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Introduction
The global prevalence of heart failure (HF) is 
growing at an alarming rate. In 2011, approxi-
mately 23 million people were living with HF 
worldwide, a figure that is expected to rise by 
46% by 2030.1 In developed countries, up to one 
in five people are expected to develop HF during 
their lifetime.2 This is largely owing to the mount-
ing pandemic of lifestyle-related diseases such as 
obesity and type 2 diabetes mellitus (T2D), which 
are intimately linked with each other, and with 
HF development.3 For example, United Kingdom 
estimates suggest that in the general population 
the prevalence of diabetes is 6%.4 However, in 
data from contemporary trials the prevalence of 
diabetes in HF patients ranges from 35% to 
44%,5,6 with a particular predisposition towards 
HF with preserved ejection fraction (HFpEF). 
Furthermore, clinical outcomes for diabetes-asso-
ciated HF are considerably worse for patients 
with T2D than those without,7 and development 
of HF in T2D is associated with the greatest risk 
of death and loss of lifespan than any other 

cardiovascular complication of T2D.6 HF is one 
of the most common complications of T2D, sec-
ond only to peripheral vascular disease.8 
Recognizing, preventing and treating HF in T2D 
is clearly a major priority for healthcare profes-
sionals and is considered a national priority in the 
United Kingdom.9

Despite not having overt signs or symptoms of 
HF or prevalent cardiovascular disease, numer-
ous studies have reported a 20–30% reduction in 
peak oxygen consumption (VO2peak) in adults 
with T2D compared with controls.10–13 Exercise 
limitations occur early in the disease process and 
may be present in individuals with good glycae-
mic control14 and in those without clinically 
apparent cardiovascular disease.14 Importantly, 
these limitations in physical fitness correlate 
strongly with increased risk of cardiovascular and 
all-cause mortality, and HF.15 In combination, it 
is highly likely that early cardiovascular and sys-
temic disturbances associated with T2D cause 
significant exercise limitation that predisposes to 
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HF development. Enhanced understanding of 
the factors directly influencing exercise capacity 
in people with T2D may lead to the development 
of strategies to prevent or treat HF, as summa-
rized in Figure 1. This review synthesizes the 
available evidence assessing predictors of exercise 
capacity in asymptomatic individuals with T2D. 
Links to mechanisms limiting exercise capacity 
specifically in HFpEF are explored. We empha-
size the contributions of both cardiovascular and 
systemic factors that may lead to reduced physical 
fitness, highlighting areas of unmet research need 
and future strategies for targeted interventions.

Physiological cardiovascular responses to 
exercise
In health, the cardiovascular system adapts and 
modifies its parameters in response to increased 
demand such as physical exertion, with the aim to 
facilitate tissue perfusion and oxygen delivery.16 

At the microcirculatory level, perfusion pressure 
equates to mean arterial pressure which is regu-
lated by interaction between cardiac output (a 
combination of heart rate and stroke volume) and 
systemic vascular resistance.17 During exercise, a 
positive chronotropic response and increased 
stroke volume (through re-direction of splanchnic 
and renal blood flow, increasing preload) result in 
increased cardiac output. The systemic vascular 
resistance in exercise-critical tissues such as the 
myocardium falls through local release of nitric 
oxide mediators and activity of cyclic guanosine 
monophosphate.17 The net result is a controlled 
change in mean arterial pressure, with improved 
perfusion of the exercise-critical muscle groups, 
such as the myocardium and skeletal muscle. The 
inability of one or more of these physiological 
parameters to adjust on exercise will result in fail-
ure of the cardiovascular system to meet tissue 
oxygen demands, leading to diminished exercise 
capacity.17

Figure 1.  Contributors to reduced exercise capacity in T2D.
Reduced exercise capacity in T2D is a net result of complex interactions between the biomechanics of obesity and frailty 
and the systemic and cardiovascular factors. Molecular mechanisms involved in the interactions between excess nutrients, 
adiposity, and chronic inflammation result in insulin resistance, which further propels the vicious cycle of metabolic 
dysregulation. Adapted from Del Buono MG, et al. J Am Coll Cardiol 2019;73(17):2209-2519

BMI, body mass index; LA, left atrium; LV, left ventricular; T2D, type 2 diabetes mellitus.
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Cardiopulmonary exercise testing offers an 
assessment of individuals’ functional capacity 
through evaluation of gas exchange during exer-
cise and thus an assessment of systems involved 
in both oxygen transport and utilization.18 
Cardiopulmonary exercise testing allows for 
measurement of the volume of tissue oxygen 
uptake, which is a key parameter that offers 
insights into cardiac and pulmonary function, as 
expressed by Fick’s principle, according to 
which VO2 equates to cardiac output multiplied 
by the artero-venous gradient [C(a-v)O2].18 
During ramp-like exercise, VO2 increases expo-
nentially up to a steady state corresponding to 
peak exercise, and will adopt different patterns 
in patients with different aetiologies of HF.18 
Any number of perturbations in T2D can inter-
fere with the body’s normal physical responses 
to increased work, and thus affect the VO2peak.

Systemic contributors to impaired exercise 
capacity

Metabolic dysregulation and chronic 
inflammation in T2D
A number of theories have been proposed to 
explain the pathophysiology of the metabolic 
dysregulation, insulin resistance and develop-
ment of endothelial dysfunction in adults with 
T2D and obesity.20 A chronic inflammatory state 
is induced by mitochondrial dysfunction and 
driven by chronic excess of nutrients, in particu-
lar the free fatty acids.21–23 Mitochondrial nutri-
ent overload results in metabolic shifts towards 
generation of reactive oxygen species (ROS), 
which activate endothelial cytokine production, 
leading to direct endothelial damage and altera-
tions of insulin signalling.24 This theory is based 
on the observation of higher and persistently ele-
vated baseline levels of proinflammatory 
cytokines in obese individuals with T2D and 
insulin resistance as compared with lean con-
trols.25–31 Furthermore, endothelial inflamma-
tion exerts pro-atherogenic effects, further 
compounding the cardiovascular risk in this 
cohort.22,32 In addition to promoting fatty streak 
deposition within the arterial wall, mitochondrial 
ROS results in reduced bioavailability of nitric 
oxide, which is essential to normal vascular 
homeostasis.26 The resultant impaired endothe-
lial vasomotor mechanics are the hallmark of 
endothelial dysfunction and a key mechanism 
behind microvascular dysfunction, which is 

responsible for a range of the pathological seque-
lae of T2D, including left ventricular (LV) dias-
tolic dysfunction.32–36 ROS toxicity leads to 
diastolic dysfunction by two mechanisms: first, 
ROS-mediated cardiomyocyte damage results in 
inflammation, apoptosis and fibrosis, directly 
contributing to LV diastolic dysfunction through 
remodeling,22 and second, ROS interact with 
endoplasmic reticulum, altering its structure and 
function primarily by altering the activity of the 
sarcoplasmic reticulum calcium pump, which is 
responsible for calcium sequestration during car-
diomyocyte relaxation, thus leading to diastolic 
dysfunction.37 However, a recent systematic 
review of 11 studies did not show an association 
between exercise and reduced levels of inflam-
matory markers in adults with T2D.38

The volume and type of adipose tissue seems to 
have a significant effect on the propagation of the 
proinflammatory response. Brown adipose tissue 
and white adipose tissue play specific roles in energy 
metabolism and insulin homeostasis.39 Brown adi-
pose tissue has an important role in regulating 
energy and glucose homeostasis, and has been asso-
ciated with peripheral insulin resistance and glucose 
levels.40 Visceral white adipose tissue (around the 
trunk, upper body or abdomen) appears to be the 
major source of inflammatory markers in T2D, 
responsible for the production of inflammatory 
cytokines, thus contributing to the systemic inflam-
mation and insulin resistance.40 Although insulin 
resistance has been associated with reduced VO2peak, 
this association has been described mainly from uni-
variate analyses of small sample subjects with a risk 
of significantly overfitting the regression models.41 
Although some older studies have shown associa-
tion between glycaemic control (expressed as 
HbA1c) and exercise capacity,42 newer studies have 
not confirmed this association.22 Strict glycaemic 
control alone has not been shown to improve car-
diovascular outcomes in patients with T2D.42

Changes within the systemic micro- and macro-
vasculature play an important role in maintaining 
exercise capacity. In a study of 134 asymptomatic 
adults with T2D, reduced capillary blood flow to 
skeletal muscle was found and was positively cor-
related with VO2peak independent of mean arterial 
pressure and cardiac output.15 This association 
was driven by capillary blood velocity reserve 
rather than capillary blood volume reserve, sug-
gesting impaired endothelial vasomotive response 
to exercise.13 Furthermore, the association of 
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capillary blood flow with VO2peak was independent 
of mean arterial pressure, cardiac output reserve 
and other cardiac covariates, suggesting that pre-
capillary factors, particularly endothelium-medi-
ated vasodilation, may be responsible.13 In another 
study, which compared 20 uncomplicated T2Ds 
with 20 T2Ds with microvascular complications, 
the latter group had abnormal skeletal muscle cap-
illary responses to periodic contractile exercise,43 
thus reflecting an underlying abnormality in 
microvascular recruitment.20 These findings again 
implicate endothelium-mediated vasodilation, 
which is responsible for exercise hyperaemia and 
known to be impaired in diabetes.17 Insulin 
increases limb blood flow in a dose dependent 
fashion; however, this mechanism is ineffective in 
the presence of insulin resistance and is com-
pounded by reduced local availability of nitric 
oxide, as present in microvascular dysfunction.11

Clinical predictors
A number of studies evaluating determinants of 
exercise capacity have linked clinical characteris-
tics to exercise capacity (Table 1). The strongest 
independent predictors of VO2peak have been age 
and sex. In the largest to date study of over 5000 
participants with T2D, peak exercise capacity was 
higher for males compared with females and there 
was a consistent 5–10% reduction in metabolic 
equivalents of tasks (METs) per decade of life.44,45 
Body habitus [both increased waist circumfer-
ence and body mass index (BMI) ⩾30 kg/m2] 
were also independently associated with reduced 
exercise tolerance (all p < 0.001).46 In addition, 
duration and severity of T2D (expressed as insu-
lin resistance) have been linked to reduced VO2peak 
in adults with T2D.45 However, it is important to 
note that these associations have been produced 
from univariate analysis of studies often involving 
small sample subjects, reported in subjects with 
T2D regardless of disease severity, mode of 
assessment of exercise capacity or presence of LV 
dysfunction, which confounds the findings.

Skeletal muscles and anaerobic metabolism
In T2D, microangiopathy contributes to skeletal 
muscle dysfunction though impaired perfusion and 
oxygen extraction during exercise. In addition to 
impaired exercise hyperaemia, skeletal muscle oxy-
gen extraction is impaired in adults with T2D com-
pared with non-diabetic individuals of similar 
anthropometric features and equally sedentary life-
style.16 During graded exercise at 60%, 70% and 
100% VO2max, those with T2D achieved significantly 

lower workloads than controls.50 This corresponded 
to a minimal rise in stroke volume, and no change in 
cardiac output between 60% and 100% VO2max 
despite adequate rise in heart rate. Furthermore, 
VO2max was correlated with a-v̄ O2 difference (19% 
lower in T2D, p < 0.001) but not with cardiac out-
put, suggesting that impaired maximal total body O2 
extraction contributed to lower VO2max in T2D 
patients.51 This may be in part explained by pres-
ence of diastolic dysfunction; however, the study did 
not include echocardiographic data. Diabetes-
mediated endothelial dysfunction results in reduced 
local availability of nitric oxide, which is the key 
mediator of exercise induced hyperaemia within the 
skeletal muscles.15 The lower a-v̄ O2 difference may 
suggest that T2Ds had impaired peripheral oxygen 
extraction and were more reliant on anaerobic 
metabolism. Impaired VO2max in T2D may therefore 
be related to poor peripheral oxygen extraction and 
reliance of anaerobic metabolism,15 which would be 
explained by presence of endothelial dysfunction.

Autonomic dysfunction
Systemically, diabetes-mediated cardiac autonomic 
dysregulation results in impaired chronotropic 
response to exercise and in turn lowers myocardial 
ability to modulate cardiac output through heart 
rate.52 This confers reduced exercise tolerance 
through the inability of cardiac output to meet the 
metabolic demands of tissues. Several studies have 
reported impaired heart rate response and heart 
rate recovery in T2D, with positive associations 
with VO2peak on univariate analysis14,44,45,51 but not 
in any multivariable analysis. Nevertheless, auto-
nomic dysregulation is one of the many factors con-
tributing to impaired exercise tolerance in T2D.

Frailty
Increasingly, T2D is being recognized as a driver 
of accelerated metabolic ageing and physical 
deconditioning, which manifest as a state of phys-
ical frailty.53 People with T2D are up to five times 
more likely to suffer from frailty than individuals 
without diabetes.54 The diabetes-related frailty 
phenotype is now regarded as a major contributor 
to low physical functioning in people with T2D.54 
It is, however, distinct from the traditional frailty 
phenotype that is prevalent in elderly, low body 
weight people. Rather, frailty in T2D occurs in 
younger as a well as older age groups, is related to 
obesity in the presence of sarcopenia, but still 
manifests as low physical fitness and reduced 
quality of life.54 To our knowledge, however, no 
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Figure 2.  Pathological alterations leading to diabetic cardiomyopathy in relation to stages of progression of heart failure.
ACC/AHA, American College of Cardiology/American Heart Association; HF, heart failure; LA, left atrium; LV, left ventricular; NYHA, New York Heart 
Association; T2D, type 2 diabetes mellitus.

studies have directly evaluated the contribution of 
frailty in T2D to objective measures of aerobic 
exercise capacity. Given the considerable impact 
that frailty will have on exercise capacity, identify-
ing and treating frailty in T2D is an area that war-
rants further study.

Cardiovascular contributors to impaired 
exercise capacity

The pathophysiological mechanisms leading to 
development of diabetic cardiomyopathy
The pathological myocardial alterations character-
istic of diabetic cardiomyopathy begin early in the 
course of T2D and are present in otherwise asymp-
tomatic individuals, suggesting a latent phase of 
cardiovascular dysfunction.3 Cardiac dysfunction 
in diabetes is thought to lie on a continuum rang-
ing from asymptomatic diastolic dysfunction 
though subclinical systolic dysfunction and then 
overt HF.55 Reduction in exercise tolerance is 
amongst the first marker of stage B HF (defined as 
structural or functional LV alterations in the 
absence of symptoms) in diabetic cardiomyopathy 

and a 10% reduction in an individual’s exercise 
tolerance in the presence of detectable cardiomyo-
pathic changes would automatically class them as 
stage-II HF by the New York Heart Association 
(NYHA).56 Figure 2 summarizes the stages of pro-
gression of diabetic cardiomyopathy, based on the 
presence of cardiomyopathic changes and symp-
tomatology, with reference to the American 
College of Cardiology/American Heart Association 
(ACC/AHA) and NYHA HF classification scores, 
and Table 2 summarizes cardiac predictors of 
reduced exercise capacity.

The pathogenesis of diabetic cardiomyopathy is 
complex and incompletely understood.3 Myocardial 
steatosis, altered myocardial energetics, and 
impaired calcium handling have all been implicated. 
In vivo studies have confirmed elevated myocardial 
triglyceride content in T2D57,58 and myocardial 
steatosis has been linked to both diastolic and sys-
tolic strain,59 linking steatosis with development of 
cardiac dysfunction. Myocardial energy metabolism 
(as assessed by the myocardial Creatinine phos-
phate/ATP ratio) is reduced in T2D and this is 
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exacerbated by exercise.60 Abnormalities of myocar-
dial calcium handling via impairments in the sarco-
plasmic reticulum Ca2+ ATPase (SERCA) have 
been implicated in HF, but not in T2D. SERCA2a 
activity declines in late stage HF61 and decreased 
levels of SERCA2a have been found in cardiac tis-
sues isolated from humans and animals with HF.62 
Importantly, low SERCA2 levels have been corre-
lated to poor clinical outcomes.62,63 Therapeutic 
approaches aiming to boost the myocardial 
SERCA2a levels have produced disappointing 
results.61,64 No studies, however, have directly eval-
uated links between myocardial steatosis, calcium 
handling, or energetics and impaired aerobic exer-
cise capacity.

The predominant HF phenotype in people 
with T2D is HFpEF, which accounts for up to 
83% of newly diagnosed cases of HF.65 In  
two contemporary large-scale HF trials of 
angiotensin-neprilysin inhibitor sacubitril-vals-
artan – PARAGON-HF52 and PARADIGM-HF5 
– prevalence of diabetes was 44% and 35%, 
respectively, and in our own HFpEF cohort 54% 
of 140 patients had T2D.66 People with T2D 
appear to be particularly prone to development of 
diastolic LV impairment, although systolic LV 
impairment often co-exists. A significant propor-
tion of patients with diastolic impairment are 
asymptomatic, which poses a clinical challenge as 
diastolic dysfunction even in isolation is associ-
ated with poor outcomes.3,67 Over the past three 
decades, the rapid evolution of advanced non-
invasive cardiac imaging techniques has enabled 
detailed evaluation of cardiovascular structure 
and function in vivo. Application of these tech-
niques has provided key insights to the relation-
ship between cardiovascular function and exercise 
capacity in T2D, shedding light on early pertur-
bations that may lead to HF (Table 2).

LV diastolic dysfunction
LV diastolic dysfunction is widely regarded as the 
earliest functional change occurring in diabetic car-
diomyopathy.3 The reported prevalence of LV dias-
tolic dysfunction in asymptomatic subjects ranges 
between 15% and 78%3,66,68 and differs according 
to imaging technique used. Subclinical diastolic 
dysfunction is frequently observed in asymptomatic, 
sedentary T2D even in the absence of microvascu-
lar complications, and is associated with impaired 
exercise tolerance (time and METs achieved).10,50 
Several inverse correlations between indices of 

impaired LV relaxation and VO2peak in asympto-
matic individuals have been identified, including 
smaller cardiac size (LV end-diastolic volume, 
r = 0.67)45 and attenuated increase in stroke volume 
during exercise,14 suggesting that impaired LV com-
pliance may herald development of diastolic dys-
function. Invasive measurements of pulmonary 
capillary wedge pressure offer further insight on the 
impaired LV diastology in diabetes.50 The VO2peak 
and peak cardiac output were lower in T2D than in 
controls, and the pulmonary capillary wedge pres-
sure rose significantly more during exercise in T2D 
than in controls (148% versus 109% increase at 
peak exercise, p < 0.01).50 However, the numbers 
included in the study were small and limited to 
females only, which precludes generalization to the 
whole population and conclusions on the causative 
associations of reduced exercise tolerance.

The pathological myocardial and systemic 
changes precede development of overt diabetic 
cardiomyopathy, and can exist even in the absence 
of symptoms. The clinical importance of these 
findings is recognized by the ACC/AHA, who 
classify this as stage B HF (SBHF).

LV systolic dysfunction
Despite the association of T2D with HF, few 
studies have shown that diabetes causes a reduc-
tion in LV ejection fraction (EF), which remains 
the most utilized form of assessing LV perfor-
mance. Furthermore, the evidence to suggest a 
relationship between VO2peak and systolic LV EF 
is lacking.69,70 Subclinical LV dysfunction, as 
measured by impaired myocardial strain and 
strain rates, is increasingly reported in T2D, and 
affects all layers of myocardium, from apex to 
base.60,71 Individuals with T2D have reduced 
global longitudinal strain (GLS) rate compared 
with controls, and it is detectable with a range of 
imaging techniques, including speckle tracking 
echocardiography69 and cardiac magnetic reso-
nance (CMR) feature tracking.72 These impair-
ments with GLS worsen over time,73 inversely 
correlate with indices of glycaemic control48 and 
have been found to be an independent predictor 
of cardiovascular events in longitudinal studies.73 
GLS may thus offer an incremental prognostic 
value in this cohort, especially as GLS has been 
shown to be superior to LV EF at identifying 
patients with reduced exercise capacity.74 Several 
small observational studies have shown that GLS 
and global circumferential strain (GCS) may be 
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independently associated with VO2peak. In a 100 
patient study of adults with T2D, a GLS value of 
−17.3% had excellent sensitivity of 0.89 [95% 
confidence interval (CI) 0.79–0.95] and specific-
ity of 0.91 (95% CI 0.71–0.99) to identify patients 
with a VO2peak of <20 mL/kg per min independ-
ent of age and sex.70

In another study of 80 asymptomatic T2D, GLS 
(−21.6 ± 2.8 versus −18.4 ± 2.3%, p < 0.001) and 
GCS (−22.0 ± 2.9 versus −19.5 ± 2.6%, 
p < 0.001) were significantly reduced in all myo-
cardial layers in T2D patients73 and were associ-
ated with lower VO2peak independently of other 
clinical and echocardiographic parameters of LV 
structure, and systolic and diastolic function.73

Coronary microvascular dysfunction
Several studies have shown reduced myocardial 
perfusion reserve (MPR) in T2D, which is now 
being recognized as part of the pathophysiology of 
HF in T2D as well as HFpEF.35,60,71,75,76 Our 
group has assessed the association between aero-
bic capacity and cardiac structure and function in 
asymptomatic T2D, using a combination of mul-
tiparametric CMR and echocardiography (see 
Table 2).47 Even after exclusion of subjects with 
reversible perfusion defects, the overall MPR in 
the diabetic cohort was lower than in matched 
controls (2.60 ± 1.24 versus 3.54 ± 1.15, respec-
tively, p < 0.001). On both univariate and multi-
variable analysis in subjects with T2D, the ratio of 
early mitral inflow velocity and mitral annular 
early diastolic velocity (E/e′) (β = −0.388, 
p < 0.001) and MPR (β = 0.0822, p = 0.006) were 
significantly associated with VO2peak independent 
of age, sex, ethnicity, smoking status and systolic 
blood pressure.47 This may be explained by the 
fact that myocardial perfusion must increase 
incrementally during exercise to meet the meta-
bolic demands of tissues.77 A similar relationship 
has been documented in patients with severe 
aortic stenosis.77

Left atrial dysfunction
Left atrial (LA) enlargement is increasingly rec-
ognized for its association with adverse cardiac 
outcomes, including atrial fibrillation, stroke and 
heart failure.78

In addition, the LA plays an important role in 
cardiovascular response to exercise, specifically if 

LV diastology is also impaired. In diastolic LV 
dysfunction, prolonged relaxation time leads to a 
greater dependence on the atrial contribution at 
end-diastole for optimal filling.79 Diastolic filling 
time is inversely proportional to heart rate and 
this association is more pronounced during exer-
cise. Reduced LV relaxation time leads to a 
greater dependence on atrial contribution at end-
diastole for optimal filling.74 Impaired atrial sys-
tolic function will compromise cardiac output 
with effort, which highlights the role of the LA for 
maintaining exercise capacity.80

Atrial geometry, function and electrophysiological 
alterations are well-defined in patients with 
HFpEF and in atrial fibrillation, and have been 
closely linked with reduced exercise capacity and 
HF-related outcomes.81–92 However, atrial myo-
pathy in T2D appears distinct. In adults with 
T2D, abnormalities of LA geometry have been 
described but the results are contradictory. While 
some studies reported smaller LA volumes in sub-
jects with T2D89 others have shown the oppo-
site.78 Smaller atrial volumes are observed in T2D 
in the presence of HFpEF, a disease typically 
associated with increased LA volumes.86,91,92 We 
have recently compared patients with HFpEF 
with and without T2D.66 Despite higher BMI and 
higher filling pressures (E/e′) than the patients 
without T2D, the diabetic HFpEFs had smaller 
LA volumes, suggesting that atrial myopathy in 
T2D is different from LA dilatation observed in 
HFpEF.90 T2D has been proposed as an inde-
pendent risk factor for LA impairment, regardless 
of co-existent hypertension or presence of LV 
diastolic dysfunction.89,90 Whilst the link between 
LA dysfunction and reduced exercise capacity is 
well established in HFpEF, there is paucity of data 
in asymptomatic people with T2D. Abnormalities 
of LA function are utilized as prognostic markers 
in heterogenous cohorts of HFpEF patients which 
included T2D: increased indexed LA volume 
(>32 mL/m2)87,90 and reduced LA peak strain,93–96 
reservoir, conduit and pump function66 have all 
been found to independently correlate with an 
increased risk of major adverse cardiovascular 
events50,68,86 and hospitalization for HF.85

Strategies to improve exercise capacity

Weight loss and exercise
Weight loss confers a number of clinically impor-
tant benefits in patients with T2D.
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Weight loss achieved through bariatric surgery97,98 
or low-calorie meal replacement diet58 results in 
remission to a non-diabetic state, with a strong 
correlation between the extent of weight loss and 
reversal of T2D. However, the same effects are 
not seen in more advanced T2D (defined by insu-
lin therapy) or with longer disease duration.58,97,98 
Sustained weight loss also confers direct benefi-
cial cardiovascular effects in obese adults without 
T2D, with reductions in LV mass, volumes, arte-
rial stiffness and diastolic function as measured 
by CMR.3 Improved diastolic function, energet-
ics and reduced myocardial triglyceride content, 
which may confer benefit to exercise tolerance, 
have been reported in obese individuals following 
bariatric surgery-mediated weight loss.99 
Importantly, bariatric surgery can achieve sus-
tained weight loss (in up to one-fifth of patients), 
sustained remission of diabetes (in up to one-
third of patients) and lower rates of major adverse 
cardiovascular events (including HF) in people 
with T2D and obesity.

In addition to benefits on cardiac function, weight 
loss simply improves physical function in adults 
with T2D by reducing the biomechanical burden 
of moving around.47 However, the cardiovascular 
benefits of weight loss alone do not directly trans-
late to significant improvements in objective 
measures of aerobic exercise capacity. In fact, a 
number of studies have reported reduced strength 
and VO2max in individuals exposed to caloric 
restriction alone.47 In a study of 52 obese indi-
viduals, daily calorific reduction of 20% mediated 
weight loss of approximately 7% of body mass 
over a 12 week period and corresponded to an 
approximately 6% reduction in absolute VO2max, 
an effect that was attenuated by exercise.99–101 
Conversely, exercise alone resulted in 15% 
improvement in the VO2max, even in the absence 
of weight loss. The combination of modest exer-
cise (4.4 ± 0.5 h/week) and 20% calorific reduc-
tion attenuated the reduction in lean mass and 
aerobic capacity that occurred with calorific 
reduction alone. Weight loss achieved through 
exercise confers the greatest benefits on preserva-
tion of lean mass and increase in VO2max, but the 
required amount of exercise to cause weight loss 
is substantial (7.4 ± 0.5 h/week) and may be chal-
lenging to achieve in deconditioned, overweight 
individuals in the real world.100

Our group has also assessed the impact of lifestyle 
interventions on cardiac function and exercise 

capacity in younger obese adults with T2D.102 
We undertook a 12-week randomized trial com-
paring a supervised exercise programme or low 
energy meal replacement diet. A significant 
improvement in the primary outcome of diastolic 
function was observed in the exercise arm, despite 
only small reductions in weight, BMI and exer-
cise capacity. By contrast, in the diet arm there 
was dramatic overall weight loss (median 13.6 kg 
and fall in BMI of 4.8 kg/m2) accompanied by a 
mean HbA1c decrease of 0.75%, with 83% of 
participants achieving T2D remission. However, 
only a small increase in VO2peak when corrected 
for body weight (1.9 mL/kg per min) was 
observed, but there was no change in absolute 
VO2peak.103 There were no significant improve-
ments in myocardial perfusion or remodelling 
with exercise.103 Although exercise has been 
found to improve endothelial function, it is pos-
sible that the small sample size and short duration 
(12 weeks) of follow-up precluded these effects 
from fully manifesting in this study. The lack of 
improvement in VO2peak may be explained by loss 
of lean tissue mass.103 Even in obese individuals, 
weight loss resulting from calorific restriction 
results in loss of lean tissue as fat free mass in a 
1:4 ratio with adipose tissue. The predominant 
site of reduction in lean body mass is the skeletal 
muscle, which when coupled with possible reduc-
tions in the functional capacity of the muscula-
ture with weight loss, limit the magnitude of 
benefits realized.103

Pharmacological treatments
In addition to improving diabetic control, several 
antidiabetic treatments have been shown to have 
cardioprotective effects, but data on their efficacy 
in improving anaerobic capacity are sparse. Two 
large randomized controlled trials – LEADER 
(liraglutide)104 and PIONEER-6 (semaglu-
tide)105,106 – have shown a reduction on athero-
sclerotic cardiovascular events with glucagon-like 
receptor 1 agonist treatment, and in the case of 
semaglutide a nearly 14% weight loss.103 However, 
neither study had examined improvements in 
exercise capacity.

The beneficial cardiovascular effects of sodium-
dependent glucose linked transporter-2 inhibitor 
(SGLT2i) therapy are well established. In the 
largest to date SGLT2i trial, DECLARE-TIMI 
58, dapagliflozin reduced the risk of death or hos-
pitalization for HF by 17% even in lower-risk 
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patients with T2D.105 SGLT2is exert cardiopro-
tective effects which may be beneficial to improv-
ing exercise tolerance, including favourable 
changes in LV mass and wall stress, lowering 
arterial stiffness and improvements in myocardial 
energetics.106 To our knowledge, only one study 
to date has examined the effects of SGLT2i on 
physical function.104 In a randomized, double 
blinded study of dapagliflozin and exercise versus 
dapagliflozin and placebo, the dapagliflozin treat-
ment resulted in 15% increase in exercise capac-
ity from baseline compared with exercise and 
placebo (VO2peak 2.58 ± 0.63 mL/kg per min ver-
sus 2.98 ± 0.63 mL/kg per min p < 0.001).104 The 
precise mechanisms behind this effect of dapagli-
flozin are unclear. The proposed mechanisms 
include improved vascular function,107 decreased 
arterial stiffness,107 preferential shift to fatty acid 
oxidation and ketotic metabolism which is favour-
able to cardiac energetics,108 and weight loss.107 
These must be interpreted with caution as none 
of the studies used HF as an end point, nor 
assessed the role of SGLT2i in improving exer-
cise capacity on a wider scale. Nevertheless, the 
finding that SGLT2i may improve exercise capac-
ity is of interest, and deserves further examination 
in larger studies.

Conclusion
The scale of T2D prevalence has now reached 
pandemic proportions. Individuals with T2D 
are at high risk of cardiovascular mortality and 
HF. It is widely accepted that people with T2D 
have a baseline reduction in exercise capacity, 
which confers increased clinical risk of morbidity 
and mortality. Exercise intolerance can be pre-
sent in otherwise asymptomatic individuals, and 
may be the first sign of HF. A multitude of fac-
tors contribute to reduced exercise capacity and 
HF risk in T2D, including metabolic dysregula-
tion, chronic inflammation, endothelial dysfunc-
tion, frailty, cardiac systolic and diastolic 
dysfunction, impaired myocardial energetics, 
steatosis, calcium homeostasis, coronary micro-
vascular dysfunction and LA myopathy. Whilst 
there are a number of clinical scoring systems 
designed to stratify the risk of development of 
cardiovascular complications in T2D, none of 
these have been validated for predicting the 
reduced exercise tolerance in T2D, and thus 
helping to identify those at risk of HF. Strategies 
to improve cardiovascular fitness based on com-
bination of diet and exercise appear to be the 

most efficacious way towards improving out-
comes in those with T2D, although newer glu-
cose-lowering therapies may play a key role in 
preventing HF development in the future.
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