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and Zhuo Wang1,3,*

SUMMARY

Gastrointestinal (GI) tract cancers are the most common malignant cancers with
high mortality rate. Pan-cancer multi-omics data fusion provides a powerful strat-
egy to examine commonalities and differences among various cancer types and
benefits for the identification of pan-cancer drug targets. Herein, we conducted
an integrative omics analysis on The Cancer Genome Atlas pan-GI samples
including six carcinomas and stratified into 9 clusters, i.e. 5 single-type-dominant
clusters and 4 mixed clusters, the clustering reveals the molecular features of
different subtypes, other than the organ and cell-of-origin classifications. Espe-
cially themixed clusters revealed the homogeneity of pan-GI cancers. We demon-
strated that the prognosis differences among pan-GI subtypes based on multi-
omics integration are more significant than clustering by single-omics. The poten-
tial prognostic markers for pan-GI stratification were identified by proportional
hazards model, such as PSCA (for colorectal and stomach cancer) and PPP1CB
(for liver and pancreatic cancer), which have prominent prognostic power sup-
ported by high concordance index.

INTRODUCTION

Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and hepatocellular can-

cer, are the most common human malignancies. Especially colorectal, gastric, and esophageal cancers

ranked among the top 10 with a high global mortality rate (Bray et al., 2018). The GI tumors are homoge-

neous to some extent; almost all GI cancers tend to have subtypes of mesenchymal gene expression, im-

mune infiltration, or metabolism (Bijlsma et al., 2017). On the other hand, cancer is a highly heterogeneous

disease, different morphological and phenotypic features of different tumor regions resulting from the het-

erogeneity often cause drug resistance, fosters lethal outcomes, and the therapeutic failure (McGranahan

and Swanton, 2017; Sun et al., 2020). Patients with the same type of cancer undergoing the same treatment

have been shown to experience different prognosis. Pan-cancer research is an important strategy to study

the homogeneity and heterogeneity among different tumors. Pan-cancer analysis of the molecular subtyp-

ing of different tumors throughmulti-omics data integration explores the underlying tumormechanism and

deepens our understanding of the process of tumor growth and lays a strong foundation for precision

medicine.

With the development of high-throughput technologies, large amounts of molecular data have been

generated and gathered. The Cancer Genome Atlas (TCGA) offers an incentive for pan-cancer research

with abundant genome data sets (Hoadley et al., 2014). Some accomplishments were made by the indi-

vidual omics platform in the pan-cancer study. For example, a previous study classified breast cancer into

three subtypes through the gene mutation spectrum, and the results corresponded to clinical informa-

tion (Vural et al., 2016). Moreover, Reis Filho et al. (Reis-Filho and Pusztai, 2011) used an expression pro-

file for breast cancer via sample classification and obtained 7 subtypes of the tumor having a certain cor-

responding relationship with clinical information. At the methylation level, Yagi et al. (Yagi et al., 2010)

obtained three types of colorectal cancer in which the high-methylation group was consistent with

MSI high type and BRAF mutation type, the intermediate-methylation type was highly correlated with

KRAS mutation.
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Using multi-omics data acquiring from the same set of samples has the potential capacity to explore more

accurate molecular subtypes with different survival than examining by one single-omics data (Rappoport

and Shamir, 2018). To date, several studies have been conducted to stratify TCGA cancer samples using

a multi-omics data integration analysis. For example, a previous study found 1954 pan-urologic cancer (kid-

ney, testes, bladder, and prostate) that were typically classified into 9 major molecular subtypes based on

DNA copy alteration, DNA methylation, mRNA expression, miRNA expression, and protein expression,

whereas these various subtypes have different molecular signatures, such as prostate cases contain ERG

fusion or PTEN loss were primarily associated with one specific subtype, and cases involving FOXA1 or

SPOP mutation are predominantly linked to another subtype (Chen et al., 2017). Another representative

study is that the TCGA team conducted integrated cluster analysis on analyzing 10,000 samples from 33

cancer types by multi-omics integration including somatic copy number alterations, mRNA expression,

and DNA methylation. Two-thirds of the samples were classified into 28 subtypes and some homogeneity

and heterogeneity of tumors were found in the clustering results, for example, the group of tumors with

four main cell or organ systems (pan-GI tract, pan-gynecology, pan-squamous, and pan-kidney) may indi-

cate different types of tumors. The patients in each molecular subtype of the pan-cancer clustering have

common molecular features and pathway characteristics. Moreover, the samples with similar tumor types,

histopathology, and organ systems have obvious heterogeneity among different subtypes, which indicates

that the histologic and pathologic criteria cannot completely determine the tumors subtypes based onmo-

lecular biology (Hoadley et al., 2018).

The study of TCGA team revealed global characteristics of 33 types of tumors, but further detail study on GI

cancers is still required for precision stratification and treatment of such particular cancer types. Therefore,

this research aimed to study the homogeneity and heterogeneity of the six forms of pan-GI cancer by using

samples from the TCGA database, including esophageal carcinoma [ESCA], stomach adenocarcinoma

[STAD], colon adenocarcinoma [COAD], rectum adenocarcinoma [READ], liver hepatocellular carcinoma

[LIHC], and pancreatic adenocarcinoma [PAAD]. TCGA database contains 1801 samples of pan-GI cancers

that have the complete data across threeplatforms including aneuploidy, DNAmethylation, andmRNA.Using

the unsupervised clustering process, we incorporated molecular data and categorized primary pan-GI tumor

samples into 9 subtypes which were correlated with overall survival for each cancer. We found that the classi-

fications were closely related to the molecular signaling pathway by enrichment analysis. Next, we identified

the essential genes associated with stratification and prognosis that could become potential biomarkers.

Finally, we compared the results of classification of thepan-GI samples fromboth TCGAand InternationalCan-

cer Genome Consortium (ICGC) databases, and the similar results further confirmed our conclusion.

RESULTS

Clustering of pan-GI cancers by individual omics platform

In order to examine the CNV profile of the pan-GI cancers, we used Genomic Identification of Significant

Targets in Cancer (GISTIC) 2.0 (Mermel et al., 2011) and performed hierarchical clustering on alterations

score to identify 8 groups, as shown in Figure S1A. LIHC samples were separated into two classes, i.e. class3

and class7, where the class7 mainly contains copy number gains in 8q. Similarly, the ESCA samples were

mainly separated into class2 and class6. The samples of ESCA in class2 contain copy number gains in

12p and class6 contains copy number gains in 11q. The COAD-READ (COAD and READ) samples were

mainly divided into class1 and class4, both of which have deletions at 8p, 18q, and 17p, and significant

copy number repeat variation at 20q and 13q. While the class 8 is a confounding category that contains

samples of ESCA, STAD, and COAD-READ, which has significant copy number repeat variation in 17q.

Similarly, we performed unsupervised clustering on 1725 samples by the mRNA expression profile of 1037

selected genes and identified 5 groups. The Figure S1B demonstrated that the five groups are matched

with the corresponding cancer types in high consistency, and LIHC exhibits different mRNA profiles

from other GI cancers.

For the DNA methylation level, the unsupervised clustering of 1745 pan-GI samples by 875 selected CpG

sites identified 8 subgroups. As shown in Figure S1C, PAAD samples were divided into class3 and class5.

COAD-READ samples are mainly divided into class2, class3, class4. Almost all LIHC samples were in class1

and ESCA samples were in class5. STAD is heterogeneous and divided into class2, class3, class4, and

class5. We found that the GI cancers exhibit higher homogeneity at the methylation level compared

with the mRNA level.
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Generally speaking, each individual omics platform exhibited different patterns of pan-GI samples, the

samples of the same tumor that divided into different clusters showed certain heterogeneity. We found

both mRNA expression level and DNA methylation level revealed LIHC was most divergent from other

GI tumors. But the clustering results by any individual omics platform could not well correspond to patient

survival; therefore, we need a better clustering for personalized prognosis and treatment on GI cancer sam-

ples by multi-omics integration.

Identification of silenced genes

The silencing of some genes has a great influence on the occurrence and progression of tumor. We inte-

grated gene expression and methylation data to identify the epigenetically silenced genes associated with

pan-GI. Overall 9 genes were found includingMLH1, EPM2AIP1, SNX19, SLC25A24, RIPK3, RNF135, CHFR,

SPINT2, and GRHL2. Figure 1 shows the silent condition of 9 genes in different types of cancers.

The two silenced genes, EPM2AIP1 and MLH1, are both regulated by the same promoter region and have

previously been reported to be silent in colorectal cancer and gastric cancer (Neumeyer et al., 2019; Oue

et al., 2019; Suter et al., 2004), concisely, the MLH1 is a tumor suppressor gene that encodes a mismatch

repair protein which is part of the DNA mismatch repair system (Esteller et al., 1998) and the function of

the protein encoded by EPM2AIP1 is currently unclear. Moreover, consistent with previous results, we

observed epigenetic silencing of MLH1 and EPM2AIP1 in the STAD (19.7%; 14%) and COAD-READ

(14%; 9.9%). Similarly, CHFR encodes a protein E3 ubiquitin ligase that maintains the mitotic checkpoint

and directs cells into mitosis, which may play a key role in cell cycle progression and tumorigenesis (Scol-

nick and Halazonetis, 2000). Moreover, CHFR was observed to be silenced in gastric cancer and colorectal

cancer (Cha et al., 2019; Dai et al., 2019). Our result showed that CHFR is an epigenetically silenced gene in

STAD (29.3%), COAD-READ (32.0%), and ESCA (25.3%), whereas SPINT2 is a candidate tumor suppressor

gene that encodes a serine protease inhibitor called stem cell growth factor activation inhibitor type 2

(HAI-2) which acts to inhibit cytokine activators (Kawaguchi et al., 1997). Previous studies have shown

that this gene has been epigenetically silenced in numerous cancers including hepatocellular carcinoma,

Figure 1. Scatterplots of representative cpg sites in gene promoters

The figure shows the relationship between the methylation level and the expression level of 9 genes in all gastrointestinal

cancer samples. The abscissa represents the b value of methylation sites, and the ordinate represents the gene

expression. Each dot in the figure represents a sample, including 1449 samples of primary pan-GI tumor represented by

dots of different colors and 73 samples of precancerous tissue represented by black dots.
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gastric cancer, and esophageal squamous cell carcinoma (Dong et al., 2010; Tung et al., 2009; Yue et al.,

2014). Our results found that SPINT2 obtained an epigenetically silenced gene in LIHC (81.4%). Similarly,

RNF135 is widely present in various organs of the human body, such as the liver and kidney, and is an immu-

nologically related gene (Lai et al., 2019). Previous studies have reported that RNF135 is hyper-methylated

in LIHC (Song et al., 2013). We found that RNF135 obtained epigenetically silenced in LIHC (83.8%) and

STAD (8.8%). GRHL2 is a tumor suppressor gene that encodes a transcription factor induces the target

gene to produce a variety of epithelial cell adhesion factors, thereby inhibiting cell migration and invasion.

Low-expression GRHL2 often occurs in breast, ovarian, and gastric cancers, with worse survival and higher

metastatic risk (Chung et al., 2016; Cieply et al., 2013; Frisch et al., 2017; Werner et al., 2013; Xiang et al.,

2013, 2017). Our results found that GRHL2 was epigenetically silenced in LIHC (92.6%) and STAD (9.6%).

Despite that the other three genes, SNX19, SLC25A24, and RIPK3, were not previously identified as epige-

netically silent genes in GI tumors. SNX19 and RIPK3 play important roles in apoptosis, whereas SLC25A24

is involved in ATP energy conversion (Traba et al., 2012).

Generally speaking, SPINT2, RNF135, and SLC25A24 were found to be epigenetically silenced genes in

LIHC. RIPK3 was found silenced in both LIHC and ESCA. GRHL2 was found silenced in both LIHC and

STAD. Moreover, CHFR was found silenced in COAD-READ, STAD, and ESCA. SNX19 was found silenced

in STAD, but this phenomenon was also present in some COAD, READ, ESCA, and LIHC samples. MLH1

and EPM2AIP1 were silenced in COAD-READ and STAD. However, no results were found for silence genes

in PAAD.

Integrative molecular subtyping of pan-GI cancer by multi-omics data

Integrative molecular subtyping with iClusterPlus was performed using three data types (CNV, DNA

methylation, mRNA) across 1673 tumor samples and identified 9 iClusters as shown in the Figure 2. Five

iClusters were dominated by a single tumor type (iC2: LIHC, iC4: COAD-READ, iC5: LIHC, iC7: ESCA,

iC9: COAD-READ). We retrieved 13 subgroups of pan-GI cancer each having at least 30 samples, including

COAD_iC3 (samples of COAD-READ in iC3), COAD_iC4, COAD_iC9, LIHC_iC2, LIHC_iC5, ESCA_iC1,

ESCA_iC7, PAAD_iC6, PAAD_iC8, STAD_iC1, STAD_iC3, STAD_iC6.

CHFR and MLH1 were the most significant genes we found in the Silenced Genes part. Silencing of MLH1

and CHFR can influent the colorectal tumor and the gastric tumor a lot. In the result of multi-omics analysis,

COAD-READ_iC4, STAD_iC3, STAD iC1 displayed high silencing frequency of CHFR and MLH1 genes,

showing the reliability of clustering. In addition, the molecular profile of the STAD iC6 subgroup showed

a low silencing frequency of CHFR and MLH1 genes relative to STAD_iC1 and STAD_iC3. RAS genes are

collectively mutated human cancers and we hope to find possible cause of tumor heterogeneity through

analyzing the RAS gene. In the multi-omics based stratification, PAAD iC8 exhibited a high RAS mutation,

while PAAD_iC6 exhibited nearly no RAS mutation.

To characterize the composition and relative homogeneity of each iCluster, we plotted the dominant-can-

cer-type proportion versus the mean iCluster silhouette width, a metric within-group homogeneity. As

shown in Figure 3, the single-type-dominant iClusters (iC2, iC4, iC7, iC9) obtained the highest silhouette

width. The multiple-type iClusters (iC1, iC3, iC6, iC8) had similar ranges of silhouette width as compared

to single-type-dominant iClusters, which suggested classification is robust.

Compared with the results of individual omics analysis, the results of multi-omics analysis can better reflect

the homogeneity and heterogeneity of GI tumors. For individual omics analysis, the CNV profile and the

DNA methylation level reveal high similarity between different types of tumors whereas the clustering

result of the mRNA expression profile corresponds to the tumor types. And the result of multi-omics clus-

tering contains not only single-type-dominant iClusters but also multiple-type-dominant iClusters, while

both the individual omics results and multi-omics results show greater differences between LIHC and other

GI tumors.

The integrative clustering result was then evaluated by a survival analysis of each subgroup, which revealed

significant differences in patient survival of each cancer stratification. As shown in Figure 4, within LIHC

cases, LIHC_iC5 was associated with worse survival while the LIHC_iC2 was associated with better survival

(p = 0.00754), whereas within PAAD cases, PAAD6 showed better survival than PAAD8 (p = 0.00018). As for

STAD cases, the overall survival of STAD_iC1 was substantially decreased (p = 0.02476) compared to the
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others. We observed that there were no substantial differences in overall survival between the two sub-

groups of ESCA, which may be due to the small sample size of ESCA patients. In general, the prognosis

differences among pan-GI subtypes based on multi-omics integration are more significant than clustering

by single-omics data.

Enrichment analysis of discriminative omics-signatures for pan-GI stratification

We obtained the most discriminative signatures for pan-GI stratification. Concisely, 22 segments from the

CNV platform, 187 CpG sites from the methylation platform, and 250 genes from the expression platform

were selected according to the fit score exported by iClusterPlus after setting the threshold of three

quantiles.

As shown in Figure 5, the 250 genes from the expression platform significantly enriched in KEGG pathways

including ribosome, ECM-receptor interaction, focal adhesion, protein digestion and absorption, estrogen

signaling pathway, PI3K-Akt signaling pathway, and antigen processing and presentation. After mapping

against the USGC data set, 245 genes from the methylation platform significantly enriched in KEGG path-

ways including ascorbate and aldaratemetabolism, retinol metabolism, pentose and glucuronate intercon-

versions, metabolism of xenobiotics by cytochrome P450, steroid hormone biosynthesis, porphyrin, and

chlorophyll metabolism, and complement and coagulation cascades. The enrichment pathways at the

Figure 2. Multi-omics data clustering analysis of pan-gastrointestinal cancer by iClusterPlus

‘‘Class’’ shows all the samples are divided into 9 classes represented by different colors. ‘‘Category’’ represents the cancer

type of the samples, ‘‘CHFR. Silence’’ indicates the silence of the CHFR gene in the samples; ‘‘MLH1.Silence’’ means the

silence of MLH1 gene in the samples. And ‘‘RAS Mutation’’ indicates the mutation of the RAS gene in the samples while

black color indicates the mutation and gray indicates normal. CNV shows the copy number variation profile in each

iCluster with each row represents a chromosome segment. MET shows the DNA methylation profile in each iCluster with

each row represents a methylation site. mRNA shows the gene expression profile in each iCluster with each row

represents a gene.
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methylation level are mainly corresponding with metabolic-related pathways. Concernedly, pentose phos-

phate pathway (PPP) is one of the key pathways for the rapid proliferation of cancer cells, and the pentose

phosphate synthesized by this pathway is the basis of nucleic acid synthesis. Moreover, PPP pathway also

provides a large amount of NADPH for the synthesis of fatty acids in cancer cells (Patra and Hay, 2014). The

results of enrichment analysis showed that metabolism may play an important role in cancer subtype clas-

sification, and there may have a potential relationship between metabolism and methylation.

Similarly, we analyzed the characteristics of the discriminative omics-signature genes in each iCluster. Hi-

erarchical clustering was performed on the mean value of signature genes of samples in each of the 9 clas-

ses, as shown in Figure 6. Genes at the expression level are classified into five categories by hierarchical

clustering, in which the genes in category 1 are significantly enriched in the estrogen signaling pathway,

and the genes in category 2 are significantly enriched in the ECM-receptor interaction/PIK3-Akt signaling

pathway. A considerable part of the genes in category 3 is related to oxidative phosphorylation. The genes

in category 4 were significantly enriched in the ribosomes, and the genes in category 5 cover quite a few

potential survival markers (1/3) found by the Cox model. The ESCA samples in iC7 have significant copy

number repeat a variation on chromosome 3, while at the mRNA level, iC7 is significantly highly expressed

in the estrogen signaling pathway compared with the others. There were almost no differences between

iC4 and iC9 which were mainly composed of COAD-READ samples. However, at the mRNA level, the

expression of ribosome-related genes in iC9 is significantly higher than that of iC4. For PAAD samples,

the expression of ECM-receptor interactions in iC8 is significantly higher than iC6, and correspondingly

the survival of iC8 is worse than iC6 as shown in Figure 4.

Significant prognostic markers obtained by the proportional hazards model

The proportional hazards model (Cox model) was used to identify potential prognostic markers among the

characters generated from iClusterPlus for different cancers. Table 1 represents all the retrieved prognostic

markers. Our results showed the PSCA gene is a significant risk factor for both COAD-READ and STAD,

Figure 3. The proportion of pan-gastrointestinal cancer in each iCluster class

The abscissa means the mean silhouette width of each iCluster and the ordinate shows the proportion of the dominant

tumor samples in each iCluster. The size of the circle is proportional to the number of samples; the proportion of different

colors in the circle means the proportion of different tumors in each iCluster.
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whereas PSCA encodes a glycosylphosphatidylinositol-anchored cell membrane glycoprotein, which is

abundantly expressed in pancreatic cancer, and clinical trials on this target in pancreatic cancer are already

underway (González et al., 2013; Liu and Saif, 2017). We found that the high expression of PPP1CB is asso-

ciated with worth survival in both LIHC and PAAD. PPP1CB encodes one of the three catalytic subunits of

protein phosphatase 1 which participate in a series of follow-up events such as cell division and glycogen

metabolism through regulation of the oncogene RAF. It has been reported that this gene is a potential

marker for malignant melanoma (Huang et al., 2019; Young et al., 2018).

Despite that, some of the predicted biomarkers have been under investigation by other studies. TUBA1C is

an apoptosis-related target, being the target of many known drugs (Wang et al., 2019), including two

important drugs, epothilone D, and patupilone. Epothilone D was investigated for use in colorectal cancer

(Lee et al., 2007), and patupilone was also investigated for treatment in gastric cancer (Kim et al., 2012).

SERPINB5 is a target of the p53 signal pathway, which has been associated with colorectal tumor (Chang

et al., 2018; Li et al., 2017), hepatocellular carcinoma (Yang et al., 2016), and gastric tumor (Lei et al., 2011).

Our results showed that it is a significant marker of hepatocellular carcinoma which is consistent with the

previous study. Similarly, the CLCA2 is a tumor suppressor in colorectal tumors (Bustin et al., 2001), and

our results showed that it is related to the survival of ESCA. At the methylation level, we observed

PSMB2 as an important prognostic marker. There is a publication suggesting knockdown of PSMB2 sup-

presses hepatocellular carcinoma cell invasion and proliferation (Tan et al., 2018). Because of the certain

homogeneity among pan-GI tumors, the identified markers that had been supported by the previous

studies may have impact on other GI tumors.

The results of the proportional hazards model indicate that our analysis was compatible with previous

studies, suggesting that our classifier is credible. In addition, our predicted biomarker may guide the future

pan-cancer study.

We further calculated the C-index for each cancer type to quantify the discriminative power of the Cox

model, as shown in Figure 7. All of the GI cancers have a C-index higher than 0.5, especially PAAD reveals

Figure 4. Survival curve of each gastrointestinal cancer by multi-omics stratification of pan-cancer

(A–E) The survival curve of different subgroups in each cancer divided by iClusterPlus method, 185 PAAD samples, 377

LIHC samples, 439 STAD samples, 626 COAD-READ samples, 183 ESCA samples, respectively.

(F) the survival curve of the 9 iClusters.
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the highest C-index. We also evaluated the C-index by multi-omics data integration and by each single-

omics data of PAAD. The results showed that themarkers identified bymulti-omics integration could better

indicate the prognosis status of pan-GI cancers.

Mutational assessment of subgroups of pan-GI cancers by iClusterPlus

We calculated the tumormutation burden (TMB) for eachGI tumor sample (Figure 8). Concisely, iC8 has the

lowest average TMB, which is mainly composed of PAAD samples, whereas within the categories contain-

ing a high proportion of STAD samples, the TMB of iC6 is significantly lower than iC1 and iC3. Moreover,

the iC6 composed of a higher sample size of PAAD (n samples) and moderate sample size of STAD (n sam-

ples). The TMB for STAD (3.9) was found significantly lower as compared with iC1 (TMB = 13.9) and iC3

(TMB = 17.6). In addition, iC3 has the highest average TMB, which is mainly composed of STAD and

COAD-READ, and the average TMB of COAD-READ in this category is 31.5, which is significantly higher

than the average TMB of COAD-READ in iC4 (10.7).

In addition to TMB, the study of mutation frequency also brought us new discoveries. We clustered the

weights of 30 mutation features summarized by Catalogure of Somatic Mutations in Cancer (COSMIC) in

9 iClusters to show the differences of iClusters at the mutation signatures level. As shown in Figure 8,

the result was consistent with the result of TMB, where iC1, iC3, and iC4 were enriched in the hypermutation

signature. The mutational signatures of iC6 and iC9 are apparent in the enrichment of Signature1, which

may be age-related. The signatures of iC7 are similar to iC2 and iC5 compared to other iClusters.

Multi-omics clustering of pan-GI cancer samples from ICGC database

In order to further validate our results, we conducted a similar analysis of pan-GI cancer samples, including

mRNA and CNV data, from the ICGC database released in 2019. The results by iClusterPlus show that the

pan-GI samples can be divided into 7 clusters. Concisely, the LIHC and PAAD were divided into 2 clusters,

and the COAD-READ was divided into3 clusters. These results were consistent with those of TCGA data.

To further demonstrate the classification of ICGC data, we conducted survival analysis and differential

expression analysis of ICGC data, the survival analysis shows that the tumors were stratified successfully

(the result of LIHC were showed in Figure 9A as an example), especially the LIHC (p = 0.0039) and STAD

(p = 0.0085). For example, LIHC was significantly divided into 2 clusters in the results of TCGA. In the

ICGC result, LIHC was also divided into LIHC3 and LIHC4, in which LIHC3 showed better survival than

Figure 5. The enriched KEGG pathway of discriminative omics-signatures for pan-GI

The enriched pathways of methylation and the enriched pathways of mRNA expression
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LIHC4 with a p value of 0.0039. The differential expression analysis also showed that there were a lot of dif-

ferential genes between the two subtypes.

In order to further verify our findings with ICGC data, we compared the ICGC genes and CNV fragments

results with the TCGA result. We found 41 genes and 3 CNV fragments have discriminative effects on

the classification of both the two data sets. In addition, we conducted the KEGG analysis for the significant

genes predicted by using the ICGC data set and found that there were also some similarities between

ICGC and TCGA results, which means our results are validated at the pathway level.

DISCUSSION

In this study, we leveraged the accurate stratification and prognosis markers identification of pan-GI cancer

by multi-omics data integration. GI tract cancers have complex relationships in clinical course, and we sys-

tematically uncovered the homogeneity and heterogeneity among different subtypes, which can improve

the personalized treatment. The identified prognostic biomarkers could predict the prognostic status of

each patient, which could help to achieve precision medicine for GI tract cancers.

We performed the unsupervised consensus clustering of 3 platforms of molecular profiles of pan-GI sam-

ples in the TCGA database, focusing on the copy number variation, the methylation, and the transcriptome

levels. The single-platform of copy number variation level showed high similarity among different types of

tumors. For the methylation level, almost all of the LIHC were divided into one category, while other GI tu-

mors showed some homogeneity. At the transcriptome level, the clustering results were correlated with

tumor types, and the LIHC showed more differences from other GI tumors.

Moreover, by combining the expression profile and methylation data, we found nine genes, MLH1,

EPM2AIP1, SNX19, SLC25A24, RIPK3, RNF135, CHFR, SPINT2, GRHL2, that were frequently silenced by

promoter methylation in GI cancer. Among them, EPM2AIP1, MLH1, and CHFR have previously been re-

ported to be silent in colorectal cancer and gastric cancer (Neumeyer et al., 2019; Oue et al., 2019; Suter

et al., 2004), and RNF135 obtained an epigenetically silenced gene in LIHC (Song et al., 2013). In addition,

SNX19, SLC25A24, and RIPK3 were silenced due to hypermethylation.

By multi-omics clustering using the iClusterPlus algorithm, we identified nine major molecular subtypes of

GI cancers, including 5 single-type-dominant clusters and 4 mixed clusters, and the clustering reveals not

only the organ and cell-of-origin but also the molecular mechanisms. Especially the mixed clusters can

show the homogeneity of pan-GI cancers. For some clusters, the specific significant pathways may be

most relevant than the histology signatures, the cluster iC1, iC3, iC4 identified strong MLH1, CHFR, and

TMB silencing features. PI3K-Akt pathway was highly associated with iC6. The single-type-dominant clus-

ters also showed special molecular features, iC7 was mainly composed of ESCA, which was highly ex-

pressed in the estrogen signaling pathway. iC8 was composed of PAAD with obvious KRAS mutations.

iC9 consisted of COAD-READ, which was highly expressed in the ribosomal pathway.

The pan-cancer study showed the homogeneity and heterogeneity of GI cancer. We found that the LIHC

was significantly different from other GI tumors at the molecular level, while STAD samples had certain ho-

mogeneity with others. Moreover, there were significant differences in the survival of some tumors from the

same organ but were belonging to different subtypes, especially the STAD, LIHC, and PAAD. The classifi-

cation of tumors from the same organ or cell-of-origin may be related to some molecular mechanisms, for

example, the worse survival subgroup PAAD_iC8 has significant RAS mutation as compared with

PAAD_iC6. Meanwhile, a considerable part of the features for PAAD that had a significant effect on survival

screened by the Cox model was associated with KRAS mutation. The result suggests that KRAS mutation

may be associated with the survival of PAAD.

Molecular differences among GI cancers related to several processes and pathways. Based on the enrich-

ment analysis of the discriminative signatures which played significant roles in the classification of pan-GI

Figure 6. Heatmap of the discriminative omics-signature genes in 9 iCluster classes at three omics levels

(A) represents the copy number variation level (CNV), each row represents a chromosome segment.

(B) represents the methylation level (MET), each row represents a methylation site.

(C) represents the gene expression profile level (mRNA), and each row represents a gene. Different colors represent different groups.
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Table 1. Significant prognostic marker selected by Cox model

Significant factors b-value p value

COAD-READ cg01401376/EYA4 0.44 0.00051

TUBA1C �0.56 0.0093

PSCA 2.31 0.027

KRT15 9.69 0.038

STAD CCT6A 0.25 9.65e-05

PSCA 0.15 0.0021

RPL13 0.54 0.0038

LIHC SERPINB5 26.15 0.0043

ADAM9 1.1 0.034

PPP1CB 0.77 0.039

ESCA TMSL3 0.46 0.00013

CLCA2 0.17 0.0047

SAMD9 0.10 0.021

HSPD1 0.24 0.039

GFPT1 0.31 0.047

PAAD cg25391023/BTNL2 6.41 7.49e-06

cg24109894/PSMB2 -7.11 2.00e-05

cg05316065/GSDMC �6.70 0.00013

PPP1CB 5.63 0.00030

KRT6C �306.79 0.00052

MYOF 4.51 0.00054

cg00412772/C19orf33 6.08 0.00059

KRT6A 134.52 0.00080

MXRA5 �3.82 0.0012

cg15484375/SAA1 4.73 0.0013

CAPN2 �3.03 0.0036

CAP1 �2.30 0.011

YWHAZ 5.49 0.013

SH3BGRL3 �2.38 0.016

SYPL1 �5.65 0.018

13q12.3 7.94 0.020

CAPN1 3.47 0.020

CLIC4 �4.02 0.021

KRT16 �25.91 0.024

RHOC �3.65 0.024

ATP2A3 1.47 0.024

PLAU �2.22 0.026

FKBP8 �4.58 0.028

cg05659947/C4BPB �3.24 0.036

cg25577842/WT1-AS �2.44 0.039

17p12 3.05 0.044

Table 1 shows the significant prognostic markers that we selected by the Cox model in the first column, including 29 genes, 8

methylation sites, and 2 chromosome segments. The b value was a regression coefficient measure the effect of each factor on

the Cox model, if b > 0 then the marker considered as risk factor, if the b < 0 then the marker considered as protective factor.

We used p value %0.05 as the significance level to screen out the characteristics with a significant effect on survival.
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cancers by the iClusterPlus model, we observed heterogeneity between genotypes that were concentrated

with the metabolic pathways at methylation level, indicate that the metabolism could distinguish the sub-

types. At the transcriptome level, two classic cancer pathways, ECM-receptor interaction and PI3K-Akt

signaling pathway may play an important role in distinguishing different types of pan-GI cancer, indicating

that some GI cancers may be carcinogenic by activating the PI3K-Akt signaling pathway and had certain

homogeneity.

The significant molecular differences of the Pan-GI subtypes may have consequences for targeted therapy.

We found two genes that were simultaneously present in cancers from different organs, PSCA was found in

Figure 7. The C-index comparison of the biomarkers by Cox model

(A) The C-index comparison of the biomarkers by Cox model in pan-GI cancers.

(B) The C-index by multi-omics data integration and each single-omics data in PAAD.

Figure 8. The mutational analysis of the iClustersPlus

(A) The boxplot for TMB of 9 iCluster classes. The ordinate represents the TMB value and the abscissa represents nine iClusters. The black dots on the

boxplot represent outliers. All the colored dots represent different types of cancer samples.

(B) Heatmap of iCluster classes on mutational signatures. This figure shows the differences of iClusters at the 30 mutation signatures level, and the color

reveals the enrichment.
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COAD-READ and STAD, and PPP1CB was both found in PAAD and LIHC; other targets such as Epothilone

D, TUBA1C, SERPINB5, CLCA2, PSMB2 also got attention in our study. There are strong overlaps between

the previous research and our study. For example, PSCA is abundantly expressed in pancreatic cancer, and

clinical trials on this target in pancreatic cancer are already underway (González et al., 2013; Liu and Saif,

2017); SERPINB5 has been associated with the colorectal tumor, hepatocellular carcinoma, and gastric tu-

mor (Chang et al., 2018; Lei et al., 2011; Li et al., 2017; Yang et al., 2016). This means that our method is

effective in finding potential targets.

To further validate our results, we performed the same unsupervised consensus clustering for the data of

the ICGC database. Our analysis reveals that the classification result of ICGC and TCGA did not vary widely

including classification results and molecule features, verifying the reliability of our whole analysis process.

Previous pan-cancer studies by TCGA team focused on a variety of tumors from different tissues and or-

gans, and most of pan-GI cancers was classified into one cluster (Hoadley et al., 2018), but there is no detail

analysis on particular kinds of cancers. Our research focused on pan-GI cancer, which not only revealed

multi-omics subtyping but also identified the significant prognosis markers by using Cox model. Further-

more, we demonstrated that liver cancer has quite different molecular characteristic from other pan-GI can-

cers, although all the GI cancer samples were grouped into one big cluster in previous TCGA study. In

conclusion, by leveraging the multi-omics data from thousands of tumor samples of the TCGA and

ICGC database, we uncovered the homogeneity and heterogeneity of GI cancer and provide a framework

of pan-GI cancer classification which may help researchers in selecting potential prognostic markers for

pan-GI cancer. This study will help the researchers to better understand the pathophysiology of the

pan-GI cancer and converse more findings into clinical therapies.

Figure 9. Stratification and expression analysis of LIHC based on integrative classification of pan-GI samples from

ICGC

(A) The survival curve of two LIHC subtypes by iClusterPlus on pan-GI cancer.

(B) The differential gene expression analysis between two subtypes of LIHC samples.

(C) The enriched KEGG pathways of significantly differential expressed genes.
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Limitations of the study

The pan-cancer analyses based on 3 molecular platforms have limitations imposed by original omics data.

The sample size of different cancers from TCGA is different, as an example, and there are smaller samples

of ESCA than other GI tract cancers, which may cause deviation of statistical results. Another major limita-

tion of the original omics data is the differences between different databases, and the ICGC database lacks

methylation data so the verification just including mRNA and CNV data. In addition, the significant prog-

nostic markers we found need to be further investigated and supported by the in vitro and in vivo exper-

iments to further verify the impact on pan-GI cancers.
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Jiang, R., Herpel, E., Jäkel, C., et al. (2019).
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Data and code availability

Our study did not generate new unique data and the source code have been deposited in github at https://

github.com/JZHT-jiangzhou/pan-cancer/tree/source.

METHOD DETAILS

Information of pan-gastrointestinal cancer datasets

We retrieved the omics data of gastrointestinal cancers from the Pan-Cancer project in TCGA Research

Network (https://portal.gdc.cancer.gov/legacy-archive/). Overall, 1801 gastrointestinal samples (COAD,

READ, ESCA, PAAD, LIHC, STAD) were examined on at least one molecular profiling platform, including

1741 Copy Number Alterations cases, 1745 methylation cases, and 1725 mRNA expression cases. Mean-

while, our study also included 151 normal samples. The omics data from the ICGC:PCAWG database

(https://dcc.icgc.org/releases/PCAWG) was used to validate our results, including 806 CopyNumber Alter-

ations cases and 281 mRNA expression cases.

SNV and somatic copy number alterations analysis

We used the MutSigCV algorithm on the GenePattern website (https:/www.genepattern.org/) to identify

nan-silence gene across the 1741 tumor sample, finding 128 important segments. Similarly, unsupervised

hierarchical clustering was performed using Euclidean distancemetric andWard.D2methods for 1741 sam-

ples on gene-level copy numbers generated by GISTIC 2.0 analysis (Mermel et al., 2011).

DNA methylation data analysis

CpG sites were selected based on the b value, concisely, we selected the CpG sites that were not methyl-

ated in normal tissues (b < 0.2) in the selected tumor type and then defined b R 0.3 (Fang et al., 2018) as a

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA cancer program National Cancer Institute GDC legacy Archive https://portal.gdc.cancer.gov/legacy-archive/

PCAWG dataset ICGC Data Portal https://dcc.icgc.org/releases/PCAWG

Software and algorithms

R Version 3.5 The Comprehensive R Archive Network https://cran.r-project.org/

iClusterPlus version 1.28.0 A.D., Thorsson, V., et al. (2018) http://www.bioconductor.org/packages/

release/bioc/html/iClusterPlus.html

MutSigCV GenePattern https:/www.genepattern.org/

Proportional hazards model

(Cox model)

Cox.D.R (1972) https://www.jstor.org/stable/2985181?

seq=1#metadata_info_tab_contents

Concordance index (C- index) Harrell et al. (1996) https://onlinelibrary.wiley.com/doi/10.1002/

(SICI)1097-0258(19960229)15:4%3C361::AID-

SIM168%3E3.0.CO;2-4
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positive group and b < 0.3 as a negative group. Overall 298 sites were found in at least one tumor, which

explaining that more than 5% of the tumor samples belonged to the positive group. Meanwhile, we

screened out 577 methylation sites that are methylated in normal samples of any cancer type (b > 0.2)

and found more than 5% of tumor samples belonged to the negative group in at least one tumor. By

this method, we selected 875 methylation sites, and then the hierarchical clustering was performed on

1745 samples using row-scaling, Euclidean distance, and ward.D2 clustering.

mRNA expression data analysis

We firstly filtered the genes expressed only in one organ according to the database of Tissue-specific Gene

Expression and Regulation (TIGER) (Liu et al., 2008), similarly, we removed the genes which were not ex-

pressed in more than 75% of the TCGA pan-GI tumor samples or were absent in any tumor sample, then

overall 16,630 genes were retrieved. Moreover, we selected 1037 genes by applying the standard deviation

R0.5 after log10 transformation. Then the Hierarchical clustering was performed on the samples with the

‘pheatmap’ package in R, using row-scaling, Euclidean distance, and ward.D2 clustering.

Identification of epigenetically silent genes

All methylated probes overlapping with SNPs, repeats, or designed for allosome were removed. The re-

maining probes were mapped against UCSC genes using the GenomicFeatures R package. Then, we

screened all the probes located in the promoter region (the region spanning from 1500 bp upstream to

1500 bp downstream of the transcription start sites) based on the absolute position of the chromosomes.

Level 3 mRNA expression data were log10 transformed. The approach used to identify genes epigeneti-

cally silenced in gastrointestinal cancer was described as below.

First, all methylated sites in normal tissues with b > 0.2 were removed. Then, we used b = 0.3 as a threshold

for positive DNAmethylation and deleted CpG sites which weremethylated in less than 10% of the samples

in either type of cancer. Finally, we follow the steps described below to identify genes epigenetically

silenced. 1) Divide all cancer samples into the methylated group (b R 0.3) and unmethylated group (b <

0.3). 2) Then calculate the mean expression in the methylated group and the unmethylated group. 3) Calcu-

late the standard deviation of the expression level of the unmethylated group. 4) Select genes whose mean

expression level in the methylated group was 1.64 times standard deviations greater than the unmethy-

lated group. For each sample/gene pair, if a) the sample belongs to the methylated group. b) The expres-

sion level of the gene in the sample is lower than themean expression level of the gene in the unmethylated

group, the sample will be labeled as epigenetically silenced for a specific gene. In special cases, if there are

multiple methylation sites associated with a gene, the sample will be labeled as epigenetically silenced

when at least one methylation site is epigenetically silent.

Integrative clustering using iClusterPlus algorithm

The iClusterPlus is the enhancement of iCluster which uses generalized linear regression for the formula-

tion of the joint model with a set of latent variables that represents driving factors (Cancer Genome Atlas

Research Network, 2017). The implementation of iClusterPlus includes the following three steps.

Data processing

Three molecular platforms, SNV, DNA methylation and mRNA expression were provided as input to iClus-

terPlus. Data were processed using the following procedures. SNV data was filtered to remove genes that

demonstrated a mutation rate below 0.05. For the DNA methylation, we select 1000 most variable CpG

sites according to standard deviation. For mRNA sequence data, 1000 most variable genes were selected

as an input to iClusterPlus after log10 transformed and scaled.

Model selection

iClusterPlus uses the Bayesian Information Criterion (BIC) to determine the number of clusters.

BIC = � 2logL+KlogN

Where Lmeans the likelihood, N is the number of data that was used to train themodel and K is the number

of model parameters.
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Feature selection

Lasso penalty terms added in iClusterPlus allow us to find the most important factors for dividing classes.

For every platform, we select the factors whose sum of fit scores (output by iClusterPlus) across all tumor

samples are greater than three quantiles of all features.

Silhouette width

The silhouette width is a widely used measure of within-group homogeneity, which can show the quality of

clusters (Lengyel and Botta-Dukát, 2019), the form of silhouette width is:

si =

8>>>>><
>>>>>:

1� ai
bi
; ai<bi

0; ai =bi

bi

ai
� 1; ai>bi

Where ai is the average distance between sample i and other samples in the same cluster. bij is the average

distance of sample i to all samples of other clustersCj, it can also be defined as the inter-cluster dissimilarity

of sample i. bi is the minimum value of the dissimilarity between clusters of sample i. If si is close to 1, the

clustering result of sample i is reasonable and if it is close to - 1, then the sample i is quite different from

other samples.

Survival analysis of the Pan-GI subtypes from iClusters

Kaplan-Meier survival plots were performed with the survival R package. We used the Mantel-Haenszel

method to identify the significant difference in the survival curve. For each of the 6 cancer types, we calcu-

late the p value in the Cox model with subtypes of different clusters. If the p value is lower than 0.05, we can

statistically believe the subtypes have significant differences in survival.

Proportional hazards model (Cox model)

The proportional Hazards Model (Cox model) is a semiparametric regression model proposed by D.R.Cox

in 1972. By modeling the hazard rate function, the Cox model can indicate the association between predic-

tor variables and the survival time of patients. The form of risk rate function is:

hðt;XÞ = limDt/0
Pðt < T < t +DtjT > t;XÞ

Dt

Cox model assumes that the hazard function has the following form:

hðt;XÞ = l0ðtÞ, expðb ,XÞ
where l0 denotes time-related basic hazard rate, X is the survival-related feature and b is the parameter of

the model to be predicted corresponding to features.

For N events, the likelihood function of the ith event when the risk characteristic is XI andoccurrence time is

ti as shown above:

LðbÞ =
YN
i = 1

expðb , XiÞP
j:tjRti

�
b , Xj

�

we used maximum likelihood estimation (MLE) to estimate the b. Whenb > 0, h (t, X) increases with X, which

means X corresponds to risk factors for worse survival. On the contrary, when b < 0, h (t, X) decreases with

the increase of X, so that X can be the protective factor for better survival.

To obtain biomarkers that can play a significant role in both stratification and survival, we choose 0.05 as the

statistical significance and use Cox model to find the characteristics that play a significant role in survival

from different histological levels and tumor types.

Furtherly, after standardizing and centralizing the features selected from the single factor Cox model, we

constructed themulti-factor Coxmodel according to different cancers and screened out the characteristics

that have significant effects on survival (choose 0.05 as the statistical significance).
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Mutation signature analysis

All single nucleotide mutations can be classified into the following six types (C>A, C>G, C>T, T>A, T>C,

T>G). Considering the upstream and downstream base information, for triplet bases, all mutations can be

divided into 96 mutation types. Previous studies have found a series of mutation signatures according to

the frequency of base mutation, while the Catalog of natural mutations in cancer (COSMIC) summarizes

the 30 published mutation signatures of cancers (Alexandrov et al., 2013a, 2013b, 2015; Alexandrov and

Stratton, 2014; Helleday et al., 2014; Nik-Zainal et al., 2012, 2016). we performed COSMIC on the mutation

frequency of our samples with ‘deconstructSigs’ package in R.

We analyzed the mutation characteristics of 9 iClusters according to COSMIC with the ‘deconstructSigs’

package in R. Then we clustered the weights of 30 mutation features obtained from the COSMIC analysis

using hierarchical clustering with Euclidean distance and ward.D2 clustering.

Evaluation of the prognostic power of the biomarkers by the concordance index

We applied the concordance index (C- index) to evaluate the prognostic power of the biomarker for each

cancer type (Harrell et al., 1996). The C-index is a non-parametric measure to quantify the discriminatory

power of a predictive model. If the prediction result is absolutely accurate, then the C-index is 1, while

the C-index less than 0.5 indicates the prediction is not effective.

We first calculate the risk score (RS) for each sample of our identified biomarkers to predict the patients’ risk

(Zhao et al., 2020). The RS for the gene in each sample can be calculated:

RS = B , V

Where B = ½b1;b2;b3�, each b is a risk coefficient so that the B can show the risk coefficient of each omics

including gene expression, DNA methylation, and somatic copy number alterations. While V = ½v1; v2;
v3�shows the value of three types of omics data in each sample. Finally, we use the boosting to generate

100 C-indexes of the RS. If the median value of the C-index was higher than 0.5, then our model can be

credible.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in R version 3.5.

For each single-omics platform, the details of data filtering, model selection and silent genes identification

have been indicated in the respective method details.

For multi-omics analysis, iClusterPlus was used to classify the pan-GI cancer samples, in which we choose

l = 35 (lambda determines the number of molecular features that have nonzero weights on the fused eigen-

feature) and P % 0.05 were considered significant.

The details of proportional hazards model and concordance index can be found in the respective method

details.

The independent data from ICGC dataset is used for repetitive experiments and the selected features and

the methodology is repeatable, the details have been included in the previous sections.
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