,12 have found that opportunis-
tic glaucoma mass screening in their context was
cost effective. Although cost effectiveness has been
shown in these screening programs, there still have
issues with reliability in identifying glaucoma in
population-based settings.13 Another issue of normal-
tension glaucoma, showing normal range with intraoc-
ular pressure, is present among several races, partic-
ularly in Asia.3,14 Normal-tension glaucoma cannot
be screened by measurement of intraocular pressure.
Therefore, a feasible and reliable perimetric test or
fundus examination suitable for glaucomamass screen-
ing is required.15,16

Optical coherence tomography (OCT) is a noncon-
tact, fast, and noninvasive technique that allows high-
resolution cross-sectional imaging of the optic nerve
head and retina.17–19 OCT could be used by both
general physicians in addition to ophthalmologists or
as a screening tool in a community setting.20,21 More
recently, spectral domain (SD)-OCT has been devel-
oped. This system completes scanning of an eye within
1 minute without the need for specialist technicians.22
Several groups, including ours, have sought algorithms
that allow SD-OCT to be used for the mass screen-
ing for glaucoma. Among the case-control studies
conducted to date, these groups achieved relatively
high performance and clear separation between normal
and glaucoma cases.22–24 This success has led, in turn
to the development and implementation of artificial
intelligence–based algorithms for SD-OCT in clinical-
based settings.25–27 However, when applied to mass
screening at population-based levels, these algorithms
have been strongly handicapped by high rates of
false positives.24,26,28 No SD-OCT based screening
algorithm is currently in mass screening use at a
population-based level.

The purpose of this study was to develop and
validate an algorithm for population-based glaucoma
mass screening that can be applied to an existing SD-
OCT. First, we verified the logic in detail of how
ophthalmologists diagnose the OCT images as glauco-
matous. Next, according to the logic, considerable
patterns of variables in SD-OCT data were selected
and we attempted to improve accuracy using regres-
sion analysis to develop glaucoma risk scores. Then, the

glaucoma risk score was validated across population-
based settings using two separate datasets of partici-
pants diagnosed by ophthalmologists, based only on
OCT reports and on both OCT reports and Humphrey
Field Analyzer (HFA) (Carl Zeiss AG, Oberkochen,
Germany). To make an accurate diagnosis, because
glaucoma is a progressive disease, we thought that it
was better to consider the passage of time.

Methods

Informed consent was obtained from all partici-
pants by electronic form. The study adhered to the
tenets of the Declaration of Helsinki.29 This diagnostic
study followed the Transparent Reporting of a Multi-
variable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) reporting guideline.30 The study
protocol was approved by the ethics review boards
of Hitachi Hospital (2014-63) and Tokai University
School of Medicine (19R-090).

Study Design and Population

Details of the study setting are described
elsewhere.22,31 The flow chart of the development and
validation process in this study is described in Figure 1.
The development data was derived from participants
who underwent the annual health checkup in fiscal year
(FY) 2016. All participants in the development data
(11,487 eyes of 7572 participants; mean age 51.3± 10.0
years; range, 35–74 years) underwent a comprehensive
ophthalmologic examination which consisted of a
review of medical history, digital fundus photography
(Maestro, Topcon Corp., Tokyo, Japan), frequency
doubling technology perimetry tests (screening mode
C-20-1; Carl Zeiss AG, Oberkochen, Germany), and
automatic OCT measurements (3D OCT-1 Maestro,
Topcon Corp.). Axial length was measured using an
optical axial length meter (Aladdin, Topcon Corp.).
For the development of glaucoma risk scores, we
used a matched case-control design. Cases were those
diagnosed by ophthalmologists based on complete
perimetric and fundus examinations and whose OCT
reports were confirmed to be glaucomatous by ophthal-
mologists (RT and TaNa). Eligible controls were those
who answered that had no history of glaucoma and
whose fundus photography and frequency doubling
technology tests showed no findings of glaucoma.
We randomly selected one control for each case by
matching with sex (male or female) and age (5-year
strata). The final development dataset used for analysis
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Figure1. Flowchart of thedevelopment andvalidationprocess. FDT, frequencydoubling technology;OCT, optical coherence tomography.

consisted of 284 eyes of 191 participants for cases and
284 eyes of 277 participants for controls.

The validation data source was derived from partic-
ipants who underwent an annual health checkup in
FY2018, 2 years after the development step. Based on
the development step, the model obtained by the statis-
tical analysis (described elsewhere in this article) was
applied to all OCTmeasurements of the participants in
FY2018. For validation, we randomly selected 723 eyes
in each score level (low, middle, high).We then assigned
four ophthalmologists (RT, SO, TNo, and TW, super-
vised by TaNa) to independently evaluate the OCT
reports and judge whether the reports were normal,
glaucoma, eye diseases other than glaucoma, or could
not be judged (requirement of further full ophthalmo-
logical examinations). The four ophthalmologists used
the following OCT parameters to determine glauco-
matous changes: (1) average of retinal nerve fiber
layer (RNFL) circular thickness; (2) presence of focal
RNFL thinning and difference in height between the

double humps in temporal–superior–nasal–inferior–
temporal (TSNIT) plot; (3) the quadrant and clock
hour RNFL thickness charts; (4) retina, ganglion cell
layer (GCL)++, and GCL+ thickness map in the
macular area and RNFL thickness map in optic disc
area; and (5) GCL++, GCL+, and RNFL thickness
deviation map. Glaucomatous RNFL loss was often
seen as an arcuate-type defect with temporal raphe. A
decision meeting was held for subjects whose evalua-
tion did not agree, and the assessment was repeated
until all four ophthalmologists agreed. All ophthalmol-
ogists who participated in the assessment of this valida-
tion data were blinded to the scores and had no access
to any other values nor images other than the OCT
report.

As an additional subset analysis for validation, we
conducted a follow-up survey in FY2020 for those with
suspected glaucoma in FY2016 fundus photographs
(dependent on the development step). One hundred
twenty-nine eyes of 66 participants were additionally
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Figure 2. Visualization of potential predictors measured by SD-OCT. (A) The thickness of the cpRNFL was obtained in 12 segments and
then restructured into 5 regions (named cpRNFLqT, cpRNFLqS, cpRNFLqN, cpRNFLqIn, cpRNFLqIt [μm]). (B) The thickness of the mRNFL,
macular GCL (mGCL), macular inner plexiform layer (mIPL), macular ganglion cell-inner plexiform layer (mGCIPL; mGCL+mIPL), andmacular
ganglion cell complex (mGCC; mRNFL+mGCL+mIPL) were obtained in 10 × 10 grids. We restructured these into four regions for model 1
(named ST, SN, IT, and IN [μm]), then created variables that excluded the peripheral regions for model 2 (named STx, SNx, ITx, and INx [μm]),
and then another variable that excluded the central region formodel 3 (named STy, SNy, ITy, and INy [μm]). (C) The thickness of the upper and
lower spikes in the temporal-superior-nasal-inferior-temporal (TSNIT) plot was obtained and then the thinner side of those were identified
(named TSNITlower [μm]).

examined with an HFA using the 24-2 Swedish Inter-
active Threshold Algorithm–based standard program.
TheHFA testing results were evaluated by two ophthal-
mologists (RT and TaNa). The developed scores were
then applied to this subset, and their consistency with
the HFA-based assessment was verified.

OCTMeasurement Predictors

The macular and peripapillary inner retinal layer
thickness was obtained using a three-dimensional wide
scan protocol. We restructured the segments and grids
and created variables as possible predictors among a
total of 312 variables, as described in Figures 2A, B,
and C. First, we calculated the average retinal thick-
ness of all 12 segments for circumpapillary RNFL
(cpRNFL) and all 100 grids for macular RNFL

(mRNFL), macular ganglion cell-inner plexiform
layer (mGCIPL), and macular ganglion cell complex
(mGCC), respectively. Second, for the 12 segments of
cpRNFL, we created variables divided into five regions
(named cpRNFLqT, cpRNFLqS, cpRNFLqN,
cpRNFLqIn, and cpRNFLqIt) (Fig. 2A). We divided
the inferior quadrant according to following studies
showing that the inferotemporal RNFL thickness is
rather beneficial for glaucoma detection.32,33 Third, for
the 10× 10 grids of the three macular layers (mRNFL,
mGCIPL, and mGCC), we initially restructured these
into four regions (named ST, SN, IT, and IN for model
1) (Fig. 2B), then created variables that excluded the
peripheral regions (named STx, SNx, ITx, and INx
for model 2), and then another variable that excluded
the central region (named STy, SNy, ITy, and INy for
model 3). The variables for all regions were averaged
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over the thickness (μm) of the segment. For example,

cpRNFLqS = (cpRNFL_S + cpRNFL_ST

+ cpRNFL_SN)/3 (µm)

mGCC_SN = (mGCC 01_01 + 01_02 + · · ·
+ 05_04 + 05_05)/25 (µm)

Fourth, to account for the differences in the thick-
ness of each region,34,35 variables were created regard-
ing the difference between the superior and inferior
portions and the temporal and nasal portions. Because
these variables would not take a normal distribution
and could take zero if they were exactly the same,
natural logarithmic transformations were performed
after adding one to the absolute values. For example:

log_mGCIPL_STvsIT = loge(|mGCIPL_ST

−mGCIPL_IT| + 1)

Finally, to account for the case in which the differ-
ence in cpRNFL between the superior and inferior is
large, but the thickness of the thinner part is not criti-
cal, we created a variable that refers to the thickness
of the lower side of the upper and lower spikes in the
TSNIT plot (named TSNITlower) (see Fig. 2C).

Statistical Analysis

All variables from the OCT measurements were
handled as continuous variables. We used multivari-
able logistic regression models with backward stepwise
selection with a P value of 0.1 for backward elimi-
nation to select the best predictive model in the
development dataset. Three models were examined.
For model 1, all the cpRNFL-related values and
mRNFL-, mGCIPL-, and mGCC-related variables
without exclusion of the peripheral or central regions
of the macula grids were included as possible predic-
tors. And then, for macula-related values, we used
variables that excluded the peripheral regions formodel
2 and variables that excluded the central region for
model 3. To add, all models included the overall
average thickness (cpRNFL, mRNFL, mGCIPL, and
mGCC), the region difference–related variables (e.g.,
log_mGCIPL_STvsIT), and the TSNIT plot graph-
spike-related variable (TSNITlower). The effectiveness
of the analyses was estimated by the area under the
receiver operating characteristic curves (AUC-ROC).

For validation, we applied the interceptions and
betas obtained from the three regression models in the
development step and risk scores using the following

equations:

loge
(

p
1 − p

)
= Y ⇔ p = exp (Y )

1 + exp (Y )
(1)

Glaucoma screening score = round (p× 100) , (2)

where round(X) denotes the whole number closest toX.
In brief, all participants with OCT measurements for
each eye took scores from 0 to 100, with higher scores
indicating a greater possibility of glaucoma. Based on
the score distribution, we divided the population into
three groups: 0 to 49, low; 50 to 89, middle; and 90
to 100, high. We then calculated the positive predictive
values (PPV) for screening for the necessity of further
full ophthalmological examination in each group (PPV
for screening). Additionally, sensitivity and specificity
were evaluated using diagnoses obtained with subsets
additionally augmented with HFA testing.

To clarify the effect of the axial length, we examined
the improvement effect of information on the axial
length on the risk score. In addition, to confirm
accuracy in distinguishing retinal thinning owing to
glaucoma from that, owing to high myopia, we
estimated axial length from the angle of the double
hump of the peripapillary RNFL (Supplementary Fig.
S1). First, the raw value of axial length was indepen-
dently added to model 3. Next, axial length was added
to all three models, and the selection of variables in the
logistic regression as above was performed. All statisti-
cal analyses were performed using SAS 9.4 (SAS, Insti-
tute, Cary, NC).

Results

The characteristics of cases and controls in the
development data are shown in Table 1. All four layers
were significantly thinner in the cases than in the
normal controls (overall average of the 10 × 10 grids).
Spearman’s correlation coefficient of cpRNFL thick-
ness between the left and right eyes was 0.85 (P < 0.01)
in the control group and 0.24 (P < 0.01) in the case
group. The distribution by cases and controls for the
predictors are illustrated in Supplementary Figure S2.

The diagnostic models developed for glaucoma
screening are shown in Table 2. After the selection
of variables in the logistic regression models, for the
predictors of each region’s thickness (cpRNFLqS,
cpRNFLqIt, cpRNFLqIn, mGCIPL_IT, mGCC, and
TSNITlower), in principle, we obtained negative
regression coefficients, meaning a lower possi-
bility of glaucoma if the layers of the retina in
the selected area were thicker. In contrast, for
the predictors of differences between superior
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Table1. Characteristics of the ParticipantsWithGlaucomaCases andSex- andAge-matchedControls (Fiscal 2016)

Casesa (284 Eyes of 191
Participants)

Controlsb (284 Eyes of 277
Participants) P Valuec

Gender 1.00
Female 33 (11.6) 33 (11.6)
Male 251 (88.4) 251 (88.4)

Age (years) 56.3 ± 9.2 56.2 ± 9.0 .96
SD-OCT measured thickness (μm)
cpRNFL (10 × 10 grids) 73.3 ± 15.4 99.3 ± 10.1 <.01
cpRNFLqS 88.2 ± 24.3) 123.9 ± 16.5 <.01
cpRNFLqIt 91.5 ± 35.8 142.7 ± 23.6 <.01
cpRNFLqIn 82.4 ± 25.7 119.1 ± 19.3 <.01
TSNITlower 94.8 ± 23.3 140.4 ± 17.8 <.01
mRNFL (10 × 10 grids) 82.0 ± 27.2 123.4 ± 17.8 <.01
mGCIPL (10 × 10 grids) 69.9 ± 11.9 79.5 ± 9.2 <.01
mGCIPL_IT 52.0 ± 9.0 65.3 ± 5.3 <.01
log_mGCIPL_STvsIT 1.9 ± 0.8 0.9 ± 0.6 <.01
log_mGCIPL_ITvsIN 1.7 ± 0.7 1.1 ± 0.6 <.01
log_mGCIPL_STxvsITx 2.1 ± 1.0 1.1 ± 0.6 <.01
log_mGCIPL_SNyvsINy 2.2 ± 1.0 1.1 ± 0.6 <.01
log_mGCIPL_STyvsITy 1.7 ± 0.8 1.2 ± 0.6 <.01
mGCC (10 × 10 grids) 151.9 ± 31.9 202.9 ± 21.2 <.01
mGCC_IN 95.7 ± 15.6 114.8 ± 10.4 <.01
log_mGCC_ITxvsINx 2.3 ± 0.8 1.7 ± 0.6 <.01
log_mGCC_ITyvsINy 2.5 ± 0.8 2.0 ± 0.6 <.01

Axial length (mm) 25.93 ± 1.71 24.43 ± 1.36 <.01

cpRNFL, circumpapillary retinal nerve fiber layer; cpRNFLqIn, inferior-nasal quadrant of cpRNFL; cpRNFLqIt, inferior-
temporal quadrant of cpRNFL; cpRNFLqS, superior quadrant of cpRNFL; log_mGCIPL_ITvsIN, log transformed difference
between inferior-temporal and inferior-nasal quadrant of mGCIPL (model 1); log_mGCIPL_SNyvsINy, log transformed differ-
ence between superior-nasal and inferior-nasal quadrant of mGCIPL (model 3); log_mGCIPL_STxvsITx, log transformed differ-
ence between superior-temporal and inferior-temporal quadrant of mGCIPL (model 2); log_mGCIPL_STvsIT, log transformed
difference between superior-temporal and inferior-temporal quadrant of mGCIPL (model 1); log_mGCIPL_STyvsITy, log trans-
formed difference between superior-temporal and inferior-temporal quadrant of mGCIPL (model 3); log_mGCC_ITxvsINx, log
transformed difference between inferior-temporal and inferior-nasal quadrant of mGCC (model 2); log_mGCC_ITyvsINy, log
transformed difference between inferior-temporal and inferior-nasal quadrant of mGCC (model 3); mGCC, macular ganglion
cell complex; mGCC_IN, inferior-nasal quadrant of mGCC (model 1); mGCIPL, macular ganglion cell-inner plexiform layer;
mGCIPL_IT, inferior-temporal quadrant of mGCIPL; mRNFL, macular retinal nerve fiber layer; SD-OCT, spectral domain optical
coherence tomography; TSNIT, lower spike in the temporal-superior-nasal-inferior-temporal plot.

Values are number (%) or mean ± standard deviation.
aDefined as glaucoma based on complete ophthalmologic examination.
bDefined as no findings on either fundus photography or frequency doubling technology perimetry tests by an ophthal-

mologist.
cχ2 test for gender, and t test for continuous variables.

and inferior or between temporal and nasal
(log_mGCIPL_STvsIT, log_mGCIPL_ITvsIN,
log_ mGCIPL_STxvsITx, log_mGCIPL_ITxvsINx,
log_mGCC_INyvsITy, log_mGCIPL_SNyvsINy,
and log_mGCIPL_STyvsITy), we obtained positive
regression coefficients, meaning a higher possibility

of glaucoma if the differences between them were
larger. Predictor values of the areas under the receiver
operating characteristic curve for the three models
were all 0.97, showing almost no difference between
them. The ROC curves are shown in Supplementary
Figure S3.
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Table 2. Details of the Three Models Developed for Glaucoma Screening (Fiscal 2016)

Intercept and Retinal Thickness-Related Predictors Β SE OR 95% CI P Value

Model 1
Intercept 14.4305 2.1692 – – <.01
TSNITlower −0.0404 0.0153 0.96 0.93 −0.99 .01
cpRNFLqS −0.0303 0.0127 0.97 0.95 −0.99 .02
cpRNFLqIt −0.0304 0.0097 0.97 0.95 −0.99 <.01
cpRNFLqIn −0.0271 0.0096 0.97 0.96 −0.99 <.01
mGCIPL_IT −0.1424 0.0457 0.87 0.79 −0.95 <.01
log_mGCIPL_STvsIT 1.1427 0.2408 3.14 1.96 −5.03 <.01
log_mGCIPL_ITvsIN 0.6971 0.2968 2.01 1.12 −3.59 .02
mGCC_IN 0.0602 0.0270 1.06 1.01 −1.12 .03
AUC-ROC (95%CI) 0.971 (0.960−0.983)

Model 2
Intercept 12.6694 1.5639 – – <.01
TSNITlower −0.0329 0.0150 0.97 0.94 −1.00 .03
cpRNFLqS −0.0344 0.0126 0.97 0.94 −0.99 .01
cpRNFLqIt −0.0318 0.0078 0.97 0.95 −0.98 <.01
cpRNFLqIn −0.0398 0.0091 0.96 0.94 −0.98 <.01
log_mGCIPL_STxvsITx 1.1646 0.2164 3.21 2.10 −4.90 <.01
log_mGCC_ITxvsINx 0.7120 0.2425 2.04 1.27 −3.28 <.01
AUC-ROC (95%CI) 0.969 (0.957–0.982)

Model 3
Intercept 12.5935 1.7128 – – <.01
TSNITlower −0.0660 0.0108 0.94 0.92 −0.96 <.01
cpRNFLqIn −0.0296 0.0087 0.97 0.95 −0.99 <.01
mGCC −0.0289 0.0080 0.97 0.96 −0.99 <.01
log_mGCIPL_SNyvsINy 0.9845 0.2073 2.68 1.78 −4.02 <.01
log_mGCIPL_STyvsITy 0.5671 0.2719 1.76 1.04 −3.00 .04
log_mGCC_ITyvsINy 0.6613 0.2450 1.94 1.20 −3.13 .01
AUC-ROC (95% CI) 0.968 (0.955–0.981)

AUC-ROC, area under the receiver operating characteristic curve; CI, confidence interval; OR, odds ratio; SE, standard error.

We applied the glaucoma screening scores to the full
validation dataset (FY2018; 9720 eyes of 6006 partici-
pants). The glaucoma screening scores were calculated
using formula (1) and (2) described in the Methods.
Specifically, we used the results from the develop-
ment step to calculate the scores for models 1, 2, and
3, respectively, using Y calculated by the following
equations:

Y (model 1)

= 14.4305 − 0.0404 × TSNITlower − 0.0303

× cpRNFLqS − 0.0304 × cpRNFLqIt − 0.0271

× cpRNFLqIn − 0.1424 × mGCIPL_IT + 1.1427

× log_mGCIPL_STvsIT + 0.6971

× log_mGCIPL_ITvsIN + 0.0602 × mGCC_IN

Y (model 2)

= 12.6694 − 0.0329 × TSNITlower − 0.0344

× cpRNFLqS − 0.0318 × cpRNFLqIt

− 0.0398 × cpRNFLqIn + 1.1646

× log_mGCIPL_STxvsITx + 0.712

× log_mGCC_ITxvsINx

Y (model 3)

= 12.5935 − 0.066 × TSNITlower − 0.0296

× cpRNFLqIn − 0.0289 × mGCC + 0.9845

× log_mGCIPL_SNyvsSTy + 0.5671

× log_mGCIPL_STyvsITy + 0.6613

× log_mGCC_ITyvsINy
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Table 3. Distribution of Glaucoma Screening Scores for the Three Models Developed and PPV of the Need for
Further Full Ophthalmologic Examination in the Validation Dataset (Fiscal Y2018)

Validation Data Set SD-OCT Report Diagnosed by Four Ophthalmologists

Model Risk Score N % Total, N Glaucoma, N PPV, %

Model 1
Low 0 to 49 8380 86.2 157 19 12.1
Middle 50 to 89 750 7.7 183 110 60.1
High 90 to 100 590 6.1 383 309 80.7

Model 2
Low 0 to 49 8339 85.8 155 18 11.6
Middle 50 to 89 776 8.0 167 86 51.5
High 90 to 100 605 6.2 401 334 83.3

Model 3
Low 0 to 49 8280 85.2 186 22 11.8
Middle 50 to 89 842 8.7 168 81 48.2
High 90 to 100 598 6.2 369 335 90.8

Total 9720 100 723 438 60.6

PPV, positive prediction value; SD-OCT, spectral domain optical coherence tomography.

Table4. Results of SD-OCTandHFATests Performed in Fiscal 2020onPatients Suspected toHaveGlaucomaBased
on Fundus Photography in Fiscal 2016 (n = 129) and Comparison With Glaucoma Screening Score

Model 3 Risk Score

Diagnosis High (90 to 100), N Middle (50 to 89), N Low (0 to 49), N

All, N 67 17 45
Glaucoma 53 8 1
Other eye disease 0 3 4
Undeterminable 10 1 3
Normal 4 5 37

HFA, Humphrey visual field analyzer; SD-OCT, spectral domain optical coherence tomography.

The distribution of the glaucoma screening scores
for the three models are shown in Table 3 (see Supple-
mentary Table S1 for detailed scores). Based onmodels
1, 2, and 3, 6.1%, 6.2%, and 6.2% of the whole
population, respectively, corresponding to the high
score group (≥90 points). Among the total subjects, we
randomly selected two-thirds of the high group, one-
fifth of the middle group, and 2% of the low group,
with consideration to the time resource of the experts,
and assigned four ophthalmologists to judge the OCT
reports. Based onmodels 1, 2, and 3, PPV for screening
was 80.7%, 83.3%, and 90.8% in the high group, and
negative predictive value was likewise 87.9%, 88.4%,
and 88.2% in the low group, respectively, showing
model 3 to be the most suitable for glaucoma screen-
ing accuracy (Table 3).

The results of the additional validation analysis
are shown in Table 4. Based on model 3, which was
calculated using the OCT data taken in FY2016, 67

Table 5. Sensitivity and Specificity of the Risk Score for
Glaucoma Screening

Model 3 Risk Score Glaucoma Normal Total

90 to 100 53 (85%) 4* 57
0 to 89 9* 42 (91%) 51
Total 62 46 108

*Detailed findings among false-positive and false-negative
cases are available in Supplementary Table S2.

subjects (eyes) corresponded with a high score (≥90).
Among them, 53 were diagnosed with glaucoma,
and 10 could not be determined by OCT and HFA
tests, and 4 had no findings (normal). After exclud-
ing those with other diseases, sensitivity was 85.4%,
and specificity was 91.3% (Table 5). Detailed findings
of OCT and HFA in the false-positive and false-
negative cases are shown in Supplementary Table S2.
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False-positive cases demonstrated suggestive
preperimetoric glaucoma (PPG) in two cases and
failed to track the optic nerve during OCT scannings
in two cases. False-negative cases showed mild RNFL
defect (NFLD) with a mild degree of thinning in two
cases, narrow NFLD in two cases, and diffuse thinning
of the retinal layer owing to myopia in three cases. Two
cases were diagnosed with glaucoma; however, those
scores based on model 3 were 89 and 88, respectively.
Spearman’s correlation coefficient between the model
3 risk score and mean deviation and pattern standard
deviation of the HFA test was −0.503 (P < 0.001)
and 0.618 (P < 0.001). In the cases with a high-risk
score and definitive glaucoma, mean deviation and
pattern standard deviation (mean ± standard devia-
tion) were −6.80 ± 5.91 and 6.42 ± 4.64, respectively.
In nine cases with a low or middle-risk score (<90)
and definitive glaucoma (false-negative cases), mean
deviation and pattern standard deviation (mean ±
standard deviation) were −1.96 ± 1.53 and 3.02 ±
0.76, respectively. There were significant differences
between the two groups by the t test.

We also examined the improvement effect of the
axial length on the risk score. First, the raw value of
axial length was independently added to model 3. The
results are shown in Supplementary Table S3a. The
odds ratio (95% confidence interval [CI]) of axial length
was 1.30 (95% CI, 1.02–1.65). However, accuracy was
not improved (Supplementary Tables S3b and S3c).
Second, axial length was added to OCT variables,
and the selection of variables in the logistic regression
was performed in models 1, 2, and 3. The results are
shown in Supplementary Table S4a. Odds ratios for
axial length were 1.52 (95% CI, 1.21–1.91), 1.56 (95%
CI, 1.32–2.10), and 1.52 (95% CI, 1.20–1.93), respec-
tively. Again, however, accuracy was not improved
(Supplementary Tables S4b and S4c). In addition, the
estimated axial length angle of the double hump of the
peripapillary RNFL was not selected as a significant
variable in any of the three models (data not shown).

Discussion

In this study, we developed an SD-OCT–based
glaucoma risk score for population-based glaucoma
mass screening. Development was conducted with
reference to the diagnostic logic of glaucoma special-
ists. This logic included (1) the absolute value of each
layer thickness of the whole or separate regions,36
(2) vertical difference in peripapillary RNFL thick-
ness,35 (3) vertical and lateral difference of each layer in
the macular area,34 (4) wedge-shaped localized retinal

NFLD around the optic disc,37 (5) difference in the
double hump pattern of the peripapillary RNFL,38
(6) absolute value of the low value of the double hump
pattern of the peripapillary RNFL,38 and (7) axial
length estimated from the angle of the double hump
pattern of the peripapillary RNFL. Furthermore,
in the macula, three patterns were examined using
(A) whole data (model 1); (B) exclusion of surrounding
areas to avoid the influence of large vessels (model 2)39;
and (C) exclusion of the central area on the basis that
this area is not affected in early stage glaucoma (model
3). On implementation of all three algorithms, the odds
ratio of variables regarding the vertical and lateral-
ity difference of each layer was the strongest indicator
of glaucoma. Model 3 had the highest sensitivity and
specificity in the data of SD-OCT alone.

In the validation step, we applied two steps, because
of two objectives: one was to develop a score that
automatically detects glaucomatous findings in OCT,
and the other goal was to screen for glaucoma. There-
fore, the first validationwas performed by readingOCT
by glaucoma specialists, and the second validation
was performed by evaluating the glaucoma diagnosis
using a Humphrey visual field analyzer. We selected
cases in which the risk scores were evenly divided
and then added cases that were difficult to diagnose
as glaucomatous because the accurate judgment of
slight changes in early stage glaucoma is critical for
mass screening. This validation process assumed the
situation in actual population-based mass screening
in which an ophthalmologist makes judgments on the
need for detailed examination for glaucoma in hospi-
tal. Additionally, the decisions were made by agree-
ment among all four ophthalmologists, blinded to the
scores, for the purpose of screening for glaucoma.
To validate the accuracy of the risk score using real-
world data, cases with low image quality owing to
poor fixation, blinking, movement, and small pupils
were intentionally included. In some cases, the presence
of artifacts, segmentation errors, and optic nerve
tracking errors rendered glaucomatous findings diffi-
cult to capture; nevertheless, all four ophthalmologists
examined the data until they reached a consensus, and
then made a final decision. The score was well-related
to the judgment needed for a detailed examination for
glaucoma. Additionally, we investigated the validity of
the scores using ophthalmologic diagnoses based on
the HFA test and OCT reports, which confirmed their
high performance and accuracy, with a sensitivity of
85.4% and specificity of 91.3%. Four cases showed a
high-risk score with no visual field abnormalities and
were regarded as false-positive cases. Ophthalmologists
judged that some of the false-positives cases were most
likely PPG with NFLD detected by OCT. Although
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our goal in this study was to detect early and moderate
stages of glaucoma, but not to detect PPG, these cases
suggest that the risk score could also be used to identify
PPG.Nine glaucoma cases showed low scores that were
false negatives. The findings from these cases indicated
that the risk score tended to be low for cases with a
mild thinning type of RNFL, a narrow retinal NFLD,
or diffuse retinal layer thinning owing to myopia.

Algorithm-based artificial intelligence is now a
mainstream approach,40 and visualization of deep
learning models is an active and ongoing area of
research.21,41 Currently, however, no practical appli-
cations have yet appeared because the algorithm is a
black box and implementation in the field of mass
screening is complex. The algorithm used in this study
can be configured to provide a score by the installa-
tion of simple calculation software on existing OCT
machines, and therefore seems to be suitable for practi-
cal use. Furthermore, the cutoff value can be deter-
mined according to prevalence in the target popula-
tion. In this study, we set a score of 90 points or more
as requiring detailed examination; the score showed
a high PPV for screening; 6% of the 9000 data sets
were targeted for a 5% prevalence of glaucoma.3 Two
cases with glaucoma in the additional validation set
were false negatives; however, the scores were 88 and 89
points, so the cutoff value could be decreased slightly
to increase sensitivity. We believe that this parsimo-
nious model is feasible and reliable, given that the
most crucial feature of mass screening is high PPV of
screening.

We have developed an OCT screening algorithm
that is suitable for screening use. Considering the
characteristics of glaucoma, it is essential to observe
changes over time. Therefore, it is more appropriate to
express our findings in terms of risk score rather than
through the setting of a clear cutoff value. The reliabil-
ity of data based onOCT images owing to deformation
of the eyeball by the long axial length, which occurs
with severemyopia, should be further considered. High
myopia makes differentiation from glaucoma difficult.
Independently of glaucoma, the distribution of RNFL
thickness will vary considerably depending on the axial
length of the eye. We tried modifying the score using
an estimation of axial ocular length based on the angle
of the TSNIT double hump, but this did not improve
accuracy. In fact, even the addition of raw data for axial
length did not improve accuracy.

Our study has several strengths. First, we used
large-scale data derived from ophthalmologist inter-
pretations of approximately 1291 images as an analy-
sis target. No previous study has evaluated OCT at
this scale. Second, all data were population-based
and had no hospital bias. Third, this algorithm can

explain the reason why a diagnosis of glaucoma
is made ophthalmologically rather than as a black
box pronouncement. This practice, in turn, aids in
convincing hesitant examinees of the need for detailed
examination and treatment. Fourth, this study was
conducted at our workplace, facilitating follow-up. Of
importance considering the progression of glaucoma,
the final validation was made based on results four
years after the initial diagnosis.

Small limitations alsowarrantmention. The number
of validation subjects with a final diagnosis was limited.
However, our primary goal was not a final diagnosis
of glaucoma, but rather to develop an algorithm to
aid ophthalmologists in determiningwhether an exami-
nee requires a detailed hospital evaluation. For this
purpose, our validation was sufficient.

In conclusion, the SD-OCT-based glaucoma risk
score developed in this study can be used in mass
glaucoma screening and will play an important role in
this screening.
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