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ABSTRACT: We present a trust-region optimization of the Edmiston−Ruedenberg
orbital localization function. The approach is used to localize both the occupied and the
virtual orbitals and is the first demonstration of general virtual orbital localization using
the Edmiston−Ruedenberg localization function. In the Edmiston−Ruedenberg
approach, the sum of the orbital self-repulsion energies is maximized to obtain the
localized orbitals. The Cholesky decomposition reduces the cost of transforming the
electron repulsion integrals, and the overall scaling of our implementation is N( )4 .
The optimization is performed with all quantities in the molecular orbital basis, and the
localization of the occupied orbitals is often less expensive than the corresponding self-
consistent field (SCF) optimization. Furthermore, the occupied orbital localization
scales linearly with the basis set. For the virtual space, the cost is significantly higher
than the SCF optimization. The orbital spreads of the resulting virtual Edmiston−
Ruedenberg orbitals are larger than for other, less expensive, orbital localization
functions. This indicates that other localization procedures are more suitable for applications such as local post-Hartree−Fock
calculations.

■ INTRODUCTION
The idea of orbital localization through maximizing the
orbital−orbital self-repulsion energy dates back to the early
1950s, with the work of Lennard-Jones and Pople.1 They
considered the benefits of using symmetry equivalent (rather
than canonical) Hartree−Fock orbitals to gain understanding
of molecular structure and remarked that such orbitals reduce
the exchange contribution to the energy and consequently
increase the orbital self-repulsion energy. These energy
conditions were first explicitly used to localize occupied
orbitals by Edmiston and Ruedenberg.2,3 They suggested that
the maximum of the orbital self-repulsion energy could be
found either through a gradient based (steepest ascent)
approach or through the use of Jacobi sweeps�an
optimization procedure that iteratively rotates pairs of orbitals
until the specified energy function converges to a stationary
point.
Conjugate gradient approaches and the Broyden−Fletcher−

Goldfarb−Shanno (BFGS) algorithm have also been applied to
the Edmiston−Rudenberg localization problem.4−6 Leonard
and Luken7 suggested a mixed Newton−Raphson/quasi-
Newton approach, where they approximated the Hessian
matrix by its diagonal elements and alternately used the
approximated and the full Hessian to obtain quadratic
convergence; although the approach was formulated for the
Edmiston−Ruedenberg localization function, it was only
applied to Foster−Boys2,8,9 localization, due to the cost to

compute the electron repulsion integrals needed for the
Hessian. In the Foster−Boys approach, the electron repulsion
integrals are replaced by products of dipole integrals, yielding
the same form of the gradient and Hessian as obtained for the
Edmiston−Ruedenberg localization function.

Gradient based approaches and Jacobi sweeps are inefficient
for larger systems and particularly incapable of localizing the
virtual space.10−12 The latter is also the case for Newton−
Raphson or quasi-Newton solvers.11 In contrast to occupied
orbital localization, saddle points and close lying local minima
can be encountered in virtual orbital localization.13−15 These
features are common to all localization functions, including the
Edmiston−Ruedenberg approach, and severely complicate the
optimization problem. For any initial guess of the localized
virtual orbitals, the Hessian will have several large negative
eigenvalues. The approaches mentioned above will in general
not be able to converge when the initial Hessian is not positive
definite.

The development of local correlation methods16−21 and
correlated active space approaches that rely on localized
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orbitals22−25 has motivated the development of robust solvers
for the orbital localization problem for both the occupied and
virtual orbitals. Jansiḱ et al.26 and Høyvik et al.27 adapted
Fletcher’s trust-region minimization method28 and applied it
successfully to localization functions for both sets of orbitals.
The trust-region approach is based on defining a local region,
in which the objective function is well represented by a
quadratic approximation. At each step of the optimization, a
minimum of the approximated function is found. The
distinctive feature of this method is the quadratic convergence
of the localization function even if the initial Hessian matrix
has negative eigenvalues.29 The trust-region optimization has
been applied to localization by minimizing powers of the
orbital spread (a special case of which is Foster−Boys
localization),26 to minimization of the fourth central mo-
ment,30 and for the Pipek−Mezey localization function.31 It
has also been demonstrated to work for basis sets augmented
with diffuse basis functions.32

The popularity of the Edmiston−Ruedenberg localization
function is limited compared to that of Pipek−Mezey33 and
Foster−Boys2,8,9 localization. This is likely due to the
prohibitive N( )5 scaling of a naive implementation: the
electron repulsion integrals must be transformed to the
updated molecular orbital (MO) basis in every iteration.
Significant progress toward minimizing the scaling of the
Edmiston−Ruedenberg localization procedure for the occu-
pied orbitals was made by Subotnik et al.13,14 Subotnik et al.
first introduced a purely gradient based approach13 using a
DIIS (direct inversion of the iterative subspace)34 accelerated
algorithm. Although the integral manipulations are linear
scaling, the overall asymptotic scaling is N( )3 , due to dense
linear algebra operations and memory manipulations. They
exploited both the locality of the atomic orbitals (AOs) and of
their initial guess for the Edmiston−Ruedenberg orbitals
(which was taken to be Foster−Boys orbitals) to screen the
integrals. The method was subsequently improved, reducing
the prefactor of the N( ) integral manipulations using the
resolution-of-identity35 approximation and eliminating con-
vergence issues of the gradient-only approach by including
information from the Hessian. For the determination of the
lowest eigenvalue of the Hessian, the Davidson algorithm36

was applied, and in the case of a saddle point (negative Hessian
eigenvalue), the prescription of Seeger and Pople37 was
followed. However, the additional computational costs needed
for linear transformations by the Hessian were not reported.
Naively, this transformation relies on the computation of

N( )3 electron repulsion integrals.7 Subotnik et al. only
considered the occupied orbitals. To our knowledge, no
attempts have been made to localize virtual orbitals using the
Edmiston−Ruedenberg approach.
In this paper, we present a trust-region approach to

determine Edmiston−Ruedenberg orbitals for both the
occupied and virtual space. The trust-region optimization
ensures convergence to a minimum of the Edmiston−
Ruedenberg localization function, and Cholesky decomposi-
tion of the electron repulsion integrals38 is used to reduce the
cost of integral evaluation and transformation. Performance of
the approach, in terms of convergence properties and
computational cost, is considered, and so is the effect of
integral approximation on the set of localized orbitals.

■ THEORY
The Hartree−Fock energy and density are invariant to
rotations among the occupied orbitals and among the virtual
orbitals, separately. Edmiston−Ruedenberg orbitals2 are
identified by maximizing the orbital self-repulsion energy

= |E pp pp( )
p (1)

where the summation is over either the occupied or virtual
orbitals. This is equivalent to minimizing the exchange
contribution to the energy

= |K pq pq( )
p q (2)

and the interorbital repulsion energy

= |C pp qq( )
p q (3)

In practice, we will consider a minimization of f = −E given
in eq 1, since the trust-region solver is implemented for
minimizations. A minimum is obtained by successive rotations
among the orbitals under consideration (occupied or virtual)

=C CU (4)

Here, U is an orthogonal matrix, parametrized as the
exponential of some real-valued antisymmetric matrix κ:

= =U exp( ), pq qp (5)

This parametrization ensures that the orthonormality of the
orbitals is preserved at all times. By inserting eq 5 into the
Edmiston−Ruedenberg functional, we get

= | [ ] [ ] [ ] [ ]f rs tu U U U U( ) ( ) ( ) ( ) ( ) ( )
p rstu

rp sp tp up

(6)

Inserting the Taylor expansion of U(κ) = exp(κ) about zero

[ ] = + + [ ] +exp( )
1
2

( )pq pq pq pq
3

(7)

into the expression for the orbital self-repulsion energy given in
eq 6 and organizing the terms in equal orders of κ, we obtain

= | |

| + |

+ | +

f pp pp qp pp

qr pp qp rp

qp pp

( ) ( ) 4 ( )

(2 ( ) 4 ( )

2 ( )) ( )

p pq
qp

pqr
qp rp qp rp

qr rp
3

(8)

Using the relation

= =rs

pq
rs pq sr qp rp sq sp rq, ,

(9)

we find that the first derivative of E(κ) with respect to κpq is
given by
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= [ | | ]

[ | | ]

[ | | ]

[ | | ]

[ | | ] +

f
pq qq qp pp

rp qq rq pp

rq pq rq qp

rq qq rp pp

pr rr qr rr

( )
4 ( ) ( )

4 ( ) ( )

8 ( ) ( )

2 ( ) ( )

2 ( ) ( ) ( )

pq

r
rq rp

r
rq rp

r
rp rq

r
qr pr

2

(10)

We can identify the gradient (f[1]) as the terms that are zeroth
order in κ and the linear transformation by the Hessian (f[2]κ)
as the terms linear in κ

[ ] = [ | | ][ ] pq qq qp ppf 4 ( ) ( )pq
1

(11)

[ ] = [ | | ]

[ | | ]

[ | | ]

[ | | ]

=

[ ] rp qq rq pp

rq pq rq qp

rq qq rp pp

pr rr qr rr

f 4 ( ) ( )

8 ( ) ( )

2 ( ) ( )

2 ( ) ( )

pq
r

rq rp

r
rq rp

r
rp rq

r
qr pr

pq qp

2

(12)

where

= | + | + |

+ |

rp qq rq pq rq qq

pr rr

(4 ( ) 8 ( ) 2 ( )

2 ( ))

pq
r

rq rq rp

qr (13)

The diagonal elements of the Hessian are used as a
preconditioner and can be retrieved from the linear trans-
formation by letting, for each index pq, κrs = δrs,pq. We obtain

[ ] = | | + | + |[ ] pp qq pq pq pp pp qq qqf 4( ) 8( ) 2( ) 2( )pq pq
2

,

(14)

Energy Optimization Procedure. We now describe the
most relevant characteristics of the trust-region method used
to localize the orbitals in this work. For a more detailed
description, we refer the reader to ref 27. The trust-region
method28 is based on approximating an objective function
(here the orbital self-repulsion energy given in eq 8) by a
second-order Taylor expansion and identifying the region in
which this expansion is a good representation of the objective
function.11 This method is also called the restricted step
method due to the limitation of the step by the region of
validity of the Taylor series. We consider a second-order
Taylor series of an energy functional f(κ) expanded around κ =
0

= + +[ ] [ ]f f f f( ) (0)
1
2

T T1 2
(15)

where f[1] and f[2] are the gradient and Hessian, respectively,
evaluated at the expansion point

= =[ ]

=

[ ]

=

f
f

f
f( ) ( )

uv
uv

uv wx
uv wx0 0

1
,

2
2

(16)

Differentiating eq 15 with respect to κ and setting the resulting
equation equal to zero yields the Newton step

=[ ] [ ]f f2 1 (17)

This step is accepted if the Hessian is positive definite.
If the Hessian is not positive definite, a step which gives the

minimum value of f(κ) on the boundary of the trust-region (|κ|
= h) has to be determined. For this reason, a Lagrangian is
defined

= + +[ ] [ ] [ ]L f hf f( , )
1
2

1
2

( )T T T0 1 2 2

(18)

where μ is a Lagrange multiplier and |κ| is taken to be the l2-
norm of κ. The stationary points of eq 18 are given by

=[ ] [ ]f I f( ) ( )2 1 (19)

= hT 2 (20)

Equation 19 is a level-shifted Newton equation which has
several solutions κ. However, restricting μ to be lower than the
lowest eigenvalue of the Hessian f[2] results in a κ that
represents the minimum.

In order to find the minimizing solution of eq 19, an
augmented Hessian eigenvalue equation is introduced:27

= =
[ ]

[ ] [ ]

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

y

{
zzzzzzA

x x
A f

f f
( )

1
( )

1
( )

, ( ) 0
T1

1 2 (21)

It has two parts

=[ ]f x( )
T1 (22)

= =[ ] [ ]f I y f y x( ) ( ) , ( ) ( )2 1 1 (23)

the latter of which is the level-shifted Newton equation (equal
to eq 19). By the Hylleraas−Undheim−MacDonald39,40

theorem, the lowest eigenvalue μ of eq 21 is guaranteed to
be lower than the lowest eigenvalue of f[2]. Hence, if f[2] has
negative eigenvalues, solving eq 21 for the lowest eigenvalue is
equivalent to solving eq 19 for a positive definite (f[2] − μI).
Furthermore, there exists some α for which the eigenvector
corresponding to the lowest eigenvalue satisfies |κ| = |α−1x(α)|
≈ h.

The trust-region optimization for orbital localization is
performed in the following steps:

1. For the current set of orbitals, the function value ( f) and
the gradient (f[1]) are computed. If the gradient norm is
smaller than the convergence threshold, the optimization
is done; otherwise, we continue to step 2.

2. Equation 21 (or eq 17, if the Hessian is positive definite)
is solved to find a set of orbital rotation parameters.
Equation 21 is solved iteratively, using a reduced space
algorithm adapted from the Davidson procedure.36 A
detailed description of how this is done can be found in
ref 27 or 41. The Davidson iterations are called the
microiterations of the trust-region procedure.

3. Once the orbital rotation parameters κ are obtained, a
line search is performed. The trust radius, h, is chosen to
be no larger than

4
to ensure that the quadratic

approximation of f is a good approximation. However,
since the l2-norm is extensive, this can lead to excessively
small steps, especially for larger systems and far away
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from the minimum. Following the microiterations, we
have identified the κ that minimizes the quadratic
function within the trust-region. It is then a simple and
pragmatic approach to perform the line search by
applying exp(nκ) for some integer n that minimizes the
energy. The line search is implemented by applying the
transformation given by eqs 4 and 5 several times, each
time confirming that the function value decreases. That
is,

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ= ··· =C C U U CU n( ) ( ) ( )
n times (24)

4. The trust radius is updated as suggested in ref 42, by
considering the ratio of the approximated change in f
(from the quadratic approximation) to the actual change
in f. Steps 1−4 form a macroiteration of the trust-region
procedure. We return to step 1.

Edmiston−Ruedenberg Orbitals Using Cholesky
Decomposed Electron Repulsion Integrals. In each
iteration of the Edmiston−Ruedenberg localization procedure,
the electron repulsion integral matrix must be transformed to
the updated MO basis. In order to avoid the N( )5 scaling of
this procedure, we introduce the Cholesky factorization of the
integral matrix38

|
=

pq rs L L( )
J

N

pq
J

rs
J

1

J

(25)

where the number of Cholesky vectors NJ scales linearly with
the system size.43 The accuracy of this factorization is
controlled through the threshold, τ, used in the decomposition.
It has been demonstrated that, with an efficient implementa-
tion, this decomposition is often less expensive than the SCF
optimization.44,45

In each macroiteration, the Cholesky vectors must be
transformed to the new basis

=L U U Lpq
J

rs
rp sq rs

J

(26)

a process which is Nn( )3 scaling, where n is a measure of the
size of the orbital space that is optimized and N is proportional
to the number of AOs. Inserting the Cholesky factorization in
eq 25 into the expression for the Edmiston−Ruedenberg
functional (eq 1), we get

= =f E L L
Jp

pp
J

pp
J

(27)

which scales as nN( ( )). Similarly for the gradient, Hessian
transformation, and the diagonal Hessian, we get

= [ ][ ]f L L L L4pq
J

pq
J

qq
J

qp
J

pp
J1

(28)

= + +

+

L L L L L L

L L

(4 8 2

2 )

pq
rJ

rq rp
J

qq
J

rq rq
J

pq
J

rp rq
J

qq
J

qr pr
J

rr
J

(29)

[ ] = +[ ]f L L L L L L

L L

(4 8 2

2 )

pq pq
J

pp
J

qq
J

pq
J

pq
J

pp
J

pp
J

qq
J

qq
J

2
,

(30)

which entail costs that scale as Nn( )2 , Nn( )3 , and Nn( )2 ,
respectively. Therefore, the overall iterative cost of the
Edmiston−Ruedenberg procedure using the Cholesky vectors
is Nn( )3 .

To compute the Edmiston−Ruedenberg energy, gradient,
and Hessian transformation, we introduce the following
intermediates

=X Lp
J

pp
J

(31)

=Y Lq
J

p
pq
J

pq
(32)

=Z L Xpqr
J

pq
J

r
J

(33)

=W L Xpq
J

pq
J

p
J

(34)

Intermediates Y and W have an Nn( )2 cost. The Z
intermediate, together with the basis transformation of the
Cholesky vectors, has an Nn( )3 cost. In our implementation,
L is transformed and Z is constructed only once per
macroiteration, and they are stored in memory. Alternatively,
they can be stored on disk and be read in batches to reduce
memory usage. The remaining intermediates are constructed
on the fly (as needed in each microiteration).

In terms of these intermediates, we get the following
expression for the energy, gradient, Hessian transformation,
and diagonal Hessian

=f X
Jp

p
J

(35)

=[ ]f L X L X4 ( )pq
J

pq
J

q
J

pq
J

p
J1

(36)

= + + +Z Y L W W4 8 2 ( )pq
r

rpq rq
J

q
J

pq
J

r
rp rq pr qr

(37)

[ ] = +[ ]f X X L L X X(4 8 2 2 )pq pq
J

p
J

q
J

pq
J

pq
J

p
J

q
J2

,
2 2

(38)

and the cost of each microiteration (approximately equal to the
cost of σpq) is then Nn( )2 . Note that only MO quantities are
used throughout the localization procedure. In particular, for
the localization of the occupied orbitals, only the number of
Cholesky vectors will increase with increasing basis set (while
keeping the system fixed); all other dimensions are unchanged
and equal to the number of occupied orbitals.

Each macroiteration L and Z is computed, and because of
their N( )4 scaling, these contributions will determine the
overall cost for sufficiently large orbital spaces. For smaller
orbital spaces, the total time spent in the microiterations can
be dominating the cost, i.e., the time to construct the linear
transformation by the Hessian, according to eqs 12 and 37; this
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scales as Nn( )2 but will have a large prefactor due to the large
number of microiterations.
Locality Measure. The (second moment) orbital spread σ2

p

can be used to evaluate the locality of an orbital, and it is
defined as the square root of the variance of the orbital
position

= | | | |p r p p prp
2

2 2
(39)

where | =p p 1 and | |p pr give the average position of the
orbital.
The orbital spread reflects the spatial extent of an orbital by

describing the confinement of an orbital bulk.11 A small value
of the second moment orbital spread indicates that the orbital
bulk is close to the orbital’s average position. However, this
value does not necessarily reflect the thickness of the tail,
which is also significant for the estimation of the locality of an

orbital. For this reason, the fourth moment orbital spread was
introduced by Høyvik and Jørgensen30

= | | | |p r p p prp
4

4 44 (40)

which is more indicative of the tail’s thickness.
Two measures of the locality of a set of orbitals are the

average orbital spread

=
=N

1

p

N
p

2
avg

1
2

(41)

where N is the number of orbitals in the set, and the maximum
orbital spread

= [ ]max
p

p
2
max

2 (42)

Figure 1. Convergence profiles for the occupied (left panel) and virtual (right panel) orbital localization of arachidic acid in the aug-cc-pVDZ basis
using different starting guesses for the Edmiston−Ruedenberg orbitals (canonical, Cholesky, Foster−Boys). The max gradient norm ( | |gmaxp p ) is

used and is given in atomic units (au).

Figure 2. Convergence profiles for the occupied (left panel) and virtual (right panel) orbital localization of arachidic acid. The max gradient norm (
| |gmaxp p ) is used and is given in atomic units (au).
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Considering either the average orbital spread or the
maximum orbital spread will not give a complete picture of
the locality of the set of orbitals. The maximum orbital spread
reflects the locality of the least local orbital in the set, and
hence is an upper bound for the rest of the orbitals. It is a good
measure of locality in the sense that it provides a conservative
estimate. However, in cases where only a very few orbitals are
very delocalized (called outliers26), this measure does not
accurately represent the locality of the full set. Similar values of
the average and the maximum orbital spreads imply that the
orbitals in the set are of comparable locality.

■ RESULTS
The trust-region solver and the Edmiston−Ruedenberg
localization procedure are implemented in a development
version of the eT program,45 as described in the previous
sections. We use the second moment orbital spread to evaluate
the locality of the orbitals, as the integrals required to compute
the fourth moment orbital spread are currently not available in
eT. All calculations were performed on Intel Platinum 8380
processors, using 80 threads and with up to 2 TB memory
available.
A convergence threshold of 10−7 is used for the Hartree−

Fock equations, and a threshold of 10−6 is used for the
Edmiston−Ruedenberg orbital localization. The max norm of
the gradient is used in both the Hartree−Fock solver and the
orbital localization solver. A Cholesky decomposition thresh-
old of τ = 10−8 au is considered not to introduce significant
approximations in the integrals44 and is used unless otherwise
stated.
The geometries of arachidic acid, gramicidin, and catenane

were obtained from the Supporting Information of refs 5, 46,
and 47, respectively. The geometry of circumcoronene was
obtained from ref 48 and force field optimized with the

Avogadro software package (version 1.2.0)49 using the UFF
force field. All orbital plots are generated with the UCSF
Chimera software package.50

Convergence Properties. The convergence profiles for
the orbital localization of arachidic acid are given in Figures 1
and 2. In Figure 1, we consider the aug-cc-pVDZ basis and
compare the convergence profiles for different initial guesses
for the Edmiston−Ruedenberg orbitals, i.e., canonical,
Cholesky,51 and Foster−Boys orbitals. For the occupied
space, a reduction from 26 to 4 macroiterations is achieved
with an initial guess of Foster−Boys orbitals, compared to
canonical Hartree−Fock orbitals. A Cholesky orbital initial
guess resulted in the fastest convergence for the virtual orbitals
of arachidic acid. We cannot, in general, conclude that the
Cholesky orbitals provide a better starting guess for the virtual
Edmiston−Ruedenberg localization. Both Cholesky and
Foster−Boys orbitals have negligible costs compared to the
Edmiston−Ruedenberg orbitals. However, the Cholesky
orbital localization entails a non-iterative N( )3 cost, whereas
the Foster−Boys orbital localization is iterative N( )3 .

Orbital localization functions, in particular for virtual orbital
localization, are known to have several local minima. The trust-
region algorithm only guarantees convergence to a local
minimum, and the change in starting guess can often result in
convergence to different local minima. For arachidic acid in the
aug-cc-pVDZ basis, we do not observe any significant
difference in locality resulting from the starting guess.

In Figure 2, we compare the convergence for different basis
sets for the localized orbitals: cc-pVXZ and aug-cc-pVXZ for X
= D, T. A Cholesky orbital initial guess is used in all cases. For
the occupied orbitals (left panel), the convergence profiles are
similar for all basis sets�near quadratic convergence within 17
iterations. For the virtual orbitals (right panel), we see that the
convergence trend deteriorates as the basis set increases. For

Table 1. Values of the Orbital Spread of the Least Local Orbital, σ2
max, of Arachidic Acid Using the Cholesky, Edmiston−

Ruedenberg, and Foster−Boys Localization Procedures

Cholesky Foster−Boys Edmiston−Ruedenberg

basis set NAO occupied virtual occupied virtual occupied virtual

cc-pVDZ 508 2.4 8.7 1.6 3.1 1.6 3.8
aug-cc-pVDZ 866 13.7 17.1 1.6 8.4 1.6 10.9
cc-pVTZ 1220 5.9 10.5 1.6 3.6 1.6 6.0
aug-cc-pVTZ 1932 11.6 19.97 1.6 9.4a 1.6 12.14

aUnable to converge to 10−6 within the given number of iterations, converged to 10−5.

Figure 3. Least local occupied Edmiston−Ruedenberg orbitals for arachidic acid, using the cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ
basis sets. The orbitals were plotted using an isosurface of 0.01 au.

Figure 4. Least local virtual Edmiston−Ruedenberg orbitals for arachidic acid, using the cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis
sets. The orbitals were plotted using an isosurface of 0.01 au.
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the largest basis set, aug-cc-pVTZ, convergence is reached in
135 macroiterations. Similar trends in convergence behavior of
the virtual orbitals were observed for C240 comparing cc-pVDZ
and cc-pVTZ in the minimization of the second power of the
orbital variance by Høyvik et al.27

In Table 1, we present σ2
p of the least local occupied and

virtual orbitals of arachidic acid for the Cholesky, Foster−Boys,
and Edmiston−Ruedenberg Hartree−Fock orbitals. In Figures
3 and 4, we have plotted the least local Edmiston−Ruedenberg
orbitals for the cc-pVDZ, aug-cc-VDZ, cc-pVTZ, and aug-cc-
pVTZ basis sets using an isosurface of 0.01 au. The full
distribution of orbital spreads for these basis sets can be found
in Figure 5. As expected, the occupied orbitals are largely

unaffected by the change in the basis, whereas the virtual
orbitals change significantly. Particularly, the addition of
augmenting functions results in several delocalized virtual
Edmiston−Ruedenberg orbitals. The results indicate that the
Edmiston−Ruedenberg localization function is not well suited
for virtual orbital localization. For comparison, localized virtual
orbitals of arachidic acid have been reported for several other
localization functions in refs 30 and 32; all presented
localization functions yielded lower σ2

max values than the
Edmiston−Ruedenberg approach. This is also evident from the
σ2
max values of the calculated Foster−Boys orbitals. The

Foster−Boys procedure explicitly minimizes the sum of the
second moment orbital spreads and is expected to result in
smaller orbital spreads compared to the Edmiston−Rueden-
berg approach.

In Table 2, we present the wall times used to converge the
Hartree−Fock equations (tSCF) and to localize the occupied

and virtual orbitals (tER,o and tER,v) of arachidic acid. For all but
the smallest basis set, the localization of the occupied orbitals
compares favorably to the SCF optimization for this system.
For the occupied orbitals, an increase in cost with the basis set
size comes from an increase in the number of Cholesky vectors
(NJ) needed to represent the electron repulsion integrals to the
requested accuracy. All contributions are either linear scaling
with respect to NJ (L, X, Y, Z, and W) or nonscaling with
respect to NJ (see eq 37).

For the virtual orbitals, there is a significant increase in cost
as the basis set becomes larger; contrary to the number of
occupied orbitals, the number of virtual orbitals increases with
the basis set. As seen in Figure 2, more macroiterations are
generally needed to reach convergence of the virtual orbitals
for larger basis sets.
Integral Approximation. In this section, we demonstrate

the effect of introducing integral approximations through
Cholesky decomposition, i.e., by using a decomposition
threshold that significantly reduces the number of Cholesky
vectors. Significant savings can be obtained in the Edmiston−
Ruedenberg localization procedure by such approximations.
For circumcoronene, these savings are primarily seen for the
virtual space. Savings within the trust-region optimization can
come from a reduction in the number of macroiterations or
microiterations or from reductions in the number of Cholesky
vectors. Reductions (or increases) in the number of iterations
arise from the changes in the localization function, due to the
approximations in the integrals.

In Table 3, we present the average wall times per
macroiteration needed in the orbital localization for circum-
coronene using different Cholesky decomposition thresholds, τ
= {10−8, 10−6, 10−4, 10−2}, in the cc-pVDZ and aug-cc-pVDZ
basis sets. As mentioned, all contributions to the localization
function, the corresponding gradient, and the Hessian
transformation are either linear scaling or nonscaling with
respect to NJ. For sizable orbital spaces, we expect the time-
limiting steps to be the construction of L and Z, which occurs
once per macroiteration. These steps both scale linearly with
NJ, and a decrease in cost is expected to be proportional to the
decrease in NJ. This is seen to be the case for circumcoronene:
In Figure 6, we see how the averaged macroiteration time
decreases with the number of Cholesky vectors.

In Table 3, we list the orbital spreads of the least local
Edmiston−Ruedenberg orbitals for circumcoronene. For the
virtual space, we also present the average orbital spreads. Plots

Figure 5. Orbital spreads for Edmiston−Ruedenberg occupied (left
panel) and virtual (right panel) orbitals of arachidic acid, obtained in
the orbital localization procedure using cc-pVDZ, aug-cc-pVDZ, cc-
pVTZ, and aug-cc-pVTZ basis sets.

Table 2. Wall Times Used to Converge the Hartree−Fock
SCF Equations (tSCF) and Localize Orbitals (Denoted tER,o
for Occupied and tER,v for Virtual Orbitals) for Arachidic
Acid

basis set NAO tSCF tER,o tER,v
cc-pVDZ 508 26.77 s 59.11 s 8.01 min
aug-cc-pVDZ 866 3.06 min 1.18 min 59.14 min
cc-pVTZ 1220 3.05 min 1.13 min 5.19 h
aug-cc-pVTZ 1932 29.78 min 57.68 s 43.05 h
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of the least local orbitals (occupied and virtual for cc-pVDZ
and virtual for aug-cc-pVDZ) can be found in Figures 7, 8, and
9.
For cc-pVDZ, the least local orbitals are similar for all

decomposition thresholds, and only minor variations in σ2
max

for the virtual space are observed. In contrast, for aug-cc-
pVDZ, we see significant variations in the least local virtual
orbital for different τ. However, as is evident from the average
orbital spread σ2

avg and the plots of all orbital spreads in Figure
10, the overall locality of the virtual set is largely unaffected by

the change in the decomposition threshold. Furthermore, the
least local occupied orbitals appear to be outliers, as was also
observed by Jansiḱ et al.26 for Foster−Boys orbitals. Such
outliers could potentially be removed before local post-HF
calculations. However, even without these outliers, a large part
of the virtual Edmiston−Ruedenberg orbitals of circum-
coronene have significant orbital spreads of about 10 au.

In Figure 11, we present the convergence profiles of the
Edmiston−Ruedenberg localization for circumcoronene, using
a decomposition threshold of τ = 10−8. The convergence

Table 3. Timings for Localization of Occupied and Virtual Hartree−Fock Orbitals of Circumroronenea

occupied virtual

basis τ NJ Ni tER/Ni (s) σ2
max Ni tER/Ni (s) σ2

max σ2
avg

cc-pVDZ 10−8 11870 37 7.92 3.4 96 51.19 3.7 2.2
10−6 6889 33 7.39 3.4 102 31.11 3.6 2.2
10−4 3921 35 6.99 3.4 109 19.8 3.6 2.2
10−2 1794 34 6.61 3.4 62 13.77 4.0 2.2

aug-cc-pVDZ 10−8 14278 34 6.86 3.4 146 271.56 13.4 3.3
10−6 8202 34 6.08 3.4 144 169.35 11.6 3.2
10−4 4746 33 5.83 3.4 115 100.27 11.0 3.3
10−2 1942 33 5.60 3.4 115 57.12 14.6 3.3

aτ is the decomposition threshold for the electron repulsion integrals, NJ is the number of Cholesky vectors, Ni is the number of macroiterations in
the localization procedure, tER is the time used to localize the orbitals, σ2

max is the orbital spread of the least local orbital (given in atomic units), and
σ2
avg is the mean of the orbital spreads (given in atomic units). There are 846 atomic orbitals (AOs) in the cc-pVDZ basis and the same number of

molecular orbitals (MOs). There are 1404 AOs and 1352 MOs in the aug-cc-pVDZ basis (52 orbitals removed due to linear dependency).

Figure 6. Circumcoronene: the averaged macroiteration time for the occupied (tERdo
/Ni) and virtual (tERdv

/Ni) orbitals for different values of the
Cholesky decomposition threshold τ = {10−8, 10−6, 10−4, 10−2}. The number of Cholesky vectors, NJ, is also plotted as a function of the
decomposition threshold.

Figure 7. Least local occupied orbitals of circumcoronene obtained using different thresholds (τ = {10−8, 10−6, 10−4, 10−2}) in the Cholesky
decomposition of the electron repulsion integrals and cc-pVDZ basis set. The orbitals were plotted using an isosurface of 0.01 au.
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Figure 8. Least local virtual orbitals of circumcoronene obtained using different thresholds (τ = {10−8, 10−6, 10−4, 10−2}) in the Cholesky
decomposition of the electron repulsion integrals and cc-pVDZ basis set. The orbitals were plotted using an isosurface of 0.01 au.

Figure 9. Least local virtual orbitals of circumcoronene obtained using different thresholds (τ = {10−8, 10−6, 10−4, 10−2}) in the Cholesky
decomposition of the electron repulsion integrals and aug-cc-pVDZ basis set. The orbitals were plotted using an isosurface of 0.01 au.

Figure 10. Orbital spreads for Edmiston−Ruedenberg virtual orbitals of circumcoronene, obtained in the orbital localization procedure using
different thresholds (τ = {10−8, 10−6, 10−4, 10−2}) in the Cholesky decomposition of the electron repulsion integrals and aug-cc-pVDZ basis set.

Figure 11. Convergence profiles for the occupied (left panel) and virtual (right panel) orbital localization of circumcoronene. The max gradient
norm ( | |gmaxp p ) is used and is given in atomic units (au).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00261
J. Chem. Theory Comput. 2022, 18, 4733−4744

4741

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00261?fig=fig11&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00261?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


trends are similar to those of arachidic acid (see Figures 1 and
2), with near quadratic convergence.
Occupied Orbital Localization for Larger Molecular

Systems. We present occupied orbital localization for two
sizable molecular systems: gramicidin and catenane. In Table
4, we present the wall times to localize the occupied orbitals of
these systems in the cc-pVDZ basis for τ = {10−8, 10−2}. We
see that the time used to localize the orbitals is shorter than the
time used to solve the SCF equations, given an appropriately
low Cholesky decomposition threshold. In Figure 12, we have
plotted the least local occupied orbitals obtained in the τ =
10−2 calculation. In general, the decomposition threshold does
not seem to significantly affect the localized occupied orbitals.
Edmiston−Ruedenberg for Local Correlation Meth-

ods. The foundation for local correlation methods16,17,34 is
that local operators, such as the electron repulsion operator,
will be represented by sparse matrices in the localized MO
basis. Hence, the calculation of the correlation energy can be
implemented as a linear scaling algorithm. Here, we will

consider the potential of Edmiston−Ruedenberg orbitals for
use in such local correlation methods. In the (spin-adapted,
closed-shell) coupled cluster singles and doubles (CCSD)
approach, the correlated wave function is given by

| = + |T TCCSD exp( ) HF1 2 (43)

where |HF is the Hartree−Fock determinant and

= =T t E T t E E,
ai

i
a

ai
aibj

ij
ab

ai bj1 2
(44)

are the single and double excitation contributions to the cluster
operator, given in terms of singlet excitation operators Epq. The
CCSD energy is given by

= + | |E t t t ia jb ib ja( )(2( ) ( ))
aibj

ij
ab

i
a

j
b

CCSD
(45)

to which the largest contributions come from the doubles
amplitudes:

Table 4. Wall Times for the Edmiston−Ruedenberg Localization of the Occupied Orbitals of Gramicidin and Catenane Using
the cc-pVDZ Basis and the Number of Macroiterations Needed to Reach Convergence (Ni

ER)a

initial guess

system τ tSCF canonical Cholesky Foster−Boys

gramicidin 10−2 2.65 h 2.49 h 1.47 h 37.00 min
catenane 21.95 min 6.29 min 3.72 min 3.35 min
gramicidin 10−8 2.65 h 14.59 h 8.18 h 3.67 h
catenane 21.95 min 28.44 min 15.62 min 12.41 min

aDifferent initial guesses for the orbitals are compared: canonical, Cholesky, and Foster−Boys orbitals. The wall times used to converge the SCF
equations (tSCF) are also given.

Figure 12. Least local occupied orbitals of gramicidin and catenane obtained using the cc-pVDZ basis set, plotted using an isosurface of 0.01 au.

Figure 13. Absolute value of the contributions to the correlation energy ECCSD
aibj from the doubles amplitudes tijab obtained at the CCSD level of

theory for arachidic acid/aug-cc-pVDZ, given as a heat map of the nonv × nonv matrix.
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= | |E t ia jb ib ja(2( ) ( ))aibj
ij
ab

CCSD (46)

In Figure 13, we compare the sparsity (or lack thereof) of the
nonv × nonv matrix with elements ECCSD

aibj in the canonical,
Foster−Boys, and Edmiston−Ruedenberg bases. In the
canonical orbital basis, the matrix is dense, whereas both
Foster−Boys and Edmiston−Ruedenberg orbitals result in
sparse matrices, demonstrating clearly the local character of the
correlation energy. From these preliminary tests, it is difficult
to say anything general about the properties of the Edmiston−
Ruedenberg orbitals in correlated calculations, except that their
performance is comparable to that of Foster−Boys orbitals.

■ CONCLUDING REMARKS
We have presented a trust-region, second-order optimization
of the Edmiston−Rudenberg localization function that can be
applied to both the occupied and virtual orbitals. To the best
of our knowledge, this is the first successful attempt at
localizing the virtual Edmiston−Ruedenberg orbitals. How-
ever, some of the resulting virtual Edmiston−Ruedenberg
orbitals exhibit large orbital spreads, especially for augmented
basis sets. We conclude that other localization functions are
more appropriate for virtual orbital localization, particularly
those where the localization function explicitly references the
orbital spreads.26,30

Cholesky decomposition of the electron repulsion integrals
reduces the overall scaling of the Edmiston−Ruedenberg
localization to N( )4 . A loose decomposition threshold of τ =
10−4 or even τ = 10−2 yields good results, with such integral
approximations having little effect on the overall locality of the
final set of orbitals.
While the virtual orbital localization remains expensive, the

occupied orbital localization is comparable to, and in many
cases faster than, the cost of the SCF optimization. This is
especially the case for larger basis sets. The cost scales linearly
with respect to an increase in the basis set for the occupied
orbitals.
Further reduction in the scaling may be achieved in an

approach similar to that of Subotnik et al.,13 where one exploits
the locality of an initial guess, i.e., exploiting that, for localized
orbitals, Lpq

J is only significant when orbital p is close to orbital
q. The current implementation, however, has the benefit of
being simple and independent of the locality of the initial guess
while still comparing favorably with the cost of solving the SCF
equations.
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