
Research Article
Predicting Parkinson’s Disease Progression: Evaluation of
Ensemble Methods in Machine Learning

Mehrbakhsh Nilashi ,1,2 Rabab Ali Abumalloh ,3 Behrouz Minaei-Bidgoli ,2

Sarminah Samad ,4 Muhammed Yousoof Ismail ,5 Ashwaq Alhargan ,6

and Waleed Abdu Zogaan 7

1Centre for Global Sustainability Studies (CGSS), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
2School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
3Computer Department, Applied College, Imam Abdulrahman Bin Faisal University, Dammam 1982, Saudi Arabia
4Department of Business Administration, College of Business and Administration,
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
5Department of MIS, Dhofar University, Salalah, Oman
6Computer Science Department, College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia
7Department of Computer Science, Faculty of Computer Science and Information Technology, Jazan University,
Jazan 45142, Saudi Arabia

Correspondence should be addressed to Mehrbakhsh Nilashi; nilashidotnet@hotmail.com

Received 11 December 2021; Revised 13 January 2022; Accepted 15 January 2022; Published 3 February 2022

Academic Editor: M. Praveen Kumar Reddy

Copyright © 2022 Mehrbakhsh Nilashi et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Parkinson’s disease (PD) is a complex neurodegenerative disease. Accurate diagnosis of this disease in the early stages is crucial for
its initial treatment. )is paper aims to present a comparative study on the methods developed by machine learning techniques in
PD diagnosis. We rely on clustering and prediction learning approaches to perform the comparative study. Specifically, we use
different clustering techniques for PD data clustering and support vector regression ensembles to predict Motor-UPDRS and
Total-UPDRS. )e results are then compared with the other prediction learning approaches, multiple linear regression, neu-
rofuzzy, and support vector regression techniques.)e comparative study is performed on a real-world PD dataset.)e prediction
results of data analysis on a PD real-world dataset revealed that expectation-maximization with the aid of SVR ensembles can
provide better prediction accuracy in relation to decision trees, deep belief network, neurofuzzy, and support vector regression
combined with other clustering techniques in the prediction of Motor-UPDRS and Total-UPDRS.

1. Introduction

Parkinson’s disease (PD) is the second most common and
complex neurodegenerative disorder worldwide [1–4]. Both
polygenic and environmental factors can cause PD [5]. It is
found that, in about 1%–2% of the PD cases (mainly fa-
milial), the disease development occurs through a single
gene [5].)emain symptoms of PD are bradykinesia (motor
features), muscle stiffness, and tremor, along with other
symptoms such as sleep disorders (nonmotor features),
cardiac arrhythmia, and constipation. Alteration of voice

and speech is one of the features of PD. Unified Parkinson’s
Disease Rating Scale or UPDRS, which shows symptoms’
presence and severity, is mainly used in tracking PD
symptom progression [6–8]. UPDRS is considered as the
well-validated test and the most widely used clinical rating
scale for patients with PD [6,9–11]. UPDRS includes 4
sections, in which UPDRS I, UPDRS II, UPDRS III, and
UPDRS IV are used to evaluate psychiatric symptoms in PD,
activities of daily living, reliable motor symptoms measured
in PD recognized by physical exam, and complications of
treatment [10]. In many studies, this scale is considered
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based on Total-UPDRS with the range of 0–176 (176 total
disability and 0 representing healthy) and Motor-UPDRS
which indicates the UPDRS’ motor section with the range of
0–108 (108 indicating severe motor impairment and 0 in-
dicating healthy state) [6].

Machine learning (ML) approaches have demonstrated
the capability of handling large volumes of medical datasets
and presented perceptive directions [12]. )e use of ML-
based tools could enhance the safety of individuals [13–15],
enhance the quality of medical care [16–18], minimize the
costs of medical care [19–21], and support physicians’
efforts by manipulating big data of patients’ records. ML
approaches have been broadly utilized for disorders’
classification and prediction [22–30]. Gadekallu et al. [31]
investigated the use of machine learning techniques for the
prediction of diabetic retinopathy. )e authors used the
PCA-based Deep Neural Network (DNN) model using the
Grey Wolf Optimization (GWO) algorithm for the clas-
sification of the extracted features of the diabetic reti-
nopathy dataset. )e method was evaluated through the
accuracy, recall, sensitivity, and specificity evaluation
metrics and compared with the support vector machine
(SVM), naı̈ve Bayes classifier, decision tree (DT), and
XGBoost. Overall, their method achieved higher accuracy
compared with the SVM, DT, and XGBoost techniques.
Bhattacharya et al. [32] developed a method for the clas-
sification of imbalanced multimodal stroke dataset. )e
authors implemented the Antlion optimization algorithm
on the DNN model to select optimal hyperparameters in
minimal time consumption. A positive aspect of their
method was that it consumed only 38.13% of the training
time on the stroke dataset. An artificial neural network is
among the most significant approaches for disease classi-
fication and prediction [33–38]. Referring to Berner [39],
clinical decision support systems (CDSSs) are special tools
that are developed to aid medical specialists in their de-
cision-making, considering particular disorders or dis-
eases. ML approaches can be utilized for designing effective
CDSS [36] to aid medical specialists in reaching accurate
and timely predictions. CDSSs designed using machine
learning approaches have played a significant part in
evaluating the existence or the severity of the disease.

In machine learning methods, unsupervised approaches
are used to lower the dimensionality of data, which allows
the detection of the disease. Besides, these approaches allow
manipulating the data, removing the noise from data, cal-
culating the similarity, and segmenting the data [40]. On the
other hand, supervised learning approaches are used to
enable the final classification, prediction, and diagnosis of
the disease [41]. While ML has proven its benefits, the ef-
fective deployment of ML needs a great effort from human
specialists, considering that no particular approach can
present acceptable results in all possible scenarios [12].
Although clinical data are available to researchers to explore,
the lack of experience to handle big sources of data might
restrict the optimum utilization of these sources. Besides,
even though several approaches have been used in disease
prediction using various real-world medical datasets, the
choice of the deployed approach should consider enhancing

the accuracy of the prediction and minimizing the time of
computation [42].

)e goal of this paper is to present a comparison of
machine learning approaches for remote tracking of Par-
kinson’s disease progression.)e comparative study is based
on clustering and prediction learning approaches. To further
improve the accuracy of UPDRS prediction, this study uses
ensemble learning in the final stage of the proposed method.
Ensemble learning approaches have proven to be effective in
prediction tasks [25]. Few studies have incorporated en-
semble learning approaches for the development of the
diseases diagnosis systems [43], [44]; [45]. Further investi-
gations are needed for the effectiveness of these approaches
in UPDRS prediction. Accordingly, we use ensembles of
support vector regression and different clustering techniques
for PD data clustering. )e results are then compared with
other prediction learning approaches, deep belief network
(DBN), support vector regression, multiple linear regression,
and neurofuzzy techniques.

)e rest of this paper is organized as follows. We in-
troduce a summary of related works on Parkinson’s disease
in Section 2. In this section, the results of previous works are
discussed. In Section 3, we introduce a new hybrid method
for PD diagnosis. In Section 4, we present the method
evaluation through a PD dataset. Finally, we present the
conclusion and recommendations for future study in Section
5. To simplify, a list of abbreviations we used in this research
is presented in Table 1.

2. Related Work

Previous literature has presented several approaches that
allow PD detection, classification, and severity prediction. In
Table 2, we present these studies along with the adopted
approaches in each study. In the following, we will introduce
a summarization of the up-to-date researches in this field.

Prashanth et al. [68] concentrated on utilizing nonmotor
signals in the early diagnosis of PD by deploying NB, SVM,
Boosted Trees, and RF. )e findings indicated that SVM
presented the highest accuracy value of 96.40%. Abiyev and
Abizade [69] presented a newmethodology for PD diagnosis
using FNS and NN. )e outcomes of the study presented
efficient performance of the FNS compared to other ap-
proaches. Singh et al. [70] presented a new approach for PD
detection using SVM and presented an overall accuracy of
100%. Çimen and Bolat [60] focused on the vocal signals for
PD diagnosis using ANN, MLP, and GRNN. )e outcomes
indicated that the best performance was achieved using
GRNN. Shetty and Rao [71] focused on gait signals in PD
diagnosis and other neurological disorders using SVM. )e
presented approach achieved an accuracy of 83.33%. Nilashi,
Ibrahim, and Ahani [61] presented a hybrid methodology by
using EM, PCA, ANFIS, and SVR techniques. )e findings
of the study indicated that the presented methodology can
detect the severity of the disease accurately. Ozkan [72]
concentrated on vocal indicators by using a hybrid meth-
odology based on PCA with K-NN. )e result of the study
indicated the robustness of the presented approach with an
accuracy of 99.1%. Avci and Dogantekin [62] presented a
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new methodology for PD detection based on GA, wavelet
kernel, and ELM.)e findings of the study indicated that the
hybrid approach presented better prediction accuracy than
other state-of-the-art related approaches.

)ree ML methods, namely SVM, NB, and RF, were
deployed by Rovini et al. [74] and presented an encouraging
outcome with a specificity value of 0.967.)e vocal signals of
PD were assessed by Pahuja and Nagabhushan [73] by using
ANN, K-NN, and SVM. )e outcomes of the evaluation
indicated that ANN presented the most accurate perfor-
mance with an overall accuracy of 95.89%. In a study by
Nilashi et al. [63], SOM, NIPALS, and ISVR approaches were
used in PD prediction and presented a robust performance
in forecasting UPDRS while minimizing the time of pre-
diction. Parisi et al. [64] presented a hybrid approach based
on SVM (MLP-LSVM). )e deployed method presented the
highest accuracy in comparison with other techniques for
PD diagnosis. Prince and De Vos [65] deployed several
approaches for PD diagnosis, focusing on severity detection.
)e deployed approaches entail LR, RF, DNN, and CNN.
Among the used approaches, CNN presented a better
prediction accuracy of 62.1%. Another study that concen-
trated on PD’s severity prediction was presented by Zou and
Huang [66]. In the deployed method, rTL, LASSO, and ebTL
approaches were used, among which ebTL presented the
best prediction accuracy.

Grover et al. [67] adopted the DNN for severity pre-
diction among PD patients. )e deployed method presented
encouraging results with an overall prediction accuracy of
81.66% based on the Motor-UPDRS score. Several super-
vised approaches were presented by Khoury et al. [59] for PD
diagnosis, focusing on gait signals, such as K-NN, NB, SVM,
RF, and CART.)ese approaches were combined with other
unsupervised approaches to meet the goal of the study.
Among the deployed methods, K-NN, RF, and SVM pre-
sented the highest accuracy result. Nilashi et al. [46] pre-
sented a new approach based on DL and clustering methods.
Particularly, they used DBN and SVR for UPDRS prediction.
SOM was used as a clustering method to enhance the
prediction accuracy. )e method was assessed based on a
real-world dataset and the proposed approach of clustering,
DBN, and SVR presented predictions’ accuracy that out-
performed other learning approaches. Ghaderyan and Fathi
[47] concentrated on analyzing gait signals for PD detection.
)e basic method is based on separating various parts of the
signal, choosing the most related parts that are utilized to
measure interlimb divergence in singular value space. )e
proposed method presented an average accuracy of 95.59%
and 97.22%. Nilashi et al. [75] presented a hybrid approach
that utilized the clustering method, SVD, and ANFIS. )ey
indicated that the presented methodology outperformed

Table 1: List of acronyms in this paper.

Acronyms Description
AI Artificial intelligence
ANFIS Adaptive neurofuzzy inference system
ANN Artificial neural network
CART Tree classification and regression
CDSSs Clinical decision support systems
CGP Cartesian genetic programming
CSPA Cluster-based similarity partitioning algorithm
CNN Convolutional neural network
DBN Deep belief network
DT Decision tree
DSS Decision support systems
DNN Deep neural network
ebTL Empirical Bayes transfer learning
ECG Electrocardiogram
ELM Extreme learning machines
EM Expectation-maximization
EMG Electromyogram
FDR Fisher discriminant ratio
FNS Fuzzy neural system
FOG Freezing of gait
GA Genetic algorithm
GRNN Generalized regression neural networks
HGPA Hypergraph partitioning algorithm
IMU Inertial measurement unit
ISVR Incremental support vector regression
K-NN K-nearest neighbor
LR Logistic regression
LSTM Long short-term memory
LSVM Lagrangian support vector machine
MAE Mean absolute error
ML Machine learning
MLP Multilayer perceptron
MSA Multiple system atrophy
MLP-
LSVM

Multilayer perceptron-Lagrangian support vector
machine

MLR Multiple linear regression
NB Naı̈ve Bayes
NN Neural network
NIPALS Nonlinear iterative partial least squares
OPF Optimum-path forest
PCA Principal component analysis
PCG Phonocardiogram
PD Parkinson’s disease
PSP Progressive supranuclear palsy
RBM Restricted Boltzmann machine
RF Random forest
RBF Radial basis functions
RNN Recurrent neural network
RSSD Sparse signal decomposition
RMSE Root mean squared error
RBF Radial basis functions
RNN Recurrent neural network
RSSD Sparse signal decomposition
RMSE Root mean squared error
rTL Regularized transfer learning
SOM Self-organizing map
SVD Singular value decomposition
SPECT Single-photon emission computerized tomography
SVR Support vector regression
SVM Support vector machine

Table 1: Continued.

Acronyms Description
T-F Time-frequency
UPDRS Unified Parkinson’s disease rating scale
WK Wavelet kernel
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other state-of-the-art approaches in terms of detection ac-
curacy and minimizing the time of computation.

Ashour, El-Attar, Dey, Abd El-Kader, and Abd El-Naby
(2020) utilized the LSTM, focusing on the FOG signals
collected from several sensors worn on parts of the body.
Besides, SVM and ANN were used in the classification
process. Although they achieved an overall accuracy of 83%,
one shortcoming related to the size of the data can impact
the generalizability of the outcomes. Paragliola and Coro-
nato [48] investigated the performance of hybrid NN, which
entails CNN for reducing the dimensionality and LSTM for
the diagnosis. )e study concentrated on walking patterns
by utilizing gait data and presented an accuracy of 95%. Still,
the applied methodology focused on binary classification
issues, in which the severity of the disease was not explored.

In a study by Mohammed, He, and Lin [53], a CNN
model for discriminating PD patients from healthy controls,
based on SPECT modalities, was proposed. )e model was
assessed based on 10-fold cross-validation and presented an
accuracy of 99.34%. In a study by Balaji et al. [49], a DL
approach based on LSTM was developed for severity clas-
sification of the PD and presented encouraging results with
an overall accuracy value of 98.6%. De Souza et al. [50]
presented a Fuzzy OPF for PD diagnosis. RBM was used to
extract the features and outperformed other baseline models.
Senturk [51] developed an ML method for PD diagnosis. In
this study, SVM was used for the classification task and
presented an overall accuracy of 93.84%. De Vos et al. [52]
used a novel method to discriminate between PSP and PD by
utilizing two approaches of LR and RF. RF presented higher
accuracy results compared to LR.

In a study by Goyal et al. [54], a hybrid method for
feature extraction that integrates RSSD and T-F algorithms
was presented. )e deep learning approach, particularly
CNN, was utilized in PD diagnosis based on speech im-
pairments. )e hybrid method presented accurate outcomes
in classifying PD patients (99.37%). Based on handwriting
assessment, a study by Xu and Pan [55] adopted an ensemble
learning model based on RF in the PD diagnosis. Dimen-
sionality reduction was performed using PCA. )e pre-
sented approach has an overall accuracy of 89.4%, which
outperformed LR and SVM based on the adopted evaluation
method. Another study, which concentrated on handwriting
indicators, was presented by Ribeiro et al. [56]. )e study
adopted a PD diagnosis approach based on RNN by utilizing
the bag of samplings to measure several compact repre-
sentations and presented acceptable performance compared
to other methods in the literature. Another study that
concentrated on handwriting was proposed by Parziale et al.
[57] based on CGP. )is approach presented an explicit
decision measure that was used in the detection of PD. )e
authors also compared various AI approaches for PD de-
tection and indicated that CGP outperformed these ap-
proaches in terms of accuracy. Tsuda et al. [58] adopted an
approach based on NNs to distinguish between PD and
MSA. )e adopted methodology presented an improved
recognition of the patterns compared to other approaches.

3. Methodology

In the prediction of diseases, ML techniques have proven to
be effective [77–79]; [25]; [26]; [61]; [27] [42]. )is study
uses both unsupervised and supervised learning techniques
to diagnose PD through UPDRS prediction. Several ap-
proaches that entail clustering, reducing dimensionality, and
learning of prediction approaches are used to create the PD
diagnoses method. Figure 1 depicts the proposed method
with its main stages. Data preprocessing, dimensionality
reduction using PCA, clustering using ensembles of EM, and
prediction using ensembles of SVR are all stages of the
method that are utilized to predict UPDRS through a set of
real-world PD data.

Step 1 (data preprocessing). As suggested by previous
studies, the data is preprocessed [80, 81] to have a more
accurate prediction of UPDRS. )e goal of data pre-
processing in this study is to handle the dataset’s null values.
In general, we included the preprocessing stage in the
proposed method because it is typically completed during
the first step of data analysis.)e data is then deployed in the
data analysis stages, such as clustering and prediction. )e
datasets are created with null values for method evaluation.
Before clustering and classification tasks, these values must
be imputed. In this study, SVD is used for missing value
prediction.

Step 2 (data clustering). We use an unsupervised learning
technique in this stage for clustering the PD data. )e
objective of this step was to increase patient record read-
ability through the grouping of patients into different
groups. We used ensembles of EM to have a better cluster
analysis of the data.

Step 3 (dimensionality reduction). To remove the noise of
data, the PCA method was used in this phase to lower the
dimensionality of the data [82]. Multicollinearity has a
considerable impact on the accuracy of predictors and is a
major issue in the field of disease diagnosis [46]. )e ac-
curacy of SVR predictors has been affected by the multi-
collinearity of the data. We, therefore, use PCA to solve the
multicollinearity problem as the most popular technique for
noise removal.

Step 4 (UPDRS prediction). )is stage was performed to
predict UPDRS according to the input features. In contrast
to the previous prediction methods for PD diagnosis, we
used ensembles of SVR to perform this task. SVR is trained
to build prediction models with training datasets. It is a
common practice to seek the advice of several doctors who
are experts in the field in various clinical settings. )e ul-
timate decision for a specific therapy is thus normally made
through consultation and a combination of opinions of a
committee of specialists. Ensemble learning systems serve a
similar function in the machine learning context [83]. In
general, ensemble learning systems can be utilized effectively
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in classification and regression problems and provide more
reliable predictions than any individual learning model [84].
In fact, several weak hypotheses are combined in ensemble
learning systems to form a stronger theory. Note that the
success and effectiveness of ensemble learning approaches
are heavily dependent on the diversity of the individual
predictors that construct the ensemble.)e total error can be
reduced by combining the output of different prediction
models through an algebraic expression (e.g., mean value of
the predictions), as the various errors of the prediction
models are averaged out.

3.1. SVR Ensembles. Cortes and Vapnik [85] developed SVM
as amachine learning technique for forecasting problemswith
the potential to be extensively used as a benchmark. Support
vector classification (SVC) and SVR are the two main
branches of SVM. SVR performs the prediction of a new
sample by training the data with target values. )is is done by
finding Φ(x) function to map data to a flat space. )e SVR
can effectively solve complex prediction problems through
linear and nonlinear regression.)e kernel functions are used
to transform the data into a high-dimensional feature space.
Radial basis functions (RBF) and polynomial functions are the
most widely utilized kernel functions in SVR.

Let us have a training dataset of length N:
T � (x1, y1), (x2, y2), . . . , (xN, yN), where y ∈ R and
xk ∈ R

n, k � 1, 2, . . . , N, to model a single output (y) in the
original SVR; a linear model formulation is presented as

􏽢y(x) � 〈w, x〉 + b, (1)

where 􏽢y indicates the predicted output, b is a bias term, w is a
weight vector, and 〈., .〉 indicates vector inner product. To
solve nonlinear problems, in SVR, it is possible to use
nonlinear kernel functions, Φ(x), and we have

􏽢y(x) � 〈w,Φ(x)〉 + b. (2)

One of the most widely employed nonlinear SVR kernels
is radial basis functions. In SVR, to have good generalization
performance, weight vector w is required to be as flat as
possible. )us, for every data point in the dataset, we need to
minimize the norm (.) of w as

minimize
1
2
‖w‖

2
,

subject to yi〈w, Φ xi( 􏼁〉 − b≤ ε〈w, Φ xi( 􏼁〉 + b − yi ≤ ε.
(3)

To guarantee feasible constraints, slack variables (ξi, ξ
∗
i )

are introduced as well as ε-insensitive loss function
L(ε, y, 􏽢y). )us, the following cost function needs to be
minimized by estimating the parameters w and b.

Missing Value?

UPDRS Prediction

Data Pre-Processing

PD Dataset

Data Noise Removal Using PCA

Clustering the Data Using EM and 
SOM Ensembles

UPDRS Prediction Models Using 
SVR Ensembles

Yes

No

Imputation Procedure

Results

Results

Results

SVD

PCA1 PCA2 PCAnPCAn-1

SVR1 SVR2 SVRnSVRn-1

Cluster1 Cluster2 ClusternClustern-1

Figure 1: )e proposed method for PD diagnosis.
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minimize
1
2

‖w‖
2
C 􏽘

N

il

ξi + ξ∗i( 􏼁yi −〈w, Φ xi( 􏼁〉 − b≤ ε + ξi,

subject to yi〈w, Φ xi( 􏼁〉 − b≤ ε≤ ε + ξz
∗
i ξi, ξ∗i ≥ 0,

(4)

where C is the regularization parameter. )e above opti-
mization problem can be solved in its dual through han-
dling the constraints by employing the Lagrange
multipliers η, η∗, β , and β∗. )us, Lagrangian (L) is pre-
sented as

L �
1
2
‖w‖

2
+ C 􏽘

N

i�1
ξi + ξ∗i( 􏼁 − 􏽘

N

i�1
βi ε + ξi − yi +〈w, Φ xi( 􏼁〉 + b( 􏼁

− 􏽘
N

il

β∗i ε + ξ∗i + yi −〈w, Φ xi( 􏼁〉 − b( 􏼁 − 􏽘
N

il

ηiξi − η∗i ξ
∗
i .

(5)

In order to find the minimum, the following final
problem of quadratic programming results in Kar-
ush–Kuhn–Tucker conditions as

minimize
1
2

􏽘

N

i−1
􏽘

N

i−1
Kij βi − β∗i( 􏼁 βj − β∗j􏼐 􏼑 + ε􏽘

N

i−1
βi + β∗i( 􏼁 − 􏽘

N

i−1
yi βi + β∗i( 􏼁,

subject to􏽘
N

i−1
βi + β∗i( 􏼁 � 00≤ βi, β∗i ≤C.

(6)

Here, Kij indicates the kernel function. Finally, in SVR,
the model form in the dual space can be written as

􏽢y(x) � 􏽘
N

i−1
βi − β∗i( 􏼁K x, xi( 􏼁 + b. (7)

3.2. PCA. Pearson [86] introduced PCA as a statistical
technique to simplify the complexity of high-dimensional
data. )is can be accomplished by the orthogonal projection
of the correlated variables into uncorrelated variables. )e
uncorrelated variables are then known as principal com-
ponents (PCs).

We tested Pearson Correlation Coefficient (PCC) for the
interdependencies in the data. If y is the output and xi is the
ith observation in the dataset, the PCC is defined as

R(i) �
cov xi, y( 􏼁

���������
var xi( 􏼁var

􏽱
(y)

�
􏽐

m
k�1 xk,i − xi􏼐 􏼑 yk − y( 􏼁

��������������������������

􏽐
m
k�1 xk,i − xi􏼐 􏼑

2
􏽐

m
k�1 yk − y( 􏼁

2
􏽱 .

(8)

Here, cov is the covariance and var indicates a variable
variance.

3.3. EM and SOM Ensembles

3.3.1. EM Clustering. EM is a probabilistic and iterative
algorithm that switches between the maximization (M) and
expectation (E) phases in a sequential fashion. In the
E-phase, EM calculates the expected value of the likelihood
function. In M-phase, however, EM obtains an estimation of
the parameters to maximize the likelihood function. )e
parameters obtained in the M-phase are then used in a
subsequent E-phase. )is process is repeated until conver-
gence occurs (i.e., it convergences to the final values of the
parameters). To perform E-phase for the probabilities cal-
culation of which input in the dataset belongs to which
mixture model or cluster, EM performs the following
formula:

p(m | n)
t

�
w

t
ch Xn, μt

m, σt
m􏼐 􏼑

􏽐
M
k�1 w

t
kh Xn, μt

k, σt
k􏼐 􏼑

, (9)

where h indicates the probability density function of input
Xn in the dataset for the cluster m with standard deviation
(SD) σt

m and mean μt
m at iteration t.

Here, normal univariate, bivariate, or multivariate
probability density function may be employed and should be
according to the dimensionality of data. In addition, under
the constraint 􏽐

M
k�1 wt

k � 1, the allocation of data to mixture
models is influenced by a weighting factor wt. Accordingly,
performing M-phase, for the maximization of the likelihood
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to the data, EM needs the following computations for each
cluster:

μt+1
m �

􏽐
N
n�1 p(m | n)

t
xn

􏽐
N
n�1 p(m | n)

t
,

σt+1
m �

��������������������

􏽐
N
n�1 p(m | n)txn − μt+1

m |2

􏽐
N
n�1 p(m | n)

t

􏽶
􏽴

,

w
t+1
k �

􏽐
N
n�1 p(m | n)

t

N
.

(10)

)e above procedure is repeated by executing E and M
phases until convergence occurs.

3.3.2. SOM Clustering. Kohonen’s SOM system is an un-
supervised machine learning method.)us learning method
is widely used in the visualization of complex data, image
processing, speech recognition, data mining, process con-
trol, and diagnostics. Based on the characteristics of features,
SOM’s algorithm tries to map m-dimensional input vectors
xj to two-dimensional maps. SOM aims to reduce the di-
mensions of the data, which aids in the understanding of
high-dimensional data. SOM by this way can present the
data in similar groups. Two layers make up a basic SOM.
Input space’ nodes are included in the first layer, and the
output space’ nodes are included in the second layer. SOM’s
idea is to adjust the nodes to represent the distribution of the
data. )e nodes represent clusters that reflect the distri-
bution of the data. )e SOM algorithm starts by assigning
random weights to the variables. SOM algorithm in three
main stages is shown in Figure 2.

3.3.3. Cluster Ensembles. A number of various clustering
approaches form cluster ensembles to partition the initial
dataset and concentrate on the enhancement of the clus-
tering outcomes resulting from a mixture of the results of
different clustering. )is is performed to overcome the in-
stability of the methods of clustering. )e fusion approach
begins with the clusters formed during the combination
phase and determines the optimal number of clusters in the
dataset based on certain predetermined criteria. Next, we
describe the cluster ensemble approaches, hypergraph

partitioning, and majority voting. )ey are also called
consensus functions.

3.3.4. Hypergraph Partitioning. )e cluster label vectors for
hypergraph partitioning are transformed into a hypergraph
image. In particular, there are vertices and hyperedges in a
hypergraph. )e clusters are represented in a graph as
hyperlinks, whose vertices match the clustered objects. A set
of objects that belong to the same group are described on
every hyperlink. )ere are three common functions for
transforming the cluster set into the representation of the
hypergraph. )ey are CSPA and HGPA. )e CSPA uses a
Metis algorithm to induce an association matrix graph and
cluster it [25]. A clustering in CSPA refers to a link between
objects in the same segment of data and can be employed for
measuring the similarity in pairs. )en, the similarity will be

(1) Computation of the mean feature vector, μ � (1/n) 􏽐
n
t�1 xt for n patterns xt (t � 1 to n).

(2) Computation of the covariance matrix C using C � (1/n) 􏽐
n
t�1 x xk − μ􏼈 􏼉 xt − μ􏼈 􏼉

T where T indicates matrix transposition.
(3) Computation of the δi (eigenvectors) of the covariance matrix and λ (eigenvalues) of q features using vi � λiδi (i � 1, 2, 3, . . . q).
(4) High-valued eigenvectors estimation.
(i) λi in descending order are arranged.
(ii) Define a threshold value σ.
(iii) )e number of high-valued eigenvalues (s) can be selected in order to meet the relationship (􏽐

s
i�1 λi)(􏽐

q

i�1 λi)
− 1 ≥ σ.

(iv) Choose vi that correspond to high-valued λi.

(5) )e PCs are extracted x, PC � HTx, where H presents the matrix of PCs.

ALGORITHM 1: PCA.

Competitive Process

Given a set of patterns X, select x = (x1, x2, … , xd)T at random 
from the dataset X. �rough distance measure and by 

considering the weights wi = (wi1, wi2, … , wid)T for the node i,
the closest nodes to the input vectors are determined.

Cooperative Process
A topological neighbourhood is defined, locating the BMU in 

the center of the neighbourhoood. To do so, a Gaussian 
function is used as h (t) = exp (d2

c,j/2σ2 (t))
where, d2

c,j is lateral distance, t current iteration and σ is the
radius with the neigbourhood function which is defined as:

σ (t) = σ0exp (−t/λ1)
where σ0 is the is the radius at time t0 and λ1 is time 

constant. 
For two dimensions, the lateral distance d is defined as:

dc = ||x − wc (t)|| = min{||x − wi (t)||}, 1 ≤ i ≤ k

Adaptive Process

�e BMU and all nodes within the neigbourhood are updated by:
wi (t+1) = wi (t) + α (t)h (t)[x (t) − wi (t)]

where wi (t) and x (t) indicate respectively the weight and input 
vector at time t. α (t) is defined as: 

σ (t) = σ0exp (−t/λ2)
where λ2 is time constant and σ0 is the learning rate at time 0.

Figure 2: SOM algorithm.
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deployed to recluster the items in order to generate an
integrated clustering. In the HGPA algorithm, the problem
of cluster ensembles is viewed as a partitioning issue of a
suitably identified hypergraph, which represents the clusters.
Minimal cut algorithms are mainly used to control the
partition size and to find good hypergraph partitions when
they are combined with the proper objective functions.

3.3.5. Majority Voting. In the majority voting mechanism,
the cluster that is the one with the most votes is selected.
Assume a dataset contains four Parkinson’s disease patients
(PDP1, PDP2, PDP3, and PDP4), and there are three
clustering algorithms (Algorithms 1–3). Assume that Al-
gorithms 1 and 2 have both assigned PDP1 to cluster A,
while Algorithm 3 has assigned it to cluster B. Cluster A
would then be chosen as the best cluster for PDP1 based on
the majority vote.

3.4. Imputing Missing Value. In this research, we use SVD
for missing values imputation. )e procedure for missing
value prediction by SVD is provided in Algorithm 2. Five
steps are used in the SVD algorithm to predict the missing
value in the PD dataset. In the first stage of the algorithm, the
data is converted to a dense matrix Bm,n. In the next stage, we
perform a normalization procedure on the Bm,n. In the third
stage of the algorithm, we apply the SVD technique to the
matrix produced in the second step.)en, we use matrix Z to
approximate Zd. In the last step, the missing value is
predicted.

4. Methods Evaluations and Results

In the first step of our data analysis, EM and SOM algorithms
were performed on the PD dataset. We implemented EM

and SOM to generate a different number of clusters to have
their ensembles for final clustering results. Specifically, we
run EM for k� 8, 10, 12, and 13 and SOM for different SOM
maps, SOM2×3, SOM2×4, SOM3×3, and SOM3×4. )e
results of EM clustering for 13 (k� 13) clusters and SOM
clustering for 9 clusters (SOM3×3) are provided in Figure 3.
)ese clusters are then used for ensemble learning to be used
in UPDRS prediction by the SVR technique.

SVR was trained through the RBF kernel. )e SVR
parameters are penalty factor C and loss function ε, and the
parameter for RBF kernel is c. )ese parameters can have a
significant impact on the prediction quality of SVR. )e
radial basis function is defined as

Kij � K xi, yj􏼐 􏼑

� exp −
xi − yj

�����

�����
2

c
2

⎛⎝ ⎞⎠,

(11)

where a single parameter c in (11) indicates the spread of the
function.

We used 5-fold cross-validation with a grid search
mechanism to select the best parameters of each SVR. In the
grid search, c was explored on c ∈ [0.01 to 0.1] at an interval
of 0.005, loss function ε was explored on ε ∈ [0.0001, 0.002]
at an interval of 0.0001, and the penalty factor C was ex-
plored on C ∈ [3, 4.1] at an interval of 0.005. We developed
the ensembles on bootstrap samples drawn from the selected
data points. )e training was repeated 8 times to get 8 SVRs.
To measure the performance of the presented methodology,
we use several metrics such as adjusted coefficient of de-
termination (R2), prediction accuracy (PA), Index of
Agreement (IA), MAE, and RMSE. )eir formulas for n

observations are shown as follows:

RMSE �

�������������������������

􏽐
N
i�1 Predictedi − Observedi( 􏼁

2

n

􏽳

,

MAE �
􏽐

N
i�1 Predictedi − Observedi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

n
,

Index of Agreement (IA) � 1 −
􏽐

N
i�1 Predictedi − Observedi( 􏼁

2

􏽐
N
i�1 Predictedi − Observedi􏼐

􏼌􏼌􏼌􏼌
2
| + | Observedi − Observedi

􏼌􏼌􏼌􏼌 􏼑
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

prediction accuracy �
􏽐

N
i�1 Predictedi − Observedi􏼐 􏼑

2

􏽐
N
i�1 Observedi − Observedi􏼐 􏼑

2,

R2
adjusted � 1 − 1 −

􏽐
N
i�1 Observedi − Observed􏼐 􏼑 Predictedi − Predicted􏼐 􏼑

������������������������

􏽐
N
i�1 Observedi − Observed( 􏼁

􏽱

×
��������������������
Predictedi − Predicted􏼐 􏼑

􏽱
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
n − 1

n − m − 1
􏼒 􏼓

� 1 − 1 − R
2

􏼐 􏼑
n − 1

n − m − 1
􏼒 􏼓,

(12)
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Step 1: )e data in each cluster is converted to the dense matrix Bm,n.
Step 2: )e normalization procedure is performed on Bm,n through
Zij � Bij − Bj /σj,
where Bj is the average value and σj indicate the SD for Bjwhich are calculated by
B

j
� 1/m 􏽐

m
i�1 Bij, σ2j � 1/m − 1􏽐

m
i�1 (Bij − B

j
)2

Step 3. )e SVD technique is applied to Z.
Step 4. Zd is computed for the approximation of Z.
Step 5. )e missing value is provided using B

j
+ σj(Zd)ij.

ALGORITHM 2: )e procedure for missing value prediction by SVD.
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Figure 3: EM and SOM clusters.
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where Predicted is the mean of the predicted values,
Observed is the mean of the observed values, SPredicted is the
standard deviation of the predicted values, SObserved is the
standard deviation of the observed values, and m is the
number of independent variables.

In Table 3, we present the performances of EM and SOM
ensembles by majority voting, CSPA, and HGPA.)e results
are provided for different numbers of clusters and their
ensembles. From the results, it is found that, on average,
SOM and EM ensembles by the use of the HGPA approach
perform best, providing the highest rates of R2, PA, IA,
MAE, and RMSE. )e best accuracies are provided by en-
semble size 3 (SOM2× 4 + SOM3× 3 + SOM3× 4) for SOM
and ensemble size 4 (k� 8, 10, 12, 13) for EM. In addition,
majority voting has provided the lowest accuracy for EM and
SOM ensembles in UPDRS prediction.

To evaluate the deployed methodology compared with
previous methods in the literature, we performed several
experiments on the PD dataset and presented the results in
Table 4. )e proposed method was compared with the SVR,
ANFIS [87], MLR, HSLSSVR [88], neural network (NN),
and DBN [89]. )ese perdition learning methods were
compared with the HGPA+ SOM+SVR ensemble and

HGPA+EM+SVR ensemble as they provided better ac-
curacy compared with other ensemble learning approaches.
)e results are provided for RMSE, MAE, and R2.)e results
reveal that ensemble learning methods,
HGPA+ SOM+SVR ensemble (Motor-UPDRS: MAE�

0.5540; RMSE� 0.4116; R2 � 0.9139; Motor-UPDRS:
MAE� 0.5565; RMSE� 0.4179; R2 � 0.9058) and HGPA+
SOM+SVR ensemble (Motor-UPDRS: MAE� 0.5594;
RMSE� 0.4165; R2 � 0.9130; Motor-UPDRS: MAE� 0.5665;
RMSE� 0.4186; R2 � 0.9018), can significantly impact the
accuracy of both Total-UPDRS and Motor-UPDRS pre-
diction. In addition, as shown in Table 4, it is found that
clustering and dimensionality reduction techniques have
significantly reduced the computation time of the proposed
method for UPDRS prediction.

To assess the performance of the deployedmethod on the
PD dataset with null values, we randomly considered 10% of
patients’ data as null values and predicted them with the
SVD algorithm.)e dense matrices are then used in EM and
SOM for clustering and ensemble learning. We finally
predict the UPDRS using the dataset with predicted values.
)e results are provided for HGPA+ SOM+SVR ensemble
and HGPA+EM+SVR ensemble in Figure 4. )e results

Table 3: SOM and EM ensembles by CSPA, HGPA, and majority voting for UPDRS prediction.

Ensemble size (SOM) Ensemble technique RMSE MAE IA PA R2
adjusted

Motor-UPDRS

2(SOM2× 3 + SOM2× 4) CSPA 0.5980 0.4437 0.9208 0.9155 0.8999
HGPA 0.5960 0.4416 0.9238 0.9200 0.9019

3(SOM2× 4 + SOM3× 3 + SOM3× 4)
Majority voting 0.5720 0.4152 0.9306 0.9265 0.9078

CSPA 0.5620 0.4150 0.9309 0.9266 0.9085
HGPA 0.5540 0.4116 0.9335 0.9277 0.9139

4(SOM2× 3 + SOM2× 4 + SOM3× 3 + SOM3× 4) CSPA 0.5772 0.4287 0.9283 0.9261 0.9067
HGPA 0.5756 0.4286 0.9287 0.9263 0.9070
Total-UPDRS

2(SOM2× 3 + SOM2× 4) CSPA 0.6053 0.4463 0.9141 0.9101 0.8872
HGPA 0.6016 0.4432 0.9166 0.9104 0.8928

3(SOM2× 4 + SOM3× 3 + SOM3× 4)
Majority voting 0.5756 0.4269 0.9207 0.9173 0.9043

CSPA 0.5700 0.4250 0.9230 0.9203 0.9043
HGPA 0.5565 0.4179 0.9289 0.9240 0.9058

4(SOM2× 3 + SOM2× 4 + SOM3× 3 + SOM3× 4) CSPA 0.5853 0.4395 0.9182 0.9138 0.8983
HGPA 0.5799 0.4376 0.9193 0.9140 0.9026

Ensemble size (EM) Ensemble technique RMSE MAE IA PA R2
adjusted

Motor-UPDRS

2(k� 8,10) CSPA 0.6122 0.4557 0.9103 0.9080 0.8904
HGPA 0.5974 0.4521 0.9118 0.9092 0.8963

3(k� 8,10,12)
Majority voting 0.5897 0.4414 0.9149 0.9112 0.8998

CSPA 0.5795 0.4397 0.9156 0.9117 0.9010
HGPA 0.5789 0.4287 0.9173 0.9140 0.9028

4(k� 8,10,12,13) CSPA 0.5623 0.4171 0.9257 0.9198 0.9049
HGPA 0.5594 0.4165 0.9319 0.9254 0.9130
Total-UPDRS

2(k� 8,10) CSPA 0.6137 0.4574 0.9085 0.9049 0.8837
HGPA 0.6086 0.4531 0.9092 0.9071 0.8848

3(k� 8,10,12)
Majority voting 0.5921 0.4480 0.9120 0.9081 0.8872

CSPA 0.5912 0.4466 0.9135 0.9100 0.8904
HGPA 0.5846 0.4398 0.9173 0.9101 0.8933

4(k� 8,10,12,13) CSPA 0.5788 0.4370 0.9216 0.9180 0.8957
HGPA 0.5665 0.4186 0.9281 0.9209 0.9018
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demonstrated that the SVD algorithm has been effective in
null values prediction.

5. Discussion

Efficient detection of PD is crucial, as timely diagnosis and
appropriate medication can delay the development of
symptoms and difficulties resulting from this disorder [90].
Despite the significance of fast detection of PD, it is not an

easy task because current detection measures are usually
based on subjective indicators [91]. Besides, in the initial
phases of PD, nonmotor signs, like depression, sleep dis-
order, and rapid eye movement, are more recognized than
motor signs, which impacts the fast detection of the PD
[92,93].

ML has been used for medical disease detection lately
and particularly PD treatment [51]. )is can be explained by
the convenient performance and accurate results of ML
techniques [94]. Classification of diseases is a significant type
of predictive modeling. It is considered an important data
mining approach because it clusters the population referring
to a predetermined criterion. It is vital to compare the
outcomes of various classification methods to decide which
approach presents the best performance [95]. Hence, the
main goal of this research is to assess several approaches that
are utilized for PD prediction and classification. Even
though ML methods have been assessed in several studies
separately, the evaluation of these methods based on various
datasets makes it complex to perform an accurate com-
parison among the deployedmethodologies. Hence, it is vital
to evaluate these methods in one comparative study based on
a chosen dataset.

In this study, in the first step of data analysis, EM and
SOM algorithms were implemented to produce various
numbers of segments to have their ensembles for final
clustering outcomes. Following that, the resulting clusters
were used for ensemble learning UPDRS prediction by the
SVR technique. Following that, the results are provided for
different numbers of clusters and their ensembles. Referring
to the outcomes, we can conclude that the performance of
SOM and EM ensembles by the use of HGPA is the best
among the deployed approaches based on R2, PA, IA, MAE,
and RMSEmeasures. Besides, the evaluation of the proposed
methodology in relation to previous methods in the liter-
ature was conducted based on various experiments on the
PD dataset. )e result of the deployed approach was
compared with other approaches (SVR, ANFIS, MLR,

Table 4: Methods’ comparisons.

Method Measure MAE RMSE R2 Computation time (ms)

NN Motor-UPDRS 0.977 2.3836 0.7191 1072250
Total-UPDRS 0.951 2.3135 0.7343 1043529

MLR Motor-UPDRS 0.997 2.4142 0.6972 8953573
Total-UPDRS 0.987 2.3911 0.7094 8845565

SVR Motor-UPDRS 0.721 1.4942 0.8143 6743563
Total-UPDRS 0.689 1.4526 0.8192 6633586

ANFIS Motor-UPDRS 0.771 1.7047 0.7854 1534643
Total-UPDRS 0.743 1.6062 0.7984 1525675

HSLSSVR Motor-UPDRS — 0.8158 — —
Total-UPDRS — 0.8004 — —

SOM+SVR Motor-UPDRS 0.6340 0.5921 0.8518 538643
Total-UPDRS 0.6421 0.6039 0.8421 535623

DBN Motor-UPDRS 0.7645 1.6112 0.7914 974246
Total-UPDRS 0.7321 1.5744 0.7996 964633

HGPA+ SOM+SVR ensemble Motor-UPDRS 0.5540 0.4116 0.9139 417435
Total-UPDRS 0.5565 0.4179 0.9058 394352

HGPA+EM+SVR ensemble Motor-UPDRS 0.5594 0.4165 0.9130 372223
Total-UPDRS 0.5665 0.4186 0.9018 363422
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Figure 4: Results of the method on predicted null values for
UPDRS prediction.
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HSLSSVR, and NN). Based on the findings, the
HGPA+EM+SVR ensemble provided better accuracy
compared with the other ensemble learning approaches.

6. Conclusion

Most of the presented methods for PD prediction depend
strongly on human proficiency [96]. )e benefits of
deploying the ML in the medical sector are that they provide
objective, context-independent, and data-driven analysis
[97]. ML approaches have been utilized effectively in disease
diagnosis and severity prediction
[27,42,54,61,77–79,98–100]. Particularly, ML has also been
utilized in analyzing the data collected from wearable IMU
sensors for automated evaluation of motor disorders like PD
[101–103]. Hence, the practical aim of this study entails
providing supplementary, quick, and accurate methods that
can aid experts in reaching more objective medical decisions
considering the PD diagnosis. By deploying these methods
in the appropriate systems, several gains can be acquired that
entail reducing the expenses of manual diagnosis and
minimizing diagnosis time.

Continuing this line of research and supporting previous
literature, this study uses both unsupervised and supervised
learning techniques to diagnose PD through UPDRS pre-
diction. Besides, clustering, dimensionality reduction, and
prediction learning techniques are used to create the PD
diagnosis method. )e basic aim of this paper is to conduct
comparative research of the ML approaches for PD diag-
nosis. We concentrated on clustering and prediction
learning methods to conduct the comparative study. Par-
ticularly, several clustering approaches for PD data seg-
mentation and SVR ensembles to predict Motor-UPDRS
and Total-UPDRS were used.)e findings are then evaluated
based on other prediction learning methods, MLR, neuro-
fuzzy, and SVR techniques based on a real-world PD dataset.
)e finding of the study indicated the superiority of
deploying EM with SVR ensembles in relation to decision
trees, neurofuzzy and SVR combined with other clustering
approaches in the prediction of Motor-UPDRS and Total-
UPDRS.

Many previous works have been conducted focusing on
patients’ classifications, severity prediction, and remote
monitoring. Still, there are future routes in each field to be
investigated. Besides, several sensors such as magnetometer,
accelerometer, and gyroscope have been utilized and
assessed. Additionally, MRI, EEG signals, f-MRI, and
DATSCAN images were utilized to present accurate pre-
dictions of the disease. Other research directions can be
followed by utilizing other brain signal images such as ECG,
EMG, and PCG. Other sensing modalities can be explored
and combined to present a more accurate classification of
the disease.

Even though ML methods in previous literature have
presented high classification accuracy for PD detection, still,
there are some obstacles related to feature extraction and
selection which need to be addressed [104].)e utilization of
several features can increase the computation time [105,106].
On the other hand, if fewer features were utilized, this will

increase the complexity of extracting the features, which will
accordingly impact the computation time. )is paper has
some shortcomings which should be considered in future
research. )e study is based on a real-world dataset to assess
the proposed approaches, which has one limitation con-
sidering the number of features used in the prediction
process. Other PD datasets with a larger number of features
can be utilized in the evaluation of the deployed approaches.
Large datasets can present more generalized outcomes.
Emerging technologies can be used to collect data from
patients using particular applications, as suggested by Bot
et al. [107], in which the authors developed an application to
collect the data from PD patients using their iPhones. )is
approach can ease the data collection from the public be-
cause of the availability of smartphones and help to present
more generalizable outcomes. Furthermore, this study can
be extended by incremental machine learning approaches to
improve the computation time of previous PD diagnosis
methods in processing large datasets [44,89].
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