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Abstract

An aerobic bacterium capable of breaking down the pesticide acephate (O,S-dimethyl acetyl phosphoramidothioic acid) was
isolated from activated sludge collected from a pesticide manufacturing facility. A phylogenetic tree based on the 16 S rRNA
gene sequence determined that the isolate lies within the Pseudomonads. The isolate was able to grow in the presence of
acephate at concentrations up to 80 mM, with maximum growth at 40 mM. HPLC and LC-MS/MS analysis of spent medium
from growth experiments and a resting cell assay detected the accumulation of methamidophos and acetate, suggesting
initial hydrolysis of the amide linkage found between these two moieties. As expected, the rapid decline in acephate was
coincident with the accumulation of methamidophos. Methamidophos concentrations were maintained over a period of
days, without evidence of further metabolism or cell growth by the cultures. Considering this limitation, strains such as
described in this work can promote the first step of acephate mineralization in soil microbial communities.
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Introduction

Acephate belongs to a large group of organophosphorus

pesticides, known to be inhibitors of acetylcholinesterase activity,

which have been extensively used in world agriculture to control

insect pests of a number of economically important crops.

Organophosphates (OPs) were developed as replacements for the

more persistent organochlorines [1,2]. Although OPs are less

persistent in the environment, extensive and indiscriminate use has

led to the accumulation of their residues in various components of

the environment [3]. The reported cases of poisoning in the

United States decreased after the U.S. Environmental Protection

Agency implemented the Food Quality Protection Act of 1996,

which prohibited the use of organophosphate insecticides in

residential environments [4,5]. In spite of this, thousands of cases

are reported every year in the United States [6,7] and around the

world [8,9], due to accidental release, intentional self-poisoning or

to consumption of contaminated food [10]. Acephate is believed to

be a relatively safe pesticide for humans, acting only as a weak

inhibitor of AChE. This toxicity is restricted by a requirement for

metabolic conversion to methamidophos and by methamidophos

inhibition of the mammal carboxyamidase, which promotes this

conversion [11]. In spite of this, many reported observations

indicate that the effects of pesticide exposure, including acephate,

are not restricted to anticholinesterase action [12,13,14,15,16], but

include genotoxicity [17] and teratogenicity [18]. Such serious

health consequences signify a requirement for a better under-

standing of the fate of acephate in the environment, and the

development of safe, reliable and eco-friendly technologies for the

elimination of acephate and other OP compounds from

contaminated areas.

Although acephate usually degrades in soils, ground water and

plants with a half-life of 3–6 days, in some soils the half-life may be

increased to more than 13 days [3,19,20,21]. The degradation of

acephate has been demonstrated to be promoted by microorgan-

isms by an order of magnitude increase in stability of acephate in

sterilized soil [22]. Temperature and pH also contribute to its

persistence, demonstrated by a half-life increase from 10 days to 1

year in water at pH 6.0 and 5uC [23]. In frozen fruit samples,

acephate may be stable up to 14 months [24]. It is clear that,

under favourable conditions, acephate can persist in the

environment and food for significant periods of time.

It has been proposed that acephate in the environment can be

mineralized to CO2, methyl mercaptan and phosphoric acid

through either methamidophos or O-methyl N-acetylphosphor-

amidate, O,S-dimethyl phosphorothioate (DMPT) and further to

CO2, methyl mercaptan and phosphoric acid (Fig. 1) [25]. Little is

known about the microorganisms or enzymes responsible for each

step of those pathways. Although studies on acephate degradation

in soils have been reported during the last decade [21,22,26], only
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one has identified a bacterium that can initiate the pathway by

hydrolysis of acephate. In this study, which was focused on

methamidophos degradation, it was shown that Hyphomicrobium sp.

MAP1 can degrade several OP compounds, including acephate.

No analysis of degradation products was reported [27]. In the

present study, the isolation and characterization of a bacterial

strain from the activated sludge of a pesticide-manufacturing unit

is reported. This bacterium, designated as Pseudomonas sp. Ind01,

uses acephate as a source of carbon to support cell growth and can

promote the first step of acephate mineralization in soil microbial

communities.

Results

Strain Ind01 is a Pseudomonad
A Gram negative, rod-shaped bacterium that can utilize

acephate as a sole source of carbon was isolated from the activated

sludge collected from a pesticide manufacturing plant. The isolate,

designated Ind01, was chloramphenicol and ampicillin resistant,

but sensitive to kanamycin. Cells are 0.561.3 mm in size and

possess a single terminal flagellum (Fig. S1).

The sequence of the 16 S rRNA gene of the isolate was

determined and used to construct a phylogram (Fig. S2). This

analysis placed the Ind01 isolate into the genus Pseudomonas, within

the P. aeruginosa lineage [28] with greatest similarity to ‘‘Pseudo-

monas azelaica’’ DSM 9128T (99%), Pseudomonas nitroreducens DSM

14399T (98%: Pseudomonas multiresinivorans ATCC 700690T a

heterotypic synonym) and Pseudomonas jinjuensis LMG 21316T

(98%), suggesting that strain Ind01 lies within one of those

characterized species. However, comparison of key biochemical

parameters identified a number of differences with respect to

nutrient utilization between isolate Ind01 and these two strains

(Table S1).

Acephate utilization by Pseudomonas sp. Ind01 as a sole
source of carbon

The ability of the Pseudomonas sp. Ind01 to utilize acephate as a

sole carbon source was demonstrated by strain growth on MM1

supplemented with acephate, achieving a maximal growth rate

0.11 OD600/h. The same medium without acephate did not

support growth (Fig. 2a). A time course analysis of the culture

supernatant by HPLC determined that the increase in cell density

was accompanied by a concomitant decrease in acephate

concentration. As acephate was depleted, cell growth slowed and

reached a stationary cell density, ultimately demonstrating the

decline in density associated with cell death. At the same time, the

concentration of the metabolite methamidophos increased

through the first 5–6 hours of growth. Upon reaching its

maximum, the concentration did not change during further

incubation (Fig. 2b). The identity of the HPLC peaks was

confirmed by GC-MS and LC-MS/MS analysis.

An additional source of carbon (sodium acetate), delivered

either prior to inoculation (Fig. 3a) or after the culture reached

stationary phase (Fig. 3b), significantly enhanced culture growth,

Figure 1. Generalized acephate degradation pathways in soil (FAO, 2004).
doi:10.1371/journal.pone.0031963.g001
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confirming that growth was limited by depletion of acephate as an

available carbon source. Methanol (1.0%) or sodium formate

(5 mM) was not able to supplement growth. Pseudomonas sp. Ind01

was able to grow on acephate at concentrations as high as 80 mM;

maximum growth was observed at 40 mM (data not shown).

Since there was no detectable decrease in the concentration of

methamidophos generated during growth on acephate, it

appeared that utilization of acephate was limited to a single

degradative step. To verify this, MM1was supplemented with

methamidophos as the sole carbon source. In contrast to acephate

supplemented media, where the culture optical density increased

at a rate of 0.11 OD/hr, there was no detectable growth on

methamidophos supplemented MM1 media (Fig. 4a). In spite of

this, approximately 40% of the provided methamidophos was

depleted over the four-week incubation. However, the depletion of

methamidophos from the inoculated medium and the uninocu-

lated control had very similar profiles (Fig. 4b), supporting an

argument that the breakdown of methamidophos was abiotic.

Characterization of growth on acephate as a source of
sulphur or nitrogen

The molar ratio of C: N: S per mole of acephate is 4: 1: 1, so

acephate potentially can serve as a source of nitrogen and sulphur,

as well as carbon (Fig. 1). To assess this, Pseudomonas sp. Ind01 was

inoculated into MM2 and MM3, supplemented with 10 mM

acephate. Control cultures included MM1 medium supplemented

with 10 mM acephate as a carbon source, as well as inoculated

MM1 media with no supplements and each supplemented

medium without an inoculum. Although the isolate demonstrated

limited growth on MM2 and MM3, medium in which acephate

provided the sole C and N or S source, the growth rate was

significantly lower than on acephate as a C source: 0.11 DOD600/

h for MM1 and 0.003 and 0.01 DOD600/h for MM2 and MM3,

respectively (Fig. 5a). In contrast to growth on MM1, the addition

of sodium acetate to the MM2 and MM3 media did not enhance

the growth (data not shown), confirming that C was not the

Figure 2. Growth kinetics and acephate utilization by Pseudo-
monas sp. Ind01 on MM1 growth media. (a) Growth kinetics
monitored at l 600 nm on MM1 supplemented with acephate (black
squares) or w/o acephate (white squares) (b) Concentration of acephate
(black squares) and methamidophos (black triangles) in MM1 medium,
supplemented with 10 mM acephate as a sole source of carbon.
Acephate concentration in uninoculated medium represented by white
squares.
doi:10.1371/journal.pone.0031963.g002

Figure 3. Growth kinetics of Pseudomonas sp. Ind01 on MM1
growth media supplemented with additional carbon source. (a)
Growth of Ind01 on MM1 medium supplemented with 10 mM acephate
(black squares), 10 mM acephate and 10 mM sodium acetate (black
triangles) or with no carbon source (white squares) (b) Growth of Ind01
on MM1 medium supplemented with 10 mM acephate (black squares).
After culture reached stationary phase, 5 mM sodium acetate (black
circles) or 5 mM sodium formate (white circles) was added as an
additional carbon sources. Each data point is an average value and error
bars represent the standard deviation (n = 2).
doi:10.1371/journal.pone.0031963.g003
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limiting nutrient, but that growth was indeed limited by the

available nitrogen and sulphur. The rates of acephate degradation

and accumulation of methamidophos in MM2 and MM3 media

were reduced relative to MM1 medium, corresponding to the

reduced growth rates on those media (Fig. 5b). The degradation of

acephate can be described by a first order equation of exponential

decay with a half-life for acephate of 5 h, 8 h, and 11.5 h on

MM1, MM3, MM2 media, respectively.

Resting cell assays suggest a role for methamidophos as
a sulphur donor for growth

A resting cell assay analyzed by GC-MS and LC-MS/MS was

employed to identify catabolic intermediates of acephate degra-

dation. When metabolites extracted from the spent medium were

analyzed by GC-MS, two peaks were observed. Under the

chromatographic conditions described, these peaks were found to

have retention times of 4.0 and 13.0 minutes, respectively, and

mass spectral analysis determined them to have identical spectral

properties as that of acetic acid (molecular ion M+ at m/z 60) and

methamidophos (molecular ion M+ at m/z 141). This is consistent

with the previously proposed pathway in which acephate

degradation is initiated through a hydrolytic cleavage of the

amide linkage found between these two moieties. (Fig. 1)

Owing to their high solubility in water, reverse-phase HPLC

and LC-MS were used for the identification of potential

degradation products. Two main peaks with retention times of

7.4 and 6.4 min were detected, which were correspondingly

identified as acephate ([M+H]+ at m/z 184) and methamidophos

([M+H]+ at m/z 142) (Fig. 6). A dimer of the protonated

methamidophos was also detected at m/z 283. In addition to

acephate and methamidophos, three other compounds character-

ized by protonated molecules [M+H]+ at m/z 112 (retention time

2.2 min), m/z 143 (retention time 3.1 min) and m/z 126 (retention

time 4.3 min) were detected. The retention time (2.2 min) is close

to the column dead time and hence impurities (peak other than m/

z 112) were also observed in the mass spectrum. In addition,

oxidation of the protonated molecule at m/z 143 (retention time

3.1 min) occurred during the ionization process resulting in

successive increase of m/z by 16 Da from m/z 143 to 159 and 175.

The MS/MS of each protonated molecule is shown in Fig. 6b to

the left of each mass spectrum and the chemical structures of the

fragment ions are indicated in each mass spectrum to confirm the

identity of these compounds. Isotopic distribution of each

protonated molecule was also considered for identification. Out

of the three compounds, only the compound at retention time 3.1

(m/z 143) was shown to contain sulphur. These three compounds

at retention times 2.2, 3.1 and 4.3 min were identified as O,S-

dimethyl phosphorothioate (m/z 143) O,O-dimethyl phosphorami-

date (m/z 126) and O-methyl phosphoramidate (m/z 112)

respectively. The peak areas of these compounds never exceeded

1–2% relative to acephate and methamidophos peak areas

(Fig. 6a), and they were not detected in the control cell suspension

without substrate, eliminating the biomass as a source.

Acephate is almost completely degraded within one hour (Fig. 7).

Over the same timeframe, methamidophos increased to its

maxima, where it maintained a relatively stable concentration

over 96 h. Quantification with HPLC analysis confirmed that the

concentration of acephate decreased from 10 mM to undetectable

levels, while methamidophos increased to an approximately

equimolar amount (above 9.3 mmol) over the same period (data

not shown). They appear to be products of methamidophos

degradation or decomposition, although they have distinctly

different accumulation kinetics.

O-methyl phosphoramidate (m/z 112) was first detected shortly

after methamidophos reached a maximum and then accumulated

throughout the remaining assay time course (Fig. 7). This

compound can be generated as a result of methamidophos

decomposition with the release of methyl mercaptan (Fig. 1).

Importantly, virtually identical accumulation kinetics was observed

in control tubes without cells (data not shown), demonstrating its

abiotic origin.

In the acephate RCA, O,O-dimethyl phosporamidate (m/z 126)

accumulated with kinetics similar to methamidophos, although

with a longer lag phase which resulted in a delayed time to

maximum (Fig. 7a). The negative control without cells did not

generate this compound. In the methamidophos RCA, there was a

small amount present at the zero time point and its concentration

remained virtually constant throughout the assay (Fig. 7b). This

was observed in both the RCA reaction, as well as in the negative

control without cells.

Similar kinetics were observed for O,S-dimethyl phosphorothio-

ate (m/z 143) in the methamidophos RCA. A small amount was

present at time 0 and remained unchanged throughout the assay,

in both the RCA reaction as well in the negative control without

Figure 4. Growth kinetics of Pseudomonas sp. Ind01 on MM1
medium supplemented with acephate or methamidophos as a
sole source of carbon. (a) Growth kinetics on MM1 medium,
supplemented with 10 mM acephate (triangles), 10 mM methamido-
phos (circles), or without any carbon source (squares). (b) Concentration
methamidophos (circles) and acephate (squares) in uninoculated
(white) or inoculated (black) media. Average values and standard
deviation (n = 2) are shown. Growth time is represented on an offset
reciprocal scale.
doi:10.1371/journal.pone.0031963.g004
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cells (Fig. 7b). It was only detected in trace amounts in the

acephate RCA.

Discussion

Acephate has been extensively used as an insecticide to control a

number of agriculturally important insect pests and, in spite of a

relatively short half-life, it has been found in various components

of the environment [3]. Although there are extensive studies on the

biodegradation of various other organophosphates, only a few

reports are available on bacterial-promoted biodegradation of

acephate [2,29,30,31].

It was shown by early studies that acephate degraded in soils

and water through methamidophos or O-methyl N-acetylpho-

sphoramidate (Fig. 1). The identification of these two metabolites

suggested two alternative degradation pathways. The generation

of O-methyl N-acetylphosphoramidate would require a phospho-

triesterase-type enzyme to hydrolyze the P-S bond [32,33], while

methamidophos would be generated by a carboxylesterase-type

enzyme, releasing the acetate residue. Although there have been

several reported studies focused on the methamidophos biodeg-

radation pathway, the details of acephate biodegradation have still

not been elucidated. In the present study, the isolation of

acephate-degrading bacterium from activated sludge from a

pesticide manufacturing unit and some insight into acephate

degradation is reported.

Based on the phenotypic and phylogenetic analysis, the isolate is

designated as Pseudomonas sp. Ind01. The bacterium is capable of

hydrolyzing acephate to methamidophos and acetic acid, which is

used as a source of carbon. Surprisingly, Pseudomonas sp. Ind01

failed to use or co-metabolize other tested OP compounds, such as

paraoxon and parathion. Consistent with this phenotype, neither

OPH activity nor an opd gene was detected in this strain (data not

show). In addition, the strain is not able to utilize the tested C1

compounds (methanol and sodium formate) as a sole carbon

source (Table S1, Fig. 3), in contrast to ethanol, which could

support growth.

Potentially, acephate can also serve as a source of nitrogen and

sulphur (Fig. 1). Indeed, a number of soil microbes, such as

Penicillium [34], Hyphomicrobium and Luteibacter [35] have been

reported to be able to utilize methamidophos, a first degradation

product in acephate mineralization, as a sole source of nitrogen or

sulphur. Our data does not provide evidence that the Pseudomonas

sp. Ind01 is able to mineralize methamidophos. Although

methamidophos as a sole carbon source did not support growth

on MM1 medium (Fig. 4a), a limited growth on carbon and

sulphur or nitrogen deficient media (MM2 and MM3, respective-

ly), supplemented with acephate, was observed (Fig. 5a). This

growth may be supported by abiotic hydrolysis of methamidophos

in water solution to O-methyl phosphoramidate with the

corresponding release of methyl mercaptan, which has been

shown to be utilized as a sulphur source by bacteria, including

some Pseudomonas [36,37]. The accumulation of O-methyl

phosphoramidate ([M+H]+ m/z 112), observed in the resting cell

assay supports this hypothesis (Fig. 7). Similarly, the abiotic

generation of O,S-dimethyl phosphorothioate can provide suffi-

cient nitrogen for such limited growth.

It has been reported that the metabolism of some pesticides may

by significantly enhanced in the presence of an additional carbon

source, i.e. the degradation of chlorpyrifos by Enterobacter in the

presence of succinate [38]. In this study, the addition of sodium

acetate or glucose, either at the time of inoculation or after the

culture reached stationary phase, did not result in enhancement of

methamidophos degradation. On the other hand, no inhibition in

the acephate degradation rate was observed when cells were

grown on a mixture of acephate and sodium acetate or dextrose,

indicating that the acephate-degrading system is not activated (de-

repressed) under carbon starvation (data not shown). The inability

to grow on methamidophos as a sole carbon source is consistent

with the inability of the strain to grow on C1 compounds, such as

methanol and sodium formate (Table S1; Fig. 3, 4) and suggests

that the strain does not possess the enzyme systems needed for

either the extraction or utilization of methyl groups. Strains such

as described in this work can, however, promote the first step of

acephate mineralization in a soil microbial community.

Figure 5. Growth kinetics of Pseudomonas sp. Ind01 on acephate as a sole source of C, S and N. (a) Growth kinetics on MM1 (white
squares), MM2 (black circles) and MM3 (black triangle) media, supplemented with 10 mM acephate. Growth on control MM1 medium w/o acephate is
represented by open triangles. (b) Acephate degradation (solid lines, black marks) and methamidophos accumulation (dashed lines, white marks)
during growth on MM1 (circles), MM2 (triangles) and MM3 (diamonds) media, supplemented with 10 mM acephate. The concentration of acephate in
control uninoculated MM1 medium is represented by black squares. Each data point represents the average values and error bars are the standard
deviation (n = 3).
doi:10.1371/journal.pone.0031963.g005
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Figure 6. Identification of degradation products of acephate degradation by LC-MS/MS. (a) Total ion counting chromatogram of
acephate degradation products after 30 min incubation in Resting Cell Assay and extracted ion counting chromatogram fragments for [M+H]+m/z
112, m/z 126 and m/z 143 ions after 96 h incubation in RCA (insert). (b) Mass spectra of the peaks observed at retention time 2.2, 3.1, 4.4, 6.4, 7.4 and
min in a left and MS/MS fragmentation patterns of main compounds of the corresponding peaks in a right column.
doi:10.1371/journal.pone.0031963.g006
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Acephate has been shown to have potential to contaminate

ground water [20,21,22]. In a typical Ground Water Pollution-

potential model (GWP), acephate has reached ground water after

leaching out from a variety of soils [22]. However, due to higher

absorption coefficient, methamidophos is shown to remain in most

of the soil types. In such a scenario presence of Pseudomonas sp.

Ind01 might help in converting otherwise penetrative acephate to

a more absorbable methamidophos. If this is seen together with

the existence of methamidophos degrading soil microflora [27,35],

the true potential of Pseudomonas sp. Ind01 to remediate acephate

contaminated soils can easily be realized.

Methods

Isolation and characterization of acephate-degrading
bacterium

For isolation and characterization of the acephate-degrading

bacterium, minimal media lacking a source of carbon (MM1),

carbon and nitrogen (MM2) and carbon and sulphur (MM3) were

used (Table 1). All medium salts were no less than ACS or GR

grade, with a nitrogen and sulphur content less than 0.002%.

Acephate (O,S-dimethyl acetylphosphoramidothioate) and metha-

midophos (O,S-dimethyl phosphoramidothioate) were purchased

from ChemService Inc. (West Chester, PA). For DNA purification

and propagation of stock cultures for growth experiments, cells

were grown on LB medium supplemented with 50 mg/ml

carbenicillin.

An acephate-degrading bacterium was isolated through an

enrichment culture technique using activated sludge collected

from a pesticide-manufacturing unit (Rallis India Ltd, Patancheru,

Hyderabad, Andhra Pradesh, India). A 250 ml conical flask

containing 50 ml minimal medium MM1 supplemented with

0.5 mM acephate as a sole source of carbon was inoculated with

10 g of activated sludge. The flask was incubated at 30uC on an

orbital shaker at 200 rpm for a period of 7 days. After the

incubation period, the sludge material was allowed to settle and

1 ml of particulate free suspension was re-inoculated into a fresh

50 ml of MM1 medium supplemented with acephate (0.5 mM).

Four such transfers were made and during each transfer the

enriched population was plated on MM1 medium supplemented

with acephate as a source of carbon. After the fourth transfer, a

pure culture capable of growing on acephate was obtained and

designated strain Ind01 before depositing in DSMZ, Germany

with an accession number DSM 19477.

Phenotypic and Phylogenetic Characterization
Genomic DNA was extracted and purified using the Qiagen

DNeasy Blood and Tissue kit (Qiagen Ink., Valencia, CA). PCR

amplification of the 16 S rRNA gene and its complete sequence

was obtained following procedures described elsewhere [39,40].

The sequence of 16 S rRNA gene of strain Ind01 is deposited in

NCBI data base (AM407893). The CLUSTAL_W algorithm of

MEGA 4 was used for sequence alignments and MEGA 4 [41]

software was used for phylogenetic analyses of both individual and

concatenated sequences. Distances were calculated by using the

Jukes and Cantor correction in a pair wise deletion procedure.

Unweighted pair group with mathematical average (UPGMA),

neighbour-joining (NJ), minimum evolution (ME) and maximum

parsimony (MP) methods in the MEGA4 software were used to

construct phylogenetic trees. Percentage support values were

obtained using a bootstrap procedure.

Biochemical growth properties were assessed by growing the

strain Ind01 in MM1 medium supplemented with carbon sources

(Table S1) to a final concentration of 0.3% (w/v). Growth was

monitored spectrophotometrically (at OD600) for a period of 72 h.

While testing for antibiotic sensitivity, the strain was plated

Figure 7. Kinetics of metabolites during acephate (A) or
methamidophos (B) degradation in Resting Cell Assay. Left Y-
axis: [M+H]+ ions m/z 184, acephate; m/z 142, methamidophos; right
axis: [M+H]+ ions m/z 126, O,O-dimethyl phosphoramidate; m/z 112 O-
methyl phosphoramidate and m/z 143, O,S-dimethyl phosphorothioate.
doi:10.1371/journal.pone.0031963.g007

Table 1. Composition of minimal media used for isolation
and characterization of acephate degrading bacterium.

g/L

MM1 [C] MM2 [C-N-] MM3 [C-S-]

K2HPO4 4.8 4.8 4.8

KH2PO4 1.2 1.2 1.2

MgSO4.7H2O 0.2 0.2 -

FeSO4.7H2O 0.001 0.001 -

NH4NO3 1 - 1

Ca(NO3)2. 4H2O 0.04 - 0.04

doi:10.1371/journal.pone.0031963.t001
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independently on LB plates having chloramphenicol (30 mg/ml),

ampicillin (100 mg/ml) or kanamycin (25 mg/ml).

Growth studies with acephate as a sole source of carbon,
nitrogen and sulphur

After obtaining a pure culture, the strain’s ability to use

acephate as a source of carbon, nitrogen or sulphur was assessed

by growth in minimal medium lacking alternative sources for each

essential element. Acephate (10 mM) was added to a minimal

medium formulated to be free of alternative carbon (MM1),

carbon and nitrogen (MM2) or carbon and sulphur (MM3).

Sodium acetate (1–10 mM), sodium formate (5 mM), dextrose

(5 mM) or ammonium chloride (0.1–0.5 mM) were used in some

experiments as an additional carbon or nitrogen source,

respectively.

For growth studies, LB medium was inoculated with colonies

from a carbon-minus MM1 plate supplemented with 10 mM

acephate and incubated overnight (11–16 h) at 30uC and

300 rpm. After overnight growth, the cells were collected by

centrifugation (20 min at 36006g), washed and resuspended in

sterile water (OD600,2). This stock suspension was inoculated into

each of the minimal medium formulations (dilution ratio 1:100)

supplemented with 10 mM acephate and allowed to grow at 30uC
and 300 rpm. The MM1 medium without acephate and the same

medium supplemented with acephate without inoculum served as

controls. At defined time points, sample aliquots were withdrawn,

OD600 was recorded and cells were removed by centrifugation for

2 min at 14, 0006g. Supernatants were stored at 220uC until

analyzed. Growth rate was estimated by the slope of the line

representing the linear fit of the increase in optical density over

time, during the exponential phase of culture growth.

Resting cell assay (RCA)
A resting cell suspension (OD600 = 2.1) was created by growing

strain Ind01 overnight at 30uC and 300 rpm (MM1 medium with

acephate as the sole carbon source), harvested by centrifugation

(20 min at 36006g), washed twice with 15 ml of sterile citrate

saline buffer (20 mM citrate buffer, pH 7.0, 150 mM NaCl) and

then resuspended in either 18 ohm water or carbon minus MM1

medium. Filter sterilized acephate was added to each cell

suspension up to a final concentration of 10 mM. Suspensions

were then incubated at room temperature; samples (100 ml) were

collected at 0, 5, 15, 30, 60, 90 min, 18 h and 96 h. Cells were

removed by a 2 min centrifugation at 14,0006g. The cleared

supernatant was stored at 220uC until analyzed.

HPLC analysis
Reverse-phase HPLC (RP-HPLC) was used to monitor

acephate degradation. Cleared supernatants from either growth

experiments or RCA were diluted 1:1 with 0.1% formic acid and

analyzed using a Beckman Gold HPLC system equipped with an

Aqua C18 column (25064.6 mm, Phenomenex, Torrance, CA)

and a diode-array detector. Acephate and metabolites were

separated by gradient elution at 0.75 ml/min in a formic acid –

methanol solvent system (eluent A: 0.1% formic acid in water,

eluent B: 100% methanol); peak elution was monitored at 220 nm.

The following gradient was used: t = 0, 0% B; t = 3.6 min, 50% B;

t = 12 min, 80% B; t = 15.6 min, 100% B, followed by a column

wash with 100% B and re-equilibration with 0.1% formic acid.

For quantification of acephate and methamidophos, a calibration

curve was obtained using commercially available standards

(ChemService, West Chester, PA). Standards were not available

for other metabolites.

LC-MS analysis
Water-soluble metabolites were analyzed using a Surveyor

HPLC system (Thermo Finnigan, San Jose, CA) interfaced with

quadrupole ion trap mass spectrometer (LCQ-DECA; Thermo

Electron). Separation was performed using an Aquasil C18

reversed phase column (2.1 mm6150 mm, 3 mm) (Thermo

Electron, San Jose, CA). The gradient mobile phase consisted of

water (A) and methanol (B), each containing 0.1% formic acid. At

a flow rate of 0.2 ml/min, a gradient was started at 0% B,

increased to 60% in 5 minutes and then to 100% in 3 min where

it was held for 2 min prior to being returned to 0% B in 0.5 min.

The solvent system was held at 0% B for 5 min to re-equilibrate

the column between runs.

An APCI probe in the positive ion mode was used for

ionization. The MS operating conditions were optimized as

follows: sheath gas and auxiliary gas flow rate, 50 and 10 arbitrary

units, respectively (both high purity nitrogen), APCI vaporizer

temperature, 450uC, corona current, 5 mA. Transfer capillary

temperature was held at 150uC. Relative collision energy of 30%

was used for collision-induced dissociation. Xcalibur 2.0 (Thermo

Finnigan) was used to control the LC-MS system and for data

acquisition and processing.

GC-MS analysis
For GC-MS analysis, 50 ml of the spent medium was clarified

by centrifugation at 13,200 g, followed by filtration through a

0.2 mm filter. The clarified medium was acidified with 0.09 N

hydrochloric acid and then extracted thrice with an equal volume

of ethyl acetate. The pooled organic phase was allowed to air dry,

and the remaining residue was dissolved in a minimal volume

(500 ml) of methanol and about 1 ml of it was taken for analysis

using a GC-MSQP5050A (Shimadzu) equipped with a column

(25 m60.2 mm ID60.33 mm) packed with 100% SPBI (Supelco).

The column, injection port and detector temperatures were

maintained at 210uC, 230uC and 250uC, respectively. Helium was

used as the carrier gas and the flow rate was maintained at 1 ml/

min.

Supporting Information

Figure S1 Cell morphology of acephate degrading
strain Ind01.

(TIFF)

Figure S2 Dendrogram of the phylogenetic relation-
ships based on 16 S rRNA gene analysis. The scale bar

corresponds to 2 nucleotide substitutions per 100 nucleotides.

Numbers indicate statistical significance of the branching order

determined using bootstrap analysis of 100 alternative trees;

dendrogram was constructed using MEGA 4.1.

(TIF)

Table S1 Comparison of biochemical properties of
acephate degrading strain Ind01 and type strains.* *Data

for P. azelaica, P. nitroreducens and P.citronelosis and P. multiresinivorans

taken from or consistent with Lang et al. (Lang, E., Griese, B.,

Sproer, C., Schumann, P., Steffen, M. &Verbarg, S. (2007).

Characterization of ‘Pseudomonas azelaica’ DSM 9128, leading to

emended descriptions of Pseudomonas citronellolis Seubert 1960

(Approved Lists 1980) and Pseudomonas nitroreducens Iizuka and

Komagata 1964 (Approved Lists 1980), including Pseudomonas

multiresinivorans as its later heterotypic synonym. Int J Syst Evol

Microbiol 57, 878–882); data for P.jinjuensis taken from Kwon et al.

(Kwon, S. W., Kim, J. S., Park, I. C., Yoon, S. H., Park, D. H.,

Lim, C. K. & Go, S. J. (2003). Pseudomonas koreensis sp. nov.,
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Pseudomonas umsongensis sp. nov., and Pseudomonas jinjuensis sp. nov.,

novel species from farm soils in Korea. (Int J Syst Evol Microbiol

53, 21–27.).

(DOC)
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