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Abstract

To characterize the behavior and robustness of cellular circuits with many unknown parameters is a major challenge for
systems biology. Its difficulty rises exponentially with the number of circuit components. We here propose a novel analysis
method to meet this challenge. Our method identifies the region of a high-dimensional parameter space where a circuit
displays an experimentally observed behavior. It does so via a Monte Carlo approach guided by principal component
analysis, in order to allow efficient sampling of this space. This ‘global’ analysis is then supplemented by a ‘local’ analysis, in
which circuit robustness is determined for each of the thousands of parameter sets sampled in the global analysis. We apply
this method to two prominent, recent models of the cyanobacterial circadian oscillator, an autocatalytic model, and a model
centered on consecutive phosphorylation at two sites of the KaiC protein, a key circadian regulator. For these models, we
find that the two-sites architecture is much more robust than the autocatalytic one, both globally and locally, based on five
different quantifiers of robustness, including robustness to parameter perturbations and to molecular noise. Our ‘glocal’
combination of global and local analyses can also identify key causes of high or low robustness. In doing so, our approach
helps to unravel the architectural origin of robust circuit behavior. Complementarily, identifying fragile aspects of system
behavior can aid in designing perturbation experiments that may discriminate between competing mechanisms and
different parameter sets.
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Introduction

Biologists’ qualitative reasoning about outcomes of experiments

show inherent limitations. Mathematical models of cellular

processes, such as signaling, cell-cycle regulation, or circadian

rhythmicity [1,2] can compensate for these limitations. Such

models are often systems of ordinary differential equations, whose

state variables represent the molecules that take part in a process.

The interactions between molecules are encapsulated in the

differential equations themselves, where multiple biochemical

parameters determine rates at which molecules are synthesized or

degraded, at which they associate, dissociate, or are transformed

into other molecules. Although some data on a cellular process

often exists to inform such models, substantial uncertainty often

remains about which molecular interactions occur in it, and about

values of the parameters governing these interactions [3].

When given two models for the same cellular process, which one

is better in the face of such uncertainty about model structure and

parameters? Traditionally, this question has often been ap-

proached by model calibration [4]. Here, a model is judged

superior if there exist parameters (in its usually high-dimensional

parameter space) that allow the model to mimic biologically observed

behavior more closely than other models. This approach fails in

the common situation where parameters are underdetermined by

model behavior and thus many parameter sets exist that match the

behavior equally well [5]. That this deficiency is particularly

pronounced for models of cellular processes was shown in [6].

A system is called robust to a specific class of perturbations if it

can maintain its function or structure under these perturbations

[7]. Such perturbations include changes in biochemical parame-

ters (e.g. temperature [8] and other environmental changes),

molecular noise [9–12], changes of molecular concentrations, as

well as mutations [13,14]. Many properties of biochemical systems

show some robustness to such perturbations [15–21]. These

observations raise the possibility that robustness itself could be

used to discriminate between models [15,16]. In the absence of

other criteria, a model would be judged superior if it is more

robust than other models to some class of perturbations [19]. This

notion forms the cornerstone of our contribution.

Conventional methods used in robustness analysis can be

subdivided into global and local methods. Global methods

characterize properties of a model’s parameter space, such as
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the size or volume that generate a behavior of interest [22,23], or a

parameter’s bifurcation diagram [24–26]. Such a diagram

characterizes how qualitative model properties, such as stability

of steady-states, change as model parameters are varied [27]. The

structure of a bifurcation diagram can be influenced by variation

in parameters that are not considered, which limits this approach.

Finally, multivariate continuation methods [28] do not show a

strong advantage over unrestricted sampling for high-dimensional

systems, as they reduce the sampling space only by one dimension.

In contrast to global methods, local methods analyze how

perturbations affect model behavior for one specific set of

parameters. Their main limitation is precisely this: they may not

reflect model behavior under all possible parameters sets. Most

robustness analyses in the literature are local. Examples include

sensitivity analysis [29], which studies the effect of perturbations

for a given parameter set on model behavior, and its application to

circadian oscillators [17,18,29]. These methods are usually based

on the linearization of a system and therefore hold for variations of

only a few percent of the parameter values. Other work uses

stochastic simulations to estimate the robustness of a system to

molecular noise [11,12]. Efforts to extend a local analysis to

systematic parameter variations in more than one or two

dimensions [25,26] are often limited by computational cost.

We here propose a novel ‘glocal’ method for analysis and

quantification of robustness that combines a global with a local

approach. Understanding the origin of robustness and fragility may

inform new experiments that can best discriminate between

competing hypothetical mechanisms or models. Briefly, the global

approach aims at estimating the volume in parameter space

occupied by parameters for which a model yields a biologically

observed behavior. Because such a search becomes very challenging

in high-dimensional parameter spaces, we guide this search through

an iterative procedure that involves principal component analysis

(PCA) [30]. The second, local aspect of our method evaluates the

robustness of model behavior – for each of the previously generated

parameter sets – to five different kinds of perturbations, including

concentration perturbations and molecular noise. Conceptually our

method is different from parameter fitting in the sense that it

provides the parameter region where the model is consistent with

experimental observations instead of a single parameter set.

To illustrate the application of our method, we focus on two recent

models of the cyanobacterial circadian oscillator [31,32]. Circadian

oscillators drive activity patterns of a 24 hour period in many

animals, most plants [33], and some bacteria [34]. In cyanobacteria,

the purpose of this oscillator is to regulate gene expression, mainly in

order to alternate between the exclusive processes of nitrogen fixation

and photosynthesis according to light availability [34]. Experiments

with mutants have shown that cyanobacteria with a too short- or

long-period are eliminated under selection pressure against wild-type

organisms synchronized with the 24-hours light/dark cycle [35]. The

cyanobacterial oscillator has been reconstituted in vitro [36], and is

one of the simplest known in any organism [34]. It involves three

main proteins called KaiA, KaiB and KaiC. When mixed with ATP,

reaction buffer and appropriate concentrations of KaiA and KaiB,

KaiC continuously oscillates between a low phosphorylated state and

a high one [36]. KaiA and KaiB modulate the phosphorylation status

of KaiC. Specifically, KaiA catalyzes KaiC phosphorylation and also

seems to inhibit its dephosphorylation. KaiB antagonizes the action of

KaiA when KaiC is highly phosphorylated [37]. Highly phosphor-

ylated KaiC is likely to be the readout component because it can bind

DNA [38] and thus regulate the expression of other genes. In vivo,

additional proteins interact with the three core proteins to entrain the

cycle and communicate the output signal to the cell. We here focus on

models that involve the three core proteins, because these are

necessary and sufficient for autonomous oscillations.

We chose this study system for several reasons. First, it is an area of

very active recent model development, [31,32,37,39,40], driven by

recent insights into the molecular mechanisms of the oscillator [36].

Second, the behavior or function of circadian oscillators is well-

characterized: an ample oscillation with a period of approximately

24 hours [34], and low sensitivity to non-periodic environmental

perturbations. Third, in vitro and in vivo experiments show that the

cyanobacterial circadian clock is robust to many perturbations

[41,42]. Fourth, good estimates for the in vivo abundance of all

involved proteins and of the cell volume for the cyanobacteria are

available. Finally, being posttranslational, the clock shares many

features with signal transduction pathways, an important field of

application for robustness analysis [43,44]. In order to relate our work

to previous robustness studies on transcriptional circadian oscillators

[1,2,45,46] we also characterize a prototypical such oscillator in the

supplementary material (see Text S1, section C).

Results

‘Glocal’ Robustness
A model’s behavior is determined by some number p of

parameters, i.e., the parameter vector k. Any robustness analysis

needs to quantitatively characterize the system’s function that is

maintained under perturbations. We do this through a collection

of systemic properties p(k) that are required to assume values within

predetermined intervals. In our application p comprises the period

pT and amplitude pA of the circadian oscillation of phosphory-

lated KaiC. We say the oscillator with parameter vector k
maintains its function and preserves p if p(k) [½p,�pp�, where we chose

these bounds [35] to be 10% below and above published values

[31,32]. In the following passages, however, we refer to some

general and hypothetical vector of properties p to emphasize the

generality of our approach.

The first step of our approach involves the sampling of a large

set S of vectors k that span several orders of magnitude for each

component. Only a subset V5S will generally preserve p. We call

such parameter vectors viable. We sample according to an iterative

scheme, where in each step the sampling distribution is adjusted

based on a PCA of the viable set of the previous step (Figure 1A).

After a Monte Carlo integration (Figure 1B), the volume occupied

by the set V provides a first, crude characterization of a model’s

Author Summary

Robustness is an intrinsic property of many biological
systems. To quantify the robustness of a model that
represents such a system, two approaches exist: global
methods assess the volume in parameter space that is
compliant with the proper functioning of the system; and
local methods, in contrast, study the model for a given
parameter set and determine its robustness. Local
methods are fundamentally biased due to the a priori
choice of a particular parameter set. Our ‘glocal’ analysis
combines the two complementary approaches and
provides an objective measure of robustness. We apply
this method to two prominent, recent models of the
cyanobacterial circadian oscillator. Our results allow
discriminating the two models based on this analysis:
both global and local measures of robustness favor one of
the two models. The ‘glocal’ method also identifies key
factors that influence robustness. For instance, we find that
in both models the most fragile reactions are the ones that
affect the concentration of the feedback component.

Glocal Robustness Analysis & Model Discrimination
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robustness and can aid in model discrimination by proper

normalization. Unless otherwise mentioned, all calculations and

observations below are made in the decadic logarithmic domain,

because of the broad ranges of parameter values we explore.

The next step of our approach takes advantage of all previously

identified viable parameter vectors in order to carry out a local

robustness analysis. (Figure 1C). This is done by defining a vector

of robustness quantifiers r(k) for each k [ V. Specifically, we use

five complementary quantifiers to assess the robustness of model

properties p to particular kinds of perturbations. We normalize the

local robustness quantifiers to range from zero (minimal

robustness) to one (maximal robustness). Because the set V consists

of a finite number of sampled parameter vectors, we use statistical

tests to assess the results of our analyses. In Methods we provide

details on the iterative sampling scheme, the volume occupied by

V, and the five local robustness quantifiers.

Two oscillator models
We now apply our approach to two recently proposed

mathematical models of the cyanobacterial circadian oscillator.

As briefly discussed above, this oscillator involves three core

proteins, KaiA, KaiB, and KaiC, which form complexes with one

another (denoted as KaiAB, KaiABC, etc.).

The first model [31] (Figure 2A, see Text S1, section A.4, for

equations) involves complex formation of KaiC with the other

proteins, as well as cyclic phosphorylation and desphosphorylation of

KaiC. In this model, KaiA first binds to KaiC (top reaction of

Figure 2A). The resulting complex KaiAC catalyzes the phosphor-

ylation of KaiC forming KaiAC*. A central element of this model is

that KaiAC* then exerts a positive feedback on its own formation (red

arrow in Figure 2A). In a subsequent step, KaiB binds to the complex

KaiAC* and inhibits this autocatalysis. To complete the cycle, KaiA

is released, followed by KaiB, and KaiC* is dephosphorylated. We

will refer to this model as the autocatalytic model.

The second model [32] (Figure 2B, equations in Text S1,

section A.5) takes into account two sites S and T of phosphor-

ylation for KaiC [47], resulting in three possible phosphorylated

states: KaiCT , KaiCS and KaiCST . KaiA catalyzes the phos-

phorylation of KaiC, KaiCT and KaiCS and inhibits the

dephosphorylation of KaiCST and KaiCS . These actions of KaiA

are inhibited by KaiCS (red bar in Figure 2B). Although KaiCS

exerts its effects on KaiA jointly with KaiB [48], KaiB does not

Figure 1. Glocal robustness analysis flow for a hypothetical two dimensional parameter space. (A) A model structure and systemic
properties serve as inputs for the global step of the analysis. This global analysis is composed of (B) and (C) and yields viable parameter vectors k for
the model in addition to the normalized viable volume R. Different local perturbations are applied to these parameter vectors (D) in order to quantify
their local robustness r(k). (B) Monte Carlo sampling to define viable parameter ranges. The first sampling step uses Gaussian random sampling with
independently and identically distributed random variables. Some of the tested parameter vectors (gray circles) are viable (blue circles). For
subsequent iterative steps, sampling occurs according to the covariance matrix of viable parameters estimated in previous steps. (C) Monte Carlo
integration. To estimate the volume in which viable parameter sets occur, we define a hyperbox (red rectangle in left panel) that contains all the
viable parameters of the last iteration. We then sample uniformly parameter vectors from this box (right panel, gray circles) and estimate the fraction
of viable parameter vectors (right panel, black circles). (D) Local analyses are performed on all viable parameter vectors and help identify correlations
between parameter vectors or their components, and robustness values (color intensity) to provide regions of high robustness in the parameters
space; two different local robustness quantifiers (left-red, and right-green).
doi:10.1371/journal.pcbi.1000534.g001

Glocal Robustness Analysis & Model Discrimination
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appear in the equations, because it is assumed to be at saturation

level in this model. We will refer to this model as the two

(phosphorylation) sites model.

Both models capture important empirical observations about

the cyanobacterial circadian cycle: phosphorylation of KaiC with

the help of KaiA [47], inhibition of this effect by KaiB when

bound to phosphorylated KaiC [47–49], and finally dephosphor-

ylation to complete the cycle [47]. However, the models are also

fundamentally different in some key assumptions about the

underlying mechanism. Because of these dramatic differences,

biochemical data will play a decisive role in model discrimination.

The robustness analysis we carry out is a first step towards such

validation.

The two-sites model shows greater global robustness
In applying our global approach to both models, we sampled

parameter vectors covering an enormous range of six orders of

magnitude for each parameter, centered on published [31,32]

parameter values for both models (see Methods and Text S1,

sections A.4 and A.5, for parameter values). We carried out our

procedure for ten PCA iterations and used the viable parameters

of the last four iterations to define the hyperbox for the Monte

Carlo integration.

Figure 3A shows the (normalized) viable volumes R for the two

models. These volumes can be interpreted as the average

allowable variation per parameter that leaves the circadian

oscillations intact. The two-sites model is vastly more robust than

the autocatalytic model. Specifically, the value R~0:718 for the

autocatalytic model means that the parameters can vary over 0.7

orders of magnitude, or 5.2-fold. For the two-sites model, the value

of R~1:60 is more than twice that, correspond to a 39-fold

allowable variation. The values shown are based on at least

5|104 parameter vectors and have sampling errors of less than

one percent (see Methods for details). We also note that the

estimated viable parameter volumes were highly reproducible

among five independent applications of the iterative procedure.

For example, the mean values of R~1:60+0:01 (two-sites model)

and R~0:718+0:006 (autocatalytic model) have a coefficient of

variation below one percent over these five iterations, which shows

that the PCA-guided sampling approach gives highly reproducible

results.

What is responsible for the lower robustness of the autocatalytic

model? One possibility is that strong associations exist between

individual parameters in viable parameter sets, such that some

parameters cannot vary independently from others. Such

associations, if present, may also provide mechanistic insights into

complex, high-dimensional circuits. Figure 3B shows the standard

deviations of viable parameters along the principal axes of both

models. With one exception, the amount of variation along most

principal component axes is similar for both models. The

exception (indicated by the arrow in the Figure 3B) is the lowest

PCA axis for the autocatalytic model.

The high constraint on variation in this axis is caused by a

strong positive correlation between the rate for the autocatalytic

reaction, parameter k3, and the rate for the formation of the

complex KaiABC*, k4 (Figure 3C). This axis deviates by merely 13

degrees from the vector k~(0,0,1,{1,0,0,0) defined by these

parameters. Parameters k3 and k4 are highly correlated (Pearson’s

r~0:97, significance of all statistical tests are summarized in

Table 1). This strong association contributes to the lack of global

robustness we observe in the autocatalytic model. It means that a

Figure 2. Two models of the cyanobacterial circadian cycle. (A)
Autocatalytic model from Mehra et al. [31]. ‘C*’ stands for phosphor-
ylated KaiC. The cycle proceeds clockwise, starting from the upper left.
The sum of concentrations of the KaiC*-containing complexes
(underlined) form the output of the model. The red arrow denotes
the autocatalytic effect of KaiAC* on its synthesis. (B) Two phosphor-
ylation sites model from Rust et al. [32]. There are three possible
phosphorylated states for KaiC: KaiCT , KaiCS and KaiCST . The sum of
concentrations of phosphorylated KaiC molecules (underlined) is the
output of the system. KaiA catalyzes phosphorylation reactions (solid
blue arrows) and inhibits some dephosphorylation reactions (dashed
blue bars). KaiCS (complexed with KaiB, not explicitly modeled) inhibits
the action of KaiA (red bar).
doi:10.1371/journal.pcbi.1000534.g002

Figure 3. Results of the global robustness analyses for both models. (A) The two-sites model (right) has significantly greater nomalized
viable volume than the autocatalytic model (left). Error bars (v1%) correspond to standard deviations over five independent estimates. (B) Standard
deviations along the principal axes of viable parameters for the autocatalytic model and the two-sites model. Note the logarithmic scale. The
autocatalytic model has a strongly constrained axis (arrow); amounts of variation along the other axes are overall smaller for the autocatalytic model.
(C) Projection of the viable vectors of the autocatalytic model after the MC integration on the plane (k3,k4). These two parameters are strongly
correlated resulting in the lowest standard deviation for the autocatalytic model (B).
doi:10.1371/journal.pcbi.1000534.g003

Glocal Robustness Analysis & Model Discrimination
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perturbation of parameter k3 that would not be followed by a

corresponding perturbation in parameter k4 would prevent the

model to preserve properties p of interest. When we examine the

structure of the equations for the autocatalytic model (Figure 2A),

we find that the mechanistic cause for this association lies in the

dynamics of KaiAC*: on the one hand, if k3 is too large, the

concentration of KaiAC* increases too fast and the autocatalytic

effect is too strong; on the other hand, if k4 is too large, the

concentration of KaiAC* is too low and the autocatalytic effect is

too weak. The parameters k3 and k4 need to be delicately

balanced to have the correct concentration of KaiAC* resulting in

the appropriate feedback strength.

To assess whether this strong association is responsible for the

smaller global robustness of the autocatalytic model, we collapsed

the highly correlated parameters k3 and k4 into one. That is, we

assumed that k3 and k4 are linearly dependent and can be

considered as one single parameter. The reduced model with only

six parameters yields a global robustness estimate of R~1:09. This

corresponds to an allowable 12-fold average variation of each

parameter, and accounts partially for the lower robustness of the

autocatalytic model.

A remaining question is whether the viable region of parameter

space forms a connected set. Such connectedness would facilitate

the evolution of oscillators with high robustness through gradual

changes of individual parameters. Although this question cannot

be answered rigorously by our sampling approach we show that

this is probably the case for both models (Text S1, section B.1, and

Figure S1).

The two-sites model shows greater overall local
robustness

Figure 4A shows the distribution of rP, our quantifier of

robustness to local parametric perturbations for both the

autocatalytic model and the two-sites model. The median

robustness of the autocatalytic model is lower by 29% (median

rP~0:179 and rP~0:231 for the autocatalytic and two-sites

model, respectively; see table 1 for significance).

Our combination of global and local analysis allows us to ask

whether individual chemical reactions (represented through their

parameters) are particularly important for a model’s robustness.

To this end, we investigated whether there exist statistical

associations between rP and any of the model parameters. One

striking such association stands out for the autocatalytic model

(Figure S2A). Specifically, rP is highly associated with k7,

(Spearman’s r~{0:638), whereas all other parameters and rP

show only rv0:11 (Spearman’s partial correlation given k7). A

glance at the model equations (Text S1, section A.4) shows that the

reaction associated with k7 dephosphorylates KaiC* and thus

triggers the initialization of a new autocatalytic cycle. If this

initialization occurs too fast (at large k7), synchronization of

complex formation and absorption of perturbations is poor.

Table 1. Statistical tests and their significance used to assess model discrimination and correlations.

Null hypothesis Test type r-value p-value n

Parameters k3 and k4 are correlated in the autocatalytic model Pearson’s 0:97 v10{323 1828

rP is larger for two-sites model Wilcoxon rank 3:32|10{91

rP correlated with k7 for autocatalytic model Spearman’s 20.638 v10{323 1828

robustness to temperature changes is larger than rP for autocatalytic model Wilcoxon rank sum 1:95|10{246

robustness to temperature changes is larger than rP for two-sites model Wilcoxon rank sum 0:245

robustness to temperature changes is larger for two-sites model Wilcoxon rank sum 2:28|10{4

rC is larger for two-sites model Wilcoxon rank 9:25|10{177

rP correlated with k7 for autocatalytic model Spearman’s 20.718 2:81|10{289 1828

rN is larger for two-sites model Wilcoxon rank 3:09|10{239

rA is larger for two-sites model Wilcoxon rank 4:31|10{10

rS is larger for two-sites model Wilcoxon rank 1:69|10{151

rT is larger for two-sites model Wilcoxon rank 1:48|10{238

rT is correlated with the distance from the parameter with the highest rT for autocatalytic model Spearman’s 20.355 v10{323 1828

rT is correlated with the distance from the parameter with the highest rT for two-sites model Spearman’s 20.196 v1:15|10{6 604

doi:10.1371/journal.pcbi.1000534.t001

Figure 4. The two-sites model (blue) has greater local
robustness than the autocatalytic model (red). Shown are the
distributions of (A) robustness to local parameter perturbations rP, (B)
robustness to total concentration perturbations rC , (C) robustness to
molecular noise rN , (D) attraction of the cycle rA, and (E) sensitivity of
the period rS . In (F) median values are shown with their associated
standard deviation (error bars) for both models and all five quantifiers.
Black dots indicate local robustness values for the previously published
parameter vector’s [31,32].
doi:10.1371/journal.pcbi.1000534.g004

Glocal Robustness Analysis & Model Discrimination
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As an extension of this quantifier, properly correlated

parametric perturbations are used to address the robustness to

temperature changes (see Methods). We find that the two-sites

model has a median robustness only 4% greater than the

autocatalytic model (Figure S3B). Individual analyses of both

models show why this difference, yet significant (p~2:28|10{4),

is small compared to the difference in rP. On the first hand, the

autocatalytic model is more robust to such correlated perturba-

tions than to uncorrelated perturbations (median of 0:230, and

0:179, respectively). The large difference between the two cases for

the autocatalytic model (Figure S3A and S3B, red bars) can be

explained by the strong association between k3 and k4 discussed

above: correlated perturbations cannot be aligned with the most

constrained direction of the viable parameter volume. On the

other hand, the two-sites model, which does not have such highly

associated parameters, does not show increased robustness to

correlated parameter changes (p~0:245).

We next turn to total concentration perturbations rC

(distribution shown in Figure 4B). Here, the two-sites model is

on average 2.5-fold more robust than the autocatalytic model, with

a median rC~0:192 and rC~0:439 for the autocatalytic and

two-sites model, respectively. For instance, for 10% of viable

parameter vectors in the two-sites model, more than 80% of

perturbations leave the circadian oscillation intact. Exactly as for

rP, we find that in the autocatalytic model, k7 strongly influences

rC (Figure S2B), with a Spearman’s rank correlation between k7

and rC of {0:718, which underscores the importance of this

dephosphorylation reaction.

We next assessed robustness rN to molecular noise. To this end,

we used Gillespie’s algorithm [50] to simulate an oscillator with

2000–6000 molecules in a reaction volume of 3ml, numbers that

are of the correct order of magnitude for the number of Kai

proteins in a cyanobacterial cell [49]. Here again, the two-sites

model is significantly more robust, with a median (mean) value of

rN that is 45 (6.5) times larger (Figures 4C and 4F). For example,

for the autocatalytic model, fewer than 6% of viable parameter

vectors show rNw0:5 (Figure S2C), whereas more than 80% of

the parameters show rNw0:5 in two-sites model, where noise also

affects only a small region of the viable parameter volume (Figure

S2D). We discuss in the Text S1, sections B.3 and B.4, that the

reactions forming KaiAC, and those forming and destroying

KaiCS are of particular importance for robustness to molecular

noise.

We next turn to the attraction of the cycle rA, whose

distribution is shown in Figure 4D. The two-sites model has a

significantly higher median rA~0:891 compare to rA~0:846 for

the autocatalytic model. An analogous difference holds for period

sensitivity (Figure 4E), where rS is on average 65 percent greater

in the two-sites model.

We had noted previously that k3 and k4 are strongly and

negatively associated with global robustness. When analyzing their

association with period sensitivity, we find that they also have a

strong and opposite impact on the period (results not shown). The

reason is the same as discussed in the results for global robustness,

namely that the autocatalytic feature that is so central to this

model requires a delicate balance of two reactions producing and

destroying KaiAC*. This feature also explains the higher

robustness to temperature compensation as discussed above.

To summarize, the two-sites model shows significantly greater

values in each of the local robustness quantifiers we used

(Figure 4F). It is thus not surprising that the average rT of all

five quantifiers also indicates much greater robustness for the two-

sites model. For this model, robustness also decreases more slowly

with distance from the points of highest average local robustness

reflecting a larger volume with high average robustness (Figure 5;

see Text S1, section B.5 for details).

Discussion

Most published work on the robustness of cellular circuits

addresses either global or local robustness [17,18,20,29]. Our

‘glocal’ approach overcomes the limitations of both global and

local analyses. First, by generating large samples of parameter

vectors, the approach can estimate a viable volume of parameter

space that yields a behavior of interest. It is thus not easily misled

by results derived from a particular chosen point in parameter

space, in contrast to parameter fitting that yields only single point

estimate. This feature is particularly important for biochemical

models that are structurally or practically unidentifiable [5,6,51,52].

For the potentially large class of models with this property, model

parameters that yield an observed behavior cannot be uniquely

identified even in the presence of arbitrarily abundant and error

free data. In order to discriminate between possible parameters

and models, new experiments could be designed using the results

of our robustness analysis. Second, the analysis of parameter

vectors spanning multiple orders of magnitude shows how local

robustness varies in parameter space. Third, a combination of

local and global analyses lends itself to deeper mechanistic insight

into circuit behavior. In particular, it can lead to the identification

of key parameters important for robustness. Obvious applications

include synthetic biology, where tunability of a synthetic circuit’s

robustness by changing key parameters is highly desirable. Finally,

by studying different quantifiers of local robustness, one can obtain

trade-offs between robustness and other system properties.

Methods similar to the global part of our approach have been

proposed earlier [22,53]. However, by using principal component

analysis, our global method samples more efficiently, a necessity

for studying high dimensional parameter spaces.

Figure 5. Distribution of the average local robustness rT for
the two models. For each viable parameter vector k, the figure shows
its distance (horizontal axis) from the viable parameter vector with the
highest average local robustness rT plotted against the rT of k (vertical
axis); autocatalytic model (red) and two-sites model (blue). Large circles
correspond to the two parameter vectors with the highest rT for each
model, and squares correspond to published parameter vectors [31,32].
The greater the distance of k to the most robust parameter vector, the
lower its rT . This negative association is stronger for the autocatalytic
model.
doi:10.1371/journal.pcbi.1000534.g005
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Potential limitations of our approach include the requirement

for a starting parameter vector to initialize global sampling. We

used published information for this vector [31,32]. However, even

where such information is unavailable, random sampling and

optimization techniques [4] are available to permit creation of

such a vector. A second limitation regards the range of the region

in parameter space from which one samples. To avoid biased

estimation of robustness, the size of this range should be chosen

beyond the biophysical bounds on parameters. Note that a

conservative choice of this range does not hamper our approach,

because our iterative procedure quickly directs the sampling to

viable regions.

A third potential limitation regards computational require-

ments, because our global approach requires numerical integra-

tion of a model for hundreds of thousands of parameter vectors,

and local robustness estimation for thousands of these vectors.

Nonetheless, the approach is feasible with currently available

technology. For example, global robustness analysis for the 12-

dimensional two-sites model involving nearly 106 parameter

vectors, and 103 local perturbations for each of the resulting

viable vectors executes in less than 5 days on a commercially

available eight-core (Intel Xenon X5355 @ 2.66 GHz) architec-

ture. The inevitable exponential scaling of complexity with

parameter dimensions can only be mitigated by a guided sampling

procedure like ours.

In our application of the method to two circadian oscillator

models, we find that the two-sites model shows vastly greater

global robustness than the autocatalytic model, with 39-fold and 5-

fold allowable parameter variation, respectively, along each

parameter dimension on average. Similarly, the two-sites model

is also more robust for each of several different quantifiers of local

robustness, including robustness to parameter changes, molecular

noise, transient state perturbation, and period sensitivity. Based on

these considerations alone, the architecture of the two-sites model

is superior to the one of the autocatalytic model. If robustness is

advantageous, and if this oscillatory mechanism is realizable

biochemically [35,41], it should be the preferred architecture. This

observation is consistent with recent experiments that provide

strong evidence in favor of ordered phosphorylation in the

cyanobacterial clock [47,54]. In contrast, the autocatalytic

mechanism [31], obtained by interpreting experimental results of

[49], whereas phosphorylated KaiC facilitates KaiA-KaiC associ-

ation and subsequent KaiC phosphorylation, was not confirmed

by recent experiments [32,47,54].

The ‘glocal’ combination of global and local robustness analysis

shows which chemical reactions in these models are of particular

importance for robustness (or a lack thereof). For example, the

rates of two central reactions of the autocatalytic loop in the

autocatalytic model need to be delicately balanced, a property that

partially accounts for its lack of global robustness. Put differently,

the central feature of this model is partly responsible for its low

robustness. In the two-sites model, our local analysis shows that the

rates of the reactions that form and destroy KaiCS are of

particular importance for its robustness. For low values of these

parameters, the concentration of KaiCS fluctuates to a greater

extent. The resulting fluctuations are then amplified by the

feedback loop central to this model. In addition to the analysis of

these two cyanobacterial circadian models, results obtained with

the Goodwin model (see Text S1, section C) show the feasibility of

this glocal method for models with a different structure. Our

analysis of this generic circadian oscillator also demonstrates the

importance of a tight regulation of the feedback component.

In both cyanobacterial models, our evidence suggests that the

regions of parameter space where viable parameters occur are

connected. This observation is significant to understand how

robustness of circadian oscillations could evolve [52,55,56], in

particular through gradual, small changes of individual parame-

ters. The volume formed by these parameter vectors likely forms a

‘neutral volume’ [57] in which circadian oscillations with a given

period and amplitude are preserved. However, what is changing in

this volume is local robustness. Thus, if local robustness (or one

aspect thereof) is adaptive, then robust circuits are readily

accessible to natural selection through the connectedness of the

neutral volume, without the need to change the oscillatory

behavior itself. In this regard, it is also intriguing to see that the

published parameter vectors for either model do not show

maximal robustness. If these vectors reflect biological reality, then

optimization criteria aside from robustness remain to be

discovered, or some unknown constraint may prevent maximiza-

tion of robustness.

Methods

The first, global part of our method identifies the viable set V for

a given sampled set S that comprises of the order of 105 parameter

vectors uniformly sampled in some closed region of p-dimensional
space. We chose the region to be a hyper-cube centered around

nominal published values [31,32], spanning six orders of

magnitude for each component. In order to avoid biased estimates

the interval bounds should be beyond what is biophysical feasible.

Such an a priori range needs to be established, both for practical

reasons, and for models that are unidentifiable [5,51,52] (see Text

S1, section A.1, and Figure S4). The sampling method involves an

iterative procedure, which we now describe. In each iterative step j
it generates a set S(j), and identifies the viable subset V(j). The first

set S(1) is a Monte Carlo sample of the parameter space obtained

via a large (w104) number of p-dimensional Gaussian random

variates, centered on a known viable parameter vector [31,32].

(Figure 1A). We then determine the viable subset V(1) of S(1),

which comprises of the order of 100{1000 elements in our

application. The next step of the procedure consists of a principal

component analysis (PCA) of the viable parameter set V(1). PCA is

a technique to identify linear statistical structure in high-

dimensional data sets [30]. We use it here to identify associations

among viable parameters that can guide our sampling in

subsequent iterations. Specifically, the set S(2) and subsequent

sets are generated from previous parameter sets as follows

S(j)~ ki~SV(j{1)Tzl(j{1) ji j i~1, . . . ,L
� �

, ð1Þ

for all jw1, where SV(j{1)T stands for the element-wise mean of

parameter vectors in the set V(j{1) and ji is the i-th realization of a

p-dimensional Gaussian process with zero mean and covariance

matrix S(j{1). The size of S(j) is given by L (L~5|104 in our

application). The entries S(j{1)
nm are the pairwise covariances of

parameters kn and km in the set V(j{1). We compute this matrix,

whose eigenvectors are the principal axes of the set V(j{1), through

PCA. The real valued factor l(j{1) determines the variance of the

j-th Gaussian process by scaling the standard deviations of the

distribution along the PCA directions of the (j{1)-th iteration

(Figure 1A). In this approach PCA avoids ‘‘wasting’’ sampling

effort on parameter regions where viable parameter vectors are

not likely to be found. As described thus far, our procedure serves

to identify major axes of viable parameter variation for sampling

and the dispersion of the viable parameters along them. To

establish global measures of robustness, we then perform a Monte

Carlo integration (Figure 1B). Specifically, we construct a hyper-
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box B in parameter space whose axes are parallel to the PCA axes

of the last iteration. In each dimension, the limits of this box are

defined by the most extreme components of the viable parameters

found in the last iteration of sampling along these axes. We then

generate a set S of at least 105 parameter vectors sampled

uniformly within B, of which some fraction jSj will be viable. An

appropriate global measure of robustness for any one model is the

viable volume V~(jVj=jSj)(Vol(B)), where j:j denotes the number

of elements in a set. The rationale behind this measure is that with

increasing robustness V , a perturbation of a parameter or

parameter vector is increasingly likely to generate another viable

parameter vector. To compare models with different number of

parameters, we define the normalized viable volume as robustness

R~
ffiffiffiffi
Vp
p

. Note that it would not be appropriate to just consider the

ratio jVj=jSj as a robustness measure when comparing models

(Figure S5). The main functions for this analysis, written in

MATLAB, are available for download at http://www.bioc.uzh.

ch/wagner/publications-software.html.

To estimate the sampling errors in the viable fractions and

volumes, we note that jVj, as estimated by Monte Carlo

integration is a binomially distributed random variable [30,58].

An estimate of its standard deviation is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVj(jSj{jVj)

jSj

q
. Of interest is

the coefficient of variation or relative error, defined as the standard

deviation divided by the mean. For jVj, this relative error is given

by
ffiffiffiffiffiffiffiffiffiffiffiffi
jSj{jVj
jVjjSj

q
. For the normalized quantity R~

ffiffiffiffi
Vp
p

, the relative

error needs to be divided by p, i.e., it calculates as

DR

R
~

1

p

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSj{jVj
jVjjSj

s

which scales as 1
p

� �
1ffiffiffiffi
jSj
p . Furthermore we estimate the necessary

sample size jSj for a given relative accuracy d and confidence.

Applying Hoeffding’s inequality [59], and exploiting the fact the

random variables are binomally distributed, we obtain

Pr 1{
E(jVj)
jVj

����
����§d

	 

ƒe

{2d2 jVj
jSj

� �2

jSj
,

where E(:) denotes the expectation operator. Thus, estimating the

sampling acceptance ratio jVj=jSj from a sufficiently large ensemble

and assuming it to be constant for the successive sampling, we can

compute a lower bound for the necessary sample size. For

example, asking for 10% accuracy with a confidence of 95% at an

acceptance ratio of 1=20, Hoeffding’s bound requires the sample

size to be jSjw60000.

We now briefly comment on how estimation errors scale with

the number of dimensions p. The only possible general statement

is that the ratio between the viable volume and the volume of the

sampling box scale exponentially with p. Therefore,
jVj
jSj*a{p with

a being dependent on the geometry of the viable volume. For

example, a~1 if the viable volume is identical to the sampling

hyper-rectangle, and only in this trivial case does the error not

depend on p. If the viable parameter volume has an ellipsoidal

shape, and if the dimension increases from p~5 to p~22, then a
increases from 1:5 to 2:5. The coefficient of variation (relative

error) of the viable volume scales as ap=2

p
ffiffiffiffi
jSj
p . The size and the shape

of the sampling hyper-rectangle is crucial for low errors: a larger

hyperbox means that an exponentially greater number of points

needs to be sampled for high dimensional systems to ensure

constant error. These observations underscore the usefulness of

PCA, which can dramatically reduce computational requirements.

The second, local part of our method assesses the robustness of

every viable parameter k in terms of five quantifiers. The first local

robustness quantifier rP(k) computes to the fraction of local

random perturbations of parameters that preserve p. A perturba-

tion is generated by multiplying all parameter values with

uncorrelated Gaussian variates of variance s~0:2 and mean 1.

To address the robustness to temperature changes the Arrhenius

equation has to be used ideally [8,31,46]. However, this approach

requires knowledge of the activation energies of each reaction in a

system, which is usually not available. We thus simply assume that

an increase in temperature corresponds to an random increase of

all parameters. This aspect of robustness is quantified with the

same approach used for estimating rP. Mean and standard

deviation are the same, but perturbations are correlated, such that

all parameters are multiplied with variates that are either above

one or below one for a particular perturbation. The second local

robustness quantifier rC(k) regards alterations in the total amount

of key proteins. For example, the in vitro reconstitution of the

cyanobacterial circadian oscillator uses a pre-determined number

of the Kai molecules [37,60]. This number may vary in vivo, for

example due to changes in cell volume caused by the cell division

cycle. To estimate rC , we generate a large number of perturbed

concentrations, and numerically integrate the model with these

perturbed concentrations. For a given parameter vector k [ V, we

define rC as the fraction of these perturbations preserving p. The

third robustness quantifier, rN (k), reflects that chemical reactions

are stochastic events [12,20,61]. To quantify robustness to such

molecular noise, we perform many stochastic simulations [50], and

define for each viable k, rN as the fraction of trajectories that

preserve p. The fourth robustness quantifier, rA(k) (for attraction

of the cycle), measures how fast the oscillator returns to its cycling

behavior when its trajectory is transiently perturbed with the use of

Floquet multipliers. The fifth quantifier, rS(k) (for sensitivity

analysis of period), assesses the effect of an infinitesimal change of

an individual parameter or parameter vector on the period of a

model. The larger the value of rS , the more robust a model is. A

value of rS~0:5 means that a one percent change in a parameter

vector results in a one percent change in the period. The last two

quantifiers are specific to systems involving stable oscillations. For

the full mathematical details on these five quantifiers see Text S1,

section A.3.

Supporting Information

Figure S1 Viable parameter sets form large connected regions in

parameter space. (A) Autocatalytic model, (B) two-sites model.

Pairs of viable parameter vectors (black dots) are connected by

blue lines, if they are likely to be part of the same connected region

of parameter space, as determined by numerical analysis explained

in the text. Parameter vectors that cannot be connected to other

parameter vectors are shown as red dots. The graph is shown as a

projection on to the axes formed by k5 and k6 for (A), and as a

projection onto the axes formed by k1 and k2 in (B), because these

projections best illustrate that the viable region is not convex.

Found at: doi:10.1371/journal.pcbi.1000534.s001 (0.52 MB PDF)

Figure S2 Correlations of the local robustness quantifiers with

model parameter. (A) Parameter k7 (horizontal axis) negatively

affects robustness to parameter perturbations (vertical axis) in the

autocatalytic model (Spearman’s r = 20.638, p,102323,

n = 1828). (B) Parameter k7 (horizontal axis) negatively affects

robustness to parameter perturbations (vertical axis) in the

autocatalytic model (Spearman’s r = 20.718, p = 2.816102289,

n = 1828). (C) Score for robustness to molecular noise for the

autocatalytic model plotted against k1 and (D) the two-sites models

Glocal Robustness Analysis & Model Discrimination
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plotted against k2. In the autocatalytic model, k1 has a Spearman’s

correlation coefficient with rN of 0.921 (p,102323, n = 1828) and

less that 6 percent of the parameter vectors have a score above 0.5.

For the two-sites model, k2 has a correlation coefficient with rN of

0.629 (p,102323, n = 604) and more than 80 percent of the

parameter vectors have a score above 0.5.

Found at: doi:10.1371/journal.pcbi.1000534.s002 (0.87 MB PDF)

Figure S3 (A) Distribution of the scores for the robustness to

parameter perturbations (autocatalytic model in red and two-sites

model in blue), similar as Figure 4B. (B) Distribution of the scores

for the robustness to temperature changes. The results are

obtained with the same algorithm as the one for rP but the

random variates are correlated such that for a particular

perturbation all parameters are either increased or decreased. In

this case, the median robustness for the two-sites model is only 4

percent larger than the median of the autocatalytic model

(p = 2.2861024, Wilcoxon rank sum test).

Found at: doi:10.1371/journal.pcbi.1000534.s003 (0.09 MB PDF)

Figure S4 Illustration of the proposed sampling approach based

on interval constraints. The a priori sampling range (light-gray)

and two systemic properties p1 and p2 allowed to assume values in

predetermined intervals induce constraints in parameter space and

partition it into regions that are viable and those that are not. The

parameter region preserving p2 is unbounded, accounting for the

situation of unidentifiability and indicates the necessity for an a

priori sampling range.

Found at: doi:10.1371/journal.pcbi.1000534.s004 (0.27 MB PDF)

Figure S5 The importance of incorporating volume information

in estimating global robustness. One might argue that it would be

sufficient to just use the ratio C = |V|/|S| as a measure of global

robustness. This is not the case if one wants to compare models

where both the geometry and the size of a model’s viable set vary

among models. The reason is that the geometry of the viable

volume critically influences C. The Figure shows the shape of

viable sets and the circumscribed hyperbox for three hypothetical

models. The viable sets in (A) and (C) have very different shapes,

but fit into a hyperbox of the same size. If these models are

compared, the size of the hyperbox would therefore be irrelevant

(and one would say that the model of (A) has greater robustness

than the model of (B)). The viable sets in (A) and (B) have the same

geometry but the viable set of (B) can be circumscribed by a

smaller hyperbox. The ratio C would be the same for these two

models. The models in (B) and (C) have both a different geometry

and extension. In that case the differing box volumes must be

taken into account, and the expression V = (|V|/|S|)?Vol(B)

accomplishes that. Put differently, it would be appropriate to use

the ratio C only if parameter sets were to be sampled from boxes of

the same size for different models, an approach that we avoid,

because it would lead to very large errors in the Monte Carlo

integration for some models.

Found at: doi:10.1371/journal.pcbi.1000534.s005 (0.31 MB PDF)

Text S1 Supplementary methods, supplementary results, robust-

ness analysis of the Goodwin model and supplementary figures S6

to S11.

Found at: doi:10.1371/journal.pcbi.1000534.s006 (2.41 MB PDF)

Acknowledgments

The authors want to thank the reviewers for their helpful comments.

Author Contributions

Conceived and designed the experiments: MH HK AW. Performed the

experiments: MH. Analyzed the data: MH HK AW. Contributed

reagents/materials/analysis tools: MH HK MH. Wrote the paper: MH

HK AW.

References

1. Goldbeter A (1996) Biochemical Oscillations and Cellular Rhythms. Cambridge:

Cambridge University Press.

2. Alon U (2007) An Introduction to Systems Biology. Boca Raton, FL: Chapman

& Hall/CRC.

3. Liebermeister W, Klipp E (2005) Biochemical networks with uncertain

parameters. IEE Proc-Syst Biol 152: 97–105.

4. Moles C, Mendes P, Banga J (2003) Parameter estimation in biochemical

pathways: A comparison of global optimization methods. Genome Research 13:

2467–2474.

5. Hengl S, Kreutz C, Timmer T Maiwald (2007) Data-based identifiability

analysis of non-linear dynamical models. BMC Bioinformatics 23: 2612–2618.

6. Gutenkunst R, Waterfall J, Casey F, Brown K, Myers C, et al. (2007) Universally

sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3:

1871–1878.

7. Kitano H (2007) Toward a theory of biological robustness. Mol Syst Biol 3: 137.

8. Ruoff P (1992) Introducing temperature-compensation in any reaction kinetic

oscillator model. J interdiscipl Cycle Res 23: 92–99.

9. McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc

Natl Acad Sci USA 94: 841–819.

10. Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to

stochasticity in gene expression. Proc Natl Acad Sci USA 99: 12795–12800.

11. Gonze D, Halloy J, Goldbeter A (2002) Robustness of circadian rhythms with

respect to molecular noise. Proc Natl Acad Sci USA 99: 673–678.

12. Gonze D, Goldbeter A (2006) Circadian rhythms and molecular noise. Chaos

16: 026110.

13. Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic

redundancy. Nature 388: 167–171.

14. Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat

Genet 24: 355–361.

15. Morohashi M, Winn AE, Borisuk MT, Bolouri H, Doyle J, et al. (2002)

Robustness as a measure of plausibility in models of biochemical networks.

J Theor Biol 216: 19–30.

16. Stelling J, Sauer U, Szallasi Z, Doyle FJ III, Doyle J (2004) Robustness of cellular

functions. Cell 118: 675–685.

17. Stelling J, Gilles ED, Doyle FJ III (2004) Robustness properties of circadian clock

architectures. Proc Natl Acad Sci USA 101: 13210–13215.

18. Rand DA, Shulgin BV, Salazar JD, Millar AJ (2006) Uncovering the design
principles of circadian clocks: Mathematical analysis of flexibility and

evolutionary goals. J Theor Biol 238: 616–635.

19. Wolf J, Becker-Weimann S, RH (2005) Analysing the robustness of cellular

rhythms. Syst Biol 2: 35–41.

20. El-Samad H, Kurata H, Doyle J, Gross CA, Khammash M (2005) Surviving

heat shock: Control strategies for robustness and performance. Proc Natl Acad
Sci USA 102: 2736–2741.

21. Doyle J, Csete M (2005) Motifs, control, and stability. PLoS Biol 3: 1868–1872.
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