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Abstract

Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis
(DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate
temporal and spatial variations in and to interpret large and complex water quality datasets
collected from the Shuangji River Basin. The datasets, which contained 19 parameters,
were generated during the 2 year (2018—2020) monitoring programme at 14 different sites
(3192 observations) along the river. Hierarchical CA was used to divide the twelve months
into three periods and the fourteen sampling sites into three groups. Discriminant analysis
identified four parameters (CODMN, Cu, As, Se) loading more than 68% correct assigna-
tions in temporal analysis, while seven parameters (COD, TP, CODMn, F, LAS, Cu and Cd)
to load 93% correct assignations in spatial analysis. The FA/PCA identified six factors that
were responsible for explaining the data structure of 68% of the total variance of the dataset,
allowing grouping of selected parameters based on common characteristics and assessing
the incidence of overall change in each group. This study proposes the necessity and practi-
cality of multivariate statistical techniques for evaluating and interpreting large and complex
data sets, with a view to obtaining better information about water quality and the design of
monitoring networks to effectively manage water resources.

Introduction

Water is the material basis for the existence of earth creatures, and water resources are the pri-
mary condition for maintaining the sustainable development of the earth’s ecological environ-
ment [1]. With the increasing consumption of water resources, the contradiction between the
supply and demand of water resources has intensified, which puts forward greater require-
ments for the utilization and protection of surface water resources [2].

The surface water quality of a region depends to a large extent on environmental factors (tem-
perature changes, precipitation and soil erosion) and human input (discharge of municipal and
industrial wastewater and over-exploitation of water resources) [3]. Among them, the discharge of
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urban sewage and industrial wastewater is a continuous source of pollution, so effective control of
sewage discharge is of great significance to the improvement of water quality [4, 5].

Surface water runoff is a seasonal phenomenon that is mainly affected by the climate of the
basin [6]. In addition, seasonal changes in precipitation, surface runoff, interflow, groundwater
flow, and pumping in and pumping out have a strong influence on the river flow and the subse-
quent pollutant concentration in the river [7]. Therefore, correct identification of potential sources
of surface water quality pollution is the basis and prerequisite for water quality management.

Shuangji River is a polluted river. Its main source of water comes from urban sewage treat-
ment plants and paper-making sewage treatment plants. It not only plays an important role in
assimilating or removing urban and industrial wastewater and farmland runoff, but is also the
main inland water resources used for household, industrial, and irrigation purposes [8], There-
fore, it is necessary to prevent and control river pollution and have reliable water quality infor-
mation for effective management. Given the spatial and temporal changes in river water
chemistry, regular monitoring programmes are needed to reliably estimate water quality [9].
This leads large and complex data matrices composed of a large number of physical and chem-
ical parameters, which are often difficult to interpret, making it challenging to draw meaning-
ful conclusions [10].

Multivariate statistical analysis is a branch developed from classical statistics and is a com-
prehensive analysis method [11, 12]. It can analyze the statistical laws of multiple objects and
multiple indicators when they are related to each other, including cluster analysis (CA) [13],
discriminant analysis (DA) [14], principal component analysis (PCA) [15] and factor analysis
(FA) [16]. Multivariate statistical analysis is a suitable tool for multi-component chemical and
physical measurements for meaningful data reduction and interpretation [17]. It is a valuable
tool for identifying factors and sources that may affect water systems and cause changes in
water quality [18].

In this article, we took the Shuangji River as the research object for the first time, set up 14
main detection points along the river and detected and analyzed 19 physical and chemical
parameters in water samples. The detection time lasted for 2 years. Different multivariate sta-
tistical techniques were used to analyse the obtained datasets, to analyse the similarity or dis-
similarity between monitoring periods or monitoring points, to identify the water quality
variables that cause the spatial and temporal changes of river water quality, and to determine
the impact of water sources (natural and anthropogenic factors).

Materials and methods

Study area

The Shuangji River (N-34°22'-34°30/, E-113°13/-113°37'), a tributary of the Huai River, origi-
nates from the eastern side of Wuzhiling in northwestern Xinmi County and flows through 57
administrative villages in 8 towns in Xinmi County, covering 57 kilometres and controlling
the Xinmi River Basin, which has an area of 868 km? (Fig 1). The Weishui River (T1),
Zhaoyangshui River (T2), Liquan River (T3), Yang River (T4), Ze River (T5), and Wu River
(T6) are the main branches of the Shuangji River (Fig 1). The three sides of Xinmi County are
located in the eastern part of Henan Province, which is surrounded by mountains on three
sides. The terrain is high in the west and low in the east. It is a closed watershed with no exter-
nal water supply. The average annual rainfall is 660 mm. The Shuangji River is basically free of
external runoff recharge, and the main body of the river is affected by domestic sewage and
industrial wastewater (Shuangji River is an open river and can be used without any permit.
Anyone can study and use the Shuangji River. Therefore, the study of the Shuangji River in
this article does not require a permit).

PLOS ONE | https://doi.org/10.1371/journal.pone.0245525 January 22, 2021

2/19


https://doi.org/10.1371/journal.pone.0245525

PLOS ONE Water quality assessment of the Shuangji River (China)

M1 /N
NS

./

eT M2 o -
T3

)
Legend ®
@ Sampling Sites M3 ]‘A/\\ T6 ‘e
@ River T4 M6 70

City Boundry /

o 1 2 w
B | kilometers M4 T5 M5

Fig 1. Map of study area and water quality monitoring sites.

https://doi.org/10.1371/journal.pone.0245525.9001

Sampling collection and pretreatment

The design of the sampling network covers the identification of a wide range of key locations,
including tributaries and water inputs that have a greater impact on the river [19], and reason-
ably represent the water quality of the river system (Fig 1). Sites T1, T2, T3, T4, T5 and T6 are
the main tributaries entering the Shuangji River. Sites M1, M2, M3, M4, M5, M6, M7 and M8
are the key points on the main bank of the Shuangji River, where site M8 is under municipal
control and provides the exit water of Xinmi County. Sites M1-M3 and T1-T?3 are closer to the
urban area, and the main source of pollution is urban sewage entering the river. Sites M4, M5,
T4 and T5 are located in the industrial zone, and the paper industry in their vicinity is rela-
tively developed; as a result, the pollution is mainly due to paper industry wastewater entering
the river. Sites M6-M8 are downstream of the river and have no inflow of external water.

The dataset included 19 water quality parameters that were monitored by sampling at 14
monitoring points for 2 years (2018-2020). The factors monitored in this study included pH,
dissolved oxygen (DO), chemical oxygen demand (COD), ammonia-nitrogen (NH;-N), total
phosphorus (TP), chemical oxygen demand (CODMn), fluoride (F), petroleum hydrocarbons
(oil), linear alkylbenzene sulfonates (LAS), copper (Cu), zinc (Zn), cadmium (Cd), arsenic
(As), mercury (Hg), hexavalent chromium (Cr®"), total cyanides (CN), volatile phenols (VP),
sulphide (S) and selenium (Se). When collecting water quality samples, a standard open barrel
sampler (1.5 litre capacity) was used to collect water samples. This sampler can collect water
samples from different depths of water to ensure the representativeness of the data. Before col-
lecting the water sample, the 2 litre polyethylene plastic bottle was washed with metal-free
soap, rinsed several times with distilled water, soaked in 10% nitric acid for 24 hours, and
finally rinsed with ultrapure water for sampling. All water samples collected were first stored
in an insulated cooler and placed in a refrigerator at 4°C and sent to the laboratory for analysis
on the day the water samples were collected.

Analytical procedure

The water quality parameters, analytical units and analytical methods are summarized in

Table 1. The pH value and DO value of each water sample were determined on site using digital
pH values (JY-PH6.0) and DO measuring instruments (YT-RJY). Water samples of approxi-
mately 1000 mL were taken at each sampling point in the field and filtered through a polycar-
bonate filter (0.45 um pore size). The pretreatment of the sample was divided into two parts.
One part of the sample was used for physical and chemical parameters and anion analysis and
was directly tested, while the other part was first treated with 2 mL of concentrated HNO;
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Table 1. Water quality parameters associated with their acronyms, units and analytical methods used.

S.N.
1

O (0NN U WN

el L e L e =
® NN W N = O

19

Variables
pH
Dissolved oxygen
Chemical oxygen demand
Ammonical nitrogen
Total phosphorus
Chemical oxygen demand(Mn)
Fluoride
Petroleum oil
Linear alkylbenzene sulfonates
Copper
Zinc
Cadmium
Arsenic
Mercury
Hexavalent chromium
Total cyanide
Volatile phenol
Sulfide

Selenium

https://doi.org/10.1371/journal.pone.0245525.t001

Acronyms Units Analytical methods
pH pH unit pH meter
DO mg/L Prob method
COD mg/L Dichromate method
NH;-N mg/L Spectrophotometric
TP mg/L Ammonium molybdate Spectrophotometry
CODMn mg/L Permanganate index method
F mg/L Ion selective electrode
Oil mg/L Infrared spectrophotometry
LAS mg/L Methylene blue Spectrophotometry
Cu mg/L FAAS
Zn mg/L FAAS
Cd mg/L ETAAS
As mg/L HGAAS
Hg mg/L CVAAS
Cr®* mg/L ETAAS
CN mg/L Pyridine barbituric acid Spectrophotometry
VP mg/L Spectrophotometric Determination with 4-Amino-Antipyrin
S mg/L Methylene blue Spectrophotometry
Se mg/L HGAAS

before being subjected to metal analysis. All samples were analysed within 48 hours. The COD
was measured by the dichromate reflux method (DH310C1COD) [20], and NH;-N was mea-
sured with Nessler’s reagent (NH;3N-1040) [21]. The TP was measured by ammonium molyb-
date spectrophotometry (HM-812) [22], and the CODMn was measured by the permanganate
index method (Thermo Scientific 3131) [23]. Fluoride (F) was measured using an ion-selective
electrode (BHF5300) [24], and the total cyanides were analysed using pyridine barbituric acid
spectrophotometry (TCN-508) [25], while sulphide (S) was determined using methylene blue
spectrophotometry (ST201A) [26]. Petroleum hydrocarbons (Oil) were measured using infra-
red spectrophotometry (GC1290) [27]. The linear alkylbenzene sulfonates (LAS) were measured
using methylene blue spectrophotometry (UltiMate3000) [28], and volatile phenols (VP) were
measured using spectrophotometric determination with 4-amino-antipyrin (BELL) [29].

The main cation was determined by subjecting the acid-treated water samples to a 20-fold
dilution with ultrapure water. For the trace elements and toxic elements, the volume of the
water samples was reduced by a factor of four at 60°C on an electric hot plate. Cu and Zn were
determined by a flame atomic absorption spectrometer (FAAS) using an ethane-air flame
(CAAM-2001N) [30], while Hg was determined by cold-vapor atomic absorption spectrome-
try (CVAAS) (Ultima Expert) [31]. Cd and Cr were measured using an electrothermal atomic
absorption spectrometer (ETAAS) (Avio 200) [32], while As and Se were analysed using the
hydride generation method (HGAAS) (AA-6033C) [33]. The accuracy of the analytical data
were ensured by triplicate samples, blank test controls and careful standardization. The ion
balance of each sample was within +5%.

Data treatment and multivariate statistical methods

Although water sampling was conducted every month at all sites, due to the impact of the
COVID-19 pandemic and bad weather, some points could not be sampled, and the missing
data were replaced by the average value. The basic statistics of the two-year water quality
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dataset (3192 observations) are shown in Table 2. The data for multivariate statistical analysis
usually conform to a normal distribution; therefore, before conducting the multivariate statis-
tical analysis, each variable was tested for conformity to the normal distribution by analysing
the skewness and kurtosis statistics. The test results showed that all factors were in line with or
close to the normal distribution. The ranges of skewness and kurtosis were—0.45 to 0.91 and
—0.97 to 0.53, respectively. For CA and PCA, taking into account the differences in the magni-
tude and measurement units of different water quality indicators, all selected parameters were
also z-scale normalized with mean = 1 and variance = 0.

In this study, all data were analysed through a variety of multivariate statistical analysis
techniques to explore the parameters that caused changes in water quality at different temporal
and spatial scales [34]. For effective pollution control and water management, a large amount
of water quality data needs to be explained. Controlling river pollution and mastering reliable
water quality information are necessary for effective management. Multivariate analysis of
river water quality datasets by CA, DA, PCA and FA, CA, PCA, and FA were applied to experi-
mental data and normalized by z-scale conversion to avoid misclassification due to large differ-
ences in data dimensions, and DA was applied to the original data. All mathematical and
statistical calculations were performed using Excel 2010, IBM SPSS Statistics 26.0 and Statistica
12 [35-37].

Cluster analysis

Cluster analysis (CA) is a multivariate statistical method for classifying objects according to
their distance or proximity [38]. The system objects can be classified into categories or clusters
based on the similarity or difference of their objects [39]. The hierarchical CA method adopted
in this paper is the most widely used clustering method. This method clusters the closest or
most similar objects into clusters through successive aggregation and finally groups these clus-
ters into larger clusters. The Euclidean distance usually indicates whether two samples are sim-
ilar, and the "distance" can be expressed by the "difference" between the analysis values of the
two samples [40]. In this study, the Ward method was used with the squared Euclidean dis-
tance as a measure of similarity, and a hierarchical aggregate CA was performed on a normal-
ized dataset. The distance between clusters was determined using analysis of variance, and the
sum of squares of the two clusters generated in each step was minimized. CA analyses river
water quality datasets to group spatial and temporal variability by similarities, thereby creating
a spatiotemporal tree among samples. The dendrogram provides a visual summary of the clus-
tering process, showing an image of each group and those in its vicinity, while the dimensions
of the original data are greatly reduced. The link distance is reported as Dlink/Dmax, which
represents the quotient of the link distance divided by the maximum distance and multiplied
by 100 in a specific case to standardize the link distance on the y-axis. The standardized data
were clustered by the Ward method and square Euclidean distance [41].

Discriminant analysis

Discriminant analysis (DA) is used to analyse the difference between two or more naturally
occurring groups [42]. It can establish a discriminant function when the previous class is
known and assign observations to known groups. If the DA is valid for a set of data, a correctly
and incorrectly estimated classification table will produce a high correct percentage. DA dis-
tinguishes between two or more naturally occurring groups by quantitative attributes and
aims to provide a statistical classification of samples, which can be performed by CA. The DA
technique establishes a discriminant function for each group, which operates based on the
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Table 2. Statistical description (max, min, mean and SD) of water quality parameters.

Parameters M1 T1 M2 T2 T3 M3 M4 T4 T5 M5 M6 Té6 M7 Ms8
pH Max. 7.81 8.31 7.99 7.84 8.05 7.98 7.98 7.98 7.93 7.96 7.82 7.81 7.89 7.97
Min. 7.37 7.31 7.40 7.27 7.28 7.32 7.31 7.32 7.29 7.28 7.32 7.32 7.38 7.41
Mean 7.56 7.65 7.63 7.60 7.63 7.79 7.70 7.64 7.56 7.79 7.61 7.62 7.62 7.70
SD 0.17 0.25 0.22 0.19 0.20 0.19 0.23 0.21 0.27 0.23 0.18 0.17 0.20 0.23
DO (mg/L) Max. 8.50 9.10 9.00 8.90 9.20 9.60 9.40 8.90 8.80 9.70 9.10 8.80 9.10 9.40
Min. 6.80 8.40 7.90 7.70 8.20 7.80 8.10 7.60 7.60 7.10 7.60 8.20 7.60 7.80
Mean 7.57 8.71 8.56 8.23 8.63 8.53 8.58 8.41 8.36 8.09 8.18 8.52 8.38 8.85
SD 0.63 0.18 0.37 0.33 0.34 0.55 0.47 0.49 0.40 0.89 0.51 0.19 0.48 0.57
COD (mg/L) Max. 36 34 42 16 15 24 32 19 24 44 42 36 30 29
Min. 23 6 6 4 5 6 15 5 6 14 13 9 16 15
Mean | 30.08 15.67 26.92 9.17 8.83 17.58 26.58 11.17 12.50 32.08 26.33 22.17 25.42 23.58
SD 4.12 9.12 9.90 3.86 341 5.95 5.09 5.59 5.63 9.56 8.77 9.16 4.56 4.29
NH;-N(mg/L) Max. 2.22 1.68 1.63 1.82 1.89 1.90 1.78 0.97 0.87 1.22 1.64 1.42 1.24 0.98
Min. 1.02 0.42 1.23 0.86 0.82 0.79 0.62 0.33 0.39 0.56 0.52 0.46 0.44 0.45
Mean 1.64 0.89 1.39 1.34 1.46 1.27 1.20 0.62 0.66 0.93 0.90 0.91 0.86 0.74
SD 0.32 0.38 0.13 0.29 0.35 0.33 0.36 0.22 0.15 0.23 0.34 0.28 0.28 0.15
TP (mg/L) Max. 0.44 0.32 0.38 0.30 0.20 0.36 0.32 0.23 0.15 0.33 0.19 0.32 0.28 0.26
Min. 0.31 0.13 0.20 0.08 0.05 0.12 0.12 0.14 0.03 0.11 0.10 0.17 0.07 0.08
Mean 0.38 0.20 0.31 0.16 0.10 0.22 0.23 0.19 0.10 0.19 0.14 0.22 0.16 0.15
SD 0.05 0.05 0.06 0.07 0.04 0.07 0.06 0.03 0.04 0.08 0.03 0.05 0.07 0.05
CODMn (mg/L) | Max. 9.90 4.80 8.20 5.90 6.10 6.80 7.50 4.90 3.90 8.20 8.00 8.50 7.80 8.30
Min. 7.40 2.60 6.20 3.40 5.10 4.60 4.80 2.50 2.40 3.90 3.90 5.10 4.60 4.20
Mean 8.28 3.73 7.09 4.69 5.59 6.07 6.16 3.59 3.21 6.53 5.84 6.65 6.38 6.34
SD 0.83 0.68 0.70 0.84 0.38 0.70 1.03 0.99 0.52 1.39 1.61 1.34 1.25 1.38
F (mg/L) Max. 0.75 0.94 1.10 0.48 0.52 0.64 0.77 0.71 0.63 0.76 0.90 0.98 0.86 0.85
Min. 0.44 0.72 0.75 0.38 0.38 0.52 0.58 0.51 0.53 0.62 0.73 0.72 0.71 0.66
Mean 0.55 0.85 0.84 0.44 0.45 0.61 0.64 0.61 0.59 0.67 0.81 0.87 0.81 0.78
SD 0.12 0.07 0.13 0.03 0.07 0.03 0.06 0.08 0.03 0.05 0.06 0.08 0.05 0.08
Oil (mg/L) Max 0.24 0.18 0.20 0.09 0.09 0.07 0.17 0.11 0.06 0.12 0.21 0.18 0.19 0.18
Min. 0.13 0.06 0.05 0.05 0.05 0.05 0.06 0.06 0.02 0.06 0.06 0.06 0.06 0.06
Mean 0.17 0.10 0.11 0.08 0.07 0.06 0.09 0.08 0.05 0.08 0.15 0.15 0.14 0.14
SD 0.03 0.04 0.06 0.01 0.01 0.01 0.03 0.02 0.02 0.02 0.05 0.04 0.04 0.04
cr® (mg/L) Max. | 0.023 0.013 0.024 0.023 0.019 0.021 0.022 0.018 0.015 0.026 0.023 0.024 0.023 0.022
Min. 0.013 0.008 0.015 0.007 0.008 0.012 0.015 0.010 0.006 0.012 0.016 0.017 0.015 0.015
Mean | 0.018 0.010 0.019 0.015 0.015 0.015 0.019 0.014 0.009 0.018 0.021 0.020 0.019 0.017
SD 0.003 0.002 0.002 0.005 0.004 0.003 0.002 0.002 0.003 0.005 0.002 0.002 0.002 0.002
LAS (mg/L) Max 0.30 0.29 0.32 0.23 0.23 0.23 0.28 0.24 0.21 0.26 0.29 0.27 0.28 0.26
Min. 0.16 0.07 0.11 0.09 0.08 0.07 0.09 0.05 0.04 0.08 0.07 0.08 0.07 0.06
Mean 0.27 0.24 0.24 0.17 0.16 0.18 0.22 0.17 0.15 0.19 0.21 0.22 0.21 0.20
SD 0.04 0.07 0.08 0.05 0.04 0.05 0.06 0.07 0.05 0.07 0.08 0.05 0.06 0.06
Cu (mg/L) Max. 0.07 0.08 0.08 0.06 0.05 0.06 0.06 0.04 0.05 0.06 0.06 0.08 0.06 0.05
Min. 0.04 0.03 0.06 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.02
Mean 0.06 0.05 0.07 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.05 0.04 0.03
SD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01
Zn (mg/L) Max. 0.06 0.05 0.06 0.06 0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.05 0.05
Min. 0.04 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Mean 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04
SD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(Continued)
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Table 2. (Continued)

Parameters
Cd (mg/L)

As (mg/L)

Hg (mg/L)

CN (mg/L)

VP (mg/L)

S (mg/L)

Se (mg/L)

https://doi.org/10.1371/journal.pone.0245525.t002

Max.

Min.

Mean
SD

Min.
Mean
SD

Min.
Mean
SD
Max.
Min.
Mean
SD

Min.
Mean
SD
Max.
Min.
Mean
SD
Max.
Min.
Mean
SD

M1
0.00033
0.00018
0.00024
0.00004

0.0036
0.0016
0.0029
0.0006
0.00026
0.00010
0.00017
0.00006
0.019
0.012
0.015
0.003
0.0015
0.0008
0.0011
0.0002
0.014
0.010
0.012
0.001
0.0013
0.0006
0.0009
0.0003

T1
0.00029
0.00012
0.00021
0.00006

0.0034
0.0008
0.0022
0.0009
0.00025
0.00007
0.00015
0.00008
0.018
0.005
0.012
0.005
0.0009
0.0003
0.0006
0.0002
0.014
0.006
0.010
0.003
0.0009
0.0004
0.0007
0.0001

M2
0.00033
0.00019
0.00027
0.00005

0.0036
0.0015
0.0025
0.0008
0.00026
0.00006
0.00015
0.00008
0.016
0.011
0.013
0.002
0.0014
0.0006
0.0010
0.0002
0.015
0.009
0.012
0.003
0.0012
0.0006
0.0009
0.0002

T2
0.00028
0.00022
0.00025
0.00002

0.0028
0.0008
0.0017
0.0006
0.00012
0.00008
0.00010
0.00001
0.009
0.006
0.008
0.001
0.0009
0.0003
0.0006
0.0002
0.008
0.006
0.007
0.001
0.0009
0.0004
0.0006
0.0002

T3
0.00026
0.00016
0.00021
0.00003

0.0022
0.0008
0.0016
0.0004
0.00030
0.00012
0.00018
0.00006
0.009
0.005
0.007
0.001
0.0007
0.0003
0.0005
0.0001
0.010
0.005
0.008
0.001
0.0007
0.0003
0.0005
0.0002

M3
0.00036
0.00025
0.00030
0.00003

0.0038
0.0011
0.0020
0.0009
0.00026
0.00009
0.00016
0.00005
0.014
0.006
0.008
0.002
0.0012
0.0004
0.0007
0.0002
0.009
0.005
0.007
0.002
0.0013
0.0004
0.0007
0.0003

M4
0.00039
0.00021
0.00030
0.00007

0.0036
0.0015
0.0027
0.0006
0.00023
0.00012
0.00016
0.00004
0.013
0.006
0.010
0.002
0.0016
0.0008
0.0011
0.0003
0.013
0.009
0.011
0.001
0.0016
0.0004
0.0010
0.0005

original data [43], as shown below:

T4
0.00036
0.00012
0.00029
0.00007

0.0032
0.0008
0.0020
0.0006
0.00016
0.00006
0.00011
0.00003
0.013
0.005
0.009
0.003
0.0009
0.0004
0.0006
0.0002
0.009
0.005
0.007
0.001
0.0009
0.0005
0.0006
0.0002

T5
0.00028
0.00012
0.00021
0.00004

0.0026
0.0008
0.0018
0.0005
0.00016
0.00005
0.00010
0.00004
0.013
0.004
0.008
0.003
0.0008
0.0003
0.0005
0.0002
0.009
0.005
0.006
0.001
0.0008
0.0004
0.0006
0.0002

M5
0.00048
0.00022
0.00034
0.00008

0.0036
0.0012
0.0029
0.0007
0.00019
0.00012
0.00015
0.00002
0.019
0.007
0.014
0.004
0.0013
0.0004
0.0006
0.0003
0.009
0.006
0.007
0.001
0.0014
0.0004
0.0009
0.0003

f(Gi) =k + Z Wz‘jpij
=1

Mé6
0.00048
0.00024
0.00035
0.00009

0.0035
0.0009
0.0027
0.0007
0.00016
0.00007
0.00013
0.00003
0.018
0.005
0.012
0.005
0.0013
0.0003
0.0007
0.0004
0.007
0.005
0.006
0.001
0.0009
0.0004
0.0007
0.0002

T6
0.00042
0.00026
0.00034
0.00006

0.0037
0.0012
0.0030
0.0007
0.00018
0.00008
0.00015
0.00003
0.009
0.006
0.008
0.001
0.0009
0.0003
0.0007
0.0002
0.010
0.006
0.008
0.001
0.0013
0.0005
0.0009
0.0003

M7
0.00038
0.00020
0.00029
0.00006

0.0032
0.0008
0.0026
0.0007
0.00016
0.00007
0.00012
0.00003
0.017
0.005
0.011
0.004
0.0013
0.0004
0.0008
0.0003
0.009
0.006
0.007
0.001
0.0010
0.0004
0.0007
0.0002

M8
0.00033
0.00016
0.00026
0.00005

0.0030
0.0007
0.0024
0.0007
0.00021
0.00005
0.00011
0.00005
0.013
0.004
0.009
0.003
0.0010
0.0003
0.0006
0.0003
0.007
0.005
0.006
0.001
0.0009
0.0004
0.0007
0.0002

(1)

Where i is the number of groups (G), k; is the constant inherent to each group, # is the number
of parameters used to classify a set of data into a given group, and w; is the weight coefficient
that is assigned by DA to a given selected parameter (p;).
In this study, three groups of temporal (three seasons) and spatial (three sampling
areas) evaluations were selected, and the analysis parameters used to assign the measure-
ment of one monitoring point to one group (season or monitoring area) were taken as n.
The discriminant analysis of the original data was run in standard mode, forward stepwise
mode and backward stepwise mode to construct discriminant functions to evaluate the
temporal and spatial changes in river water quality. The site (spatial) and season (tempo-
ral) are group-dependent variables, and all measurement parameters are independent
variables.
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Principal component analysis (PCA)/factor analysis (FA)

Principal component analysis (PCA) is actually a dimensionality reduction method. Its main
purpose is to use fewer variables to explain most of the variation in the original data and to
convert many highly correlated variables into independent or unrelated variables [44]. Usually,
new variables that are fewer in number than the original variables and that can explain the var-
iation in most of the data, the so-called principal components, are used to explain the compre-
hensive index of the data. The basic idea of principal component analysis is to first draw a
"best" fitting line for n points so that the sum of squares of the vertical distance of these n
points to the line is the smallest and is called the first principal component of this line [45].
Then, the second principal component that is independent of the first principal component
and has the smallest square sum of vertical distances from n points is found. Analogously,
until m principal components are obtained, the value of m is usually such that the variance of
the first few principal components accounts for more than 85% of the total variance [46].

Factor analysis (factor analysis) is a multivariate statistical method that uses a few potential
random variables—factors—to describe the covariance relationship among many variables
[47]. In this paper, the factor obtained by the rotation of the maximum variance criterion is a
linear combination of the original variables [48]. Under the premise of ensuring the least infor-
mation loss, the original data are described as accurately as possible to achieve the dimension-
ality reduction of multivariate data. In general, the analysis results only select factors with
eigenvalues greater than 1.

Results and discussion
Temporal/spatial similarities and grouping

The dendrogram generated by the time cluster analysis divided 12 months into three clusters
at (Dlink/Dmax) *100 <70, and there were significant differences between the clusters (Fig 2).
The first cluster (first period) included June and July, corresponding to the high water flow
period; the second cluster (2nd period) included August, September, October and November,

120

100

80

60

( Dlink/Dmax ) *100

40

. 1 L 1

May Apr. Mar. Feb. Jan. Dec. Now. Oct. Sep. Aug. Jul Jun.

Fig 2. Dendrogram showing temporal clustering of monitoring periods.

https://doi.org/10.1371/journal.pone.0245525.9002
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corresponding to the flat water flow period; the third cluster (3rd period) contained all the
remaining months (December, January to May), corresponding to the low water flow period.
Therefore, the temporal change in river water quality depends largely on local climatic condi-
tions (spring, summer, autumn, winter) and hydrological conditions (low flow, average flow,
and high flow periods). Obviously, the Shuangji River Basin is a typical seasonal river in North
China. Since the Shuangji River is mainly a polluted river, the main body of the river comes
from the sewage treatment plant along the bank, and the change in water quality reflects the
change in the treatment effect of the sewage treatment plant. In summer, the sewage treatment
plant has a better treatment effect, and the summer rainfall is large, and the river flow is large,
so the river water quality in summer is better and divided into one category. In winter, the sew-
age treatment plant has poor water quality due to temperature and operation, and the rainfall
is small, and the river flow is small. Therefore, the river water quality in winter is poor and
divided into one category.

The spatial CA also generated a dendrogram with three clusters at (Dlink/Dmax)*100<50
(Fig 3). Group A comprised M1 and M2; group B comprised T6 and M3 to M8; group C com-
prised T1 to T5. It can be clearly seen from the Fig 3 that one group was the main branch of
river (M1 to M8), while the other type was the tributaries of the river (T1 to T6). The tributary
water sources of the Shuangji River mainly come from the drainage of upstream coal mines
and reservoirs. Compared with the main river, the tributary water sources are very clean and
were therefore classified as a cluster. The main river category was divided into three categories
at (Dlink/Dmax)*100<30. The first category included M1 and M2, which were highly polluted
areas. The second category included M3, M4 and M5, which were in moderately polluted
areas. Among the pollution sources, the main source of pollution in the high-pollution areas
was that the surrounding rural domestic sewage was directly discharged into rivers and urban
sewage after treatment by sewage treatment plants. Due to the improvement in urban living
standards, urban domestic water consumption has exceeded the carrying capacity of sewage
treatment plants, and a new sewage treatment plant is currently under construction, resulting
in poor water quality in the upper Shuangji River. The medium-pollution areas were mainly
polluted by the industrial wastewater discharged into the river (It can also be known from the

120
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Fig 3. Dendrogram showing spatial clustering of monitoring sites.

https://doi.org/10.1371/journal.pone.0245525.g003
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data in Table 2). The main discharge enterprise was the paper factory, and the main pollution
factor was COD. However, due to the recent strict national requirements for wastewater dis-
charge, the wastewater of the paper mill has been discharged through the factory to meet the
standard discharge, which has not caused much river pollution, resulting in the areas being
only moderately polluted. The low-pollution area was located in the lower reaches of the
Shuangji River in Xinmi County. There was no external water pollution. The river has passed
the purification of constructed wetlands and its own self-purification ability to achieve better
water quality, so it belongs to the low-pollution area.

Temporal/spatial variations in river water quality

The temporal variation was evaluated using DA, with the clusters based on CA. DA aims to
test the importance of discriminant functions and to determine the most important variables
related to the differences between clusters. As shown in Table 3, the Wilks’ lambda and chi-
square values of each discriminant function ranged from 0.273 to 0.808 and from 34.834 to
202.505. The p-level value was lower than 0.01, indicating that the time DA was reliable and
effective.

The discriminant functions (DFs) and classification matrices (CMs) obtained by the stan-
dard, forward stepwise and backward stepwise modes of DA are shown in Tables 4 and 5. Both
the standard mode and the forward stepwise mode were able to achieve discriminant accuracy
rates of 80%, using 19 and 15 factors, respectively. However, the backward stepwise mode used
only four factors (CODMn, Cu, As and Se) to achieve a discriminant accuracy rate close to
70%. The temporal DA showed that the four factors CODMn, Cu, As and Se were the most
important parameters to distinguish the three periods obtained by clustering and accounted
for most of the expected temporal changes in water quality.

The box plot of the four important parameters obtained by the backward discriminant anal-
ysis are shown in Fig 4. The average values of CODMn, Cu, As and Se showed the highest val-
ues in the first time period and showed a downward trend in the second and third time
periods due to hydrological conditions (high flow period, flat flow period and low flow period),
showing the characteristics of point pollution sources.

The results of the spatial analysis of DA were similar those of CA. The Wilks’ lambda and
chi-square values of each discriminant function were between 0.063 to 0.448 and 129.962 to
432.084 (p<0.01), respectively, indicating that the spatial discriminant analysis was credible
and valid (Table 6).

The methods for obtaining the discriminant functions and classification matrices of the
spatial DA were the same as those for the temporal DA and used the standard, forward step-
wise, backward stepwise modes. The results are shown in Tables 7 and 8. The standard step-
wise mode and the forward stepwise mode used 19 and 17 discriminant variables, respectively,
and discriminant accuracy rates of 97.62% and 97.62% were obtained. However, in the

Table 3. Results of temporal-DA for temporal variation.

Modes DF
Standard 1
2
Forward 1
2
Backward 1
2

https://doi.org/10.1371/journal.pone.0245525.t1003

R Wilks’lambda Chi-square P-level
0.728 0.273 202.505 0.000
0.647 0.581 84.734 0.000
0.726 0.279 201.718 0.000
0.640 0.590 83.276 0.000
0.659 0.457 128.057 0.000
0.438 0.808 34.834 0.000
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Table 4. Classification functions coefficients for discriminant analysis of temporal variation.

Parameters Standard mode Forward stepwise mode Backward stepwise mode
1st period 2nd period 3rd period 1st period 2nd period 3rd period 1st period 2nd period 3rd period
pH 238.773 234.523 234.928 237.5 233.2 233.6
DO 17.741 17.759 18.43 14.8 14.8 15.4
COD 0.19 0.097 0.069 0.3 0.2 0.2
NH;-N 30.981 27.062 27.081 34.7 30.8 31
TP 61.358 66.29 73.702 77.8 82.9 89.6
CODMn -3.018 -2.535 -1.992 -3.6 -3.1 -2.6 0.8 0.954 1.393
F 45.461 42.572 46.654 49.4 46.2 50.3
Oil -56.343 -62.48 -46.918 -51.2 -57 -41.5
cr®* 2.6 51.9 -67.294 30.3 74.3 -58.8
LAS -193.536 -183.126 -202.094 -239.9 -230 -249.4
Cu 864.01 910.505 838.683 910.2 963.7 894.6 72.44 153.883 73.684
Zn 875.395 870.371 888.18
Cd 12491.85 23432.102 16533.812 17915.8 30535.2 22702
As 9058.502 10366.496 8223.749 10494.3 11947.4 9881 1129.45 2514.299 640.057
Hg 35270.069 41507.369 42883.379
CN 799.035 850.65 870.161
\%234 -7102.505 -7134.241 -8590.354
S -4520.773 -4189.78 -4279.094 -4408.3 -4030.2 -4189
Se -11876.813 -24283.73 -17052.08 -11393.9 -24317.2 -16832.4 11762.92 542.704 6614.182
Constant -1042.016 -1008.92 -1013.901 -1007.4 -973.8 -977.2 -12.74 -11.188 -9.39

https://doi.org/10.1371/journal.pone.0245525.t004

backward step-by-step mode, the DA used only 7 discriminant parameters to produce a dis-
criminant accuracy rate of 92.86%, which indicated that COD, TP, CODMn, F, LAS, Cu, and
Cd were important parameters of the spatial variables.
Box and whisker plots of the discriminant parameters recognized by DA are given in Fig 5. In
these seven groups of graphs, the minimum value of all factor averages is group C because group

Table 5. Classification matrix for discriminant analysis of temporal variation.

Monitoring sites Percent correct Period assigned by DA
Group A Group B Group C
Standard mode
Group A 78.57 22 2 6
Group B 80.36 0 45 11
Group C 78.57 6 45 66
Total 79.17 28 57 83
Forward stepwise mode
Group A 67.86 19 0 9
Group B 85.71 0 48 8
Group C 82.14 5 10 69
Total 80.95 24 58 86
Backward stepwise mode
Group A 39.29 11 1 16
Group B 71.43 0 40 16
Group C 76.19 8 12 64
Total 68.45 19 53 96
https://doi.org/10.1371/journal.pone.0245525.t005
11/19
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Fig 4. The (a)- (d) temporal variations: CODMn, Cu, As and Se.
https://doi.org/10.1371/journal.pone.0245525.9004

C was a tributary of the Shuangji River, and the main water sources were from coal mines and
reservoirs, which belonged to the clean water quality group. Among them, the maximum values
of the average values of COD, TP, CODMn and LAS were all in group A because group A is the
water quality of the upper Shuangji River, and the main sources of pollution in this area were the
direct discharge of rural domestic sewage into the river and urban sewage plant drainage, which
belonged to the group with poor water quality. The maximum value of the average value of F and
COD was group B, and the main source of pollution was industrial wastewater.

Principal component analysis/factor analysis

Before factor analysis, the Kaiser-Meyer-Olkin (KMO) and Bartlett’s sphericity tests were per-
formed to check the correlation and partial correlation between variables to judge whether the
data were suitable for factor analysis [49]. The value of the KMO statistic ranges between 0 and
1 [50]. In the actual analysis, when the KMO statistic is above 0.7, the effect of the factor analysis
of the data is considered to be better. The KMO result was 0.755, and Bartlett’s sphericity result
was 1342.53 (p<0.05), showing that PCA can play an effective role in reducing dimensionality.
FA/PCA analysis is aimed at the standardized data and compares and analyses the composi-
tion patterns between water samples to determine the important factors that affect each water
sample [51]. The PCA of all datasets yielded six (principal component)PCs, which explained

Table 6. Results of spatial-DA for spatial variation.

Modes DF R Wilk’slambda Chi-square P-level
Standard 1 0.899 0.063 430.933 0.000
2 0.819 0.328 173.689 0.000

Forward 1 0.897 0.064 432.084 0.000
2 0.818 0.330 174.452 0.000

Backward 1 0.879 0.102 370.092 0.000
2 0.743 0.448 129.962 0.000

https://doi.org/10.1371/journal.pone.0245525.t1006
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Table 7. Classification functions coefficients for discriminant analysis of spatial variation.

Parameters Standard mode Forward stepwise mode Backward stepwise mode
Group A Group B Group C Group A Group B Group C Group A Group B Group C
pH 269.1 265.7 261 272.9 269.4 264.8
DO 17 16.3 17.3
COD 1.1 1 0.8 1 0.9 0.8 0.21 0.21 -0.01
NH,-N 21.5 213 21
TP 130.1 156.1 120 134.6 161.6 123.5 35.14 68.34 28.34
CODMn 9.9 11.1 7.7 11 12.2 8.7 8.06 9.32 5.78
F 130.4 121.1 113.8 124.4 114.5 108.8 51.73 48.08 39.24
Oil -59.4 -38.1 -59.6 -74.6 -53.4 -74.9
Cr%* 1770.7 1633.7 1413.5 2126.6 1972.3 1776.1
LAS -72.6 -59.5 -96.2 -85.1 -70.6 -109.8 116.14 135.11 88.79
Cu 168.2 346 298.5 358.6 529.8 489.8 -236.4 -95.66 -115.39
Zn 679.5 755.7 713 571.4 658.7 596.3
Cd 142909.4 101402.6 123665.9 74515.5 36185.6 54165.7 86189.54 51500.86 63316.62
As 15541.5 14717 14327.2 12428.7 11962.3 10975.5
Hg 149115.2 122729.6 138699.9 212009.9 181213.5 204055.1
CN -1170.4 -718.3 -778 -1835.2 -1363.7 -1448.2
VP 17016 15247.1 11929.7 19340.7 17009.4 14689.8
S -6953.9 -6099.8 -6384.7 -7098.4 -6186.5 -6576.6
Se -31329 -28910.8 -32671.3
Constant -1259.7 -1248.3 -1162.3 -1194.4 -1188 -1095.2 -71.5 -89.71 -39.86

https://doi.org/10.1371/journal.pone.0245525.t007

68% of the total variance with eigenvalues > 1 (Table 1). The first PC (29.7% of the total vari-
ance) was correlated (loading >0.7) with COD, TP, Cu and VP. The third PC (9.2% of total
variance) was correlated (loading>0.7) with LAS. However, the second, fourth, fifth and sixth
PCs, although they accounted for the total variance of 10.4%, 7.2%, 5.9% and 5.5%, respec-
tively, were not correlated (loading>0.7) with any of the parameters. Combining the local

Table 8. Classification matrix for discriminant analysis of spatial variation.

Monitoring sites Percent correct Period assigned by DA
Group A Group B Group C
Standard mode
Group A 98.80952 83 0 1
Group B 95.83334 1 23 0
Group C 96.66666 2 0 58
Total 97.61905 86 23 59
Forward stepwise mode
Group A 98.80952 83 0 1
Group B 95.83334 1 23 0
Group C 96.66666 2 0 58
Total 97.61905 86 23 59
Backward stepwise mode
Group A 92.85714 78 1 5
Group B 91.66666 22 0
Group C 93.33334 4 0 56
Total 92.85714 84 23 61
https://doi.org/10.1371/journal.pone.0245525.t008
13/19
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Fig 5. The (a)-(g) spatial variations: COD, TP, CODMn, F, LAS, Cu and Cd.
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industrial structure and distribution, it characterizes emissions related to industrial industries
such as handmade paper manufacturing, coking, chemical raw materials and chemical prod-
ucts manufacturing, and metal products, which are consistent with the current main industrial
industries in Xinmi (Henan Province).

The Scree plot determines the number of PCs to keep by understanding the underlying
data structure [52]. In this study, the Scree plot (Fig 6) showed a significant change in slope
after the sixth eigenvalue. The original variable on the PC subspace is called the load, which
was consistent with the correlation coefficient between the PC and the variable.

The axis of rotation defined by PCA will produce a new set of factors, each of which mainly
involves a subset of the original variables, and the degree of overlap is as small as possible, so
the original variables were divided into several independent groups [53]. Therefore, factor
analysis (FA) of the current Shuangji River dataset further reduces the contribution of the

Scree Plot of variance of PCs

Eigenvalue
w

0 2 4 6 8 10 12 14 16 18 20 22

Eigenvalue number
Fig 6. Scree plot of variance of PCs.

https://doi.org/10.1371/journal.pone.0245525.9006
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nonsignificant variables obtained from the PCA. The maximum variance rotation of the PC
(original) explained the six different VFs with eigenvalues> 1, explaining approximately about
68% of the total variance. After the rotation by the maximum variance method, the value of PC
was further revealed, and in VF, the participation of the original variable was clearer (Table 9).
Liu et al. (2003) [54] classified the factor loadings as ‘strong’, ‘moderate’, and ‘weak’, which
corresponded to absolute loading values of > 0.75, 0.75-0.50 and 0.50-0.30, respectively.

VEF1 (17.7% of the total variance) had strong positive loadings on Cu and S and moderate
positive loadings on NH;-N and TP, indicating pollution from mineral composition and
domestic sewage. This is because the main source of rivers in Xinmi City is drainage from
domestic sewage plants, and the main source of pollution is domestic pollution sources, and the
upstream of the tributaries are mainly coal and metal industries, causing some heavy metal pol-
lution. VF2 (12.6% of total variance) had strong positive loadings on Cd and moderate positive
loadings on Se and COD, indicating that the source was industrial wastewater pollution. This is
related to the main paper industry, metal products, and steel casting manufacturing industries
along the Shuangji River. VF3 (10.7% of total variance) had strong positive loadings on F and
Oil and moderate positive loadings on Cr®*, mainly manifested as fluoride pollution and heavy
metal pollution. This clustering indicates that the source of pollution was the discharge of waste-
water from the chemical industry, which is related to some chemical industries and metal
manufacturing industries along the river. VF4, which explained 9.9% of the total variance, had
moderate positive loadings on CODMn, NH;-N and Zn, indicating that the pollution was from

Table 9. Loadings of experimental variables (19) on significant principal components (with Varimax rotation) for the Shuangji River data set.

Parameters VF1 VE2 VE3 VF4 VE5 VF6
pH -0.16 -0.012 0.025 -0.149 0.69 0.025
DO -0.102 -0.051 0.069 -0.115 -0.093 -0.827

COD 0.282 0.545 0.378 0.283 -0.027 0.162
NH;-N 0.527 -0.062 -0.346 0.524 0.195 0.036

TP 0.634 0.104 0.124 0.441 -0.026 0.118
CODMn 0.244 0.257 0.304 0.647 -0.043 0.109

F 0.03 0.236 0.794 -0.097 0.022 -0.311

0Oil 0.192 0.028 0.718 0.151 0.248 0.199

Ccr® 0.133 0.345 0.516 0.373 -0.246 0.225

LAS 0.446 0.067 0.195 -0.295 0.631 0.127

Cu 0.809 0.191 0.177 0 -0.156 0.043

Zn 0.011 0.036 0.012 0.648 -0.229 0.057

Cd -0.026 0.771 0.148 -0.077 -0.202 0.309

As 0.308 0.74 0.152 0.105 0.068 -0.056

Hg 0.574 0.214 -0.039 -0.044 -0.483 0.124

CN 0.449 0.388 0.203 -0.001 -0.155 0.453

VP 0.537 0.18 0.286 0.209 -0.189 0.416

S 0.828 0.067 0.057 0.153 0.162 0.04
Se 0.065 0.652 -0.077 0.342 0.47 -0.239
Eigenvalue 3.369 2.399 2.036 1.884 1.708 1.496
%Total variance 17.731 12.629 10.714 9.915 8.991 7.876
Cumulative % variance 17.731 30.36 41.074 50.989 59.98 67.856

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 32 iterations.

https://doi.org/10.1371/journal.pone.0245525.t009
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mineral-related hydrochemistry and domestic sewage, mainly from the discharge of wastewater
from paper-making enterprises, domestic sewage, and metal manufacturing wastewater into the
river along the coast. VF5 (8.9% of total variance) had moderate positive loadings on pH and
LAS, which can be interpreted as coming from detergents and personal necessities in domestic
sewage. VF6, which explained 7.9% of the total variance, had moderate negative loadings on
DO. This finding suggests that the pollutants in the water consumed a large amount of oxygen.

The FA/PCA results indicated that most changes were composed of soluble salts (natural)
and organic pollutants (artificial). FA/PCA indicated that the main pollutants are COD,
CODMn, NH;-N, TP, Cu,Cr®*, Zn, S, Se, Cd, F, Oil and LAS. These pollutants mainly come
from domestic sewage discharge COD, CODMn, NH;-N, TP; papermaking wastewater dis-
charge COD, CODMn; textile industry, chemical product manufacturing wastewater dis-
charge F, Oil and LAS; metal product manufacturing, optoelectronic device manufacturing
and other industrial wastewater discharge Cu, Cr®", Zn, S, Se and Cd. The FA can identify the
parameters that have the greatest contributions to changes in river water quality. The method
of assessing the spatiotemporal changes in water quality based on FA/PCA have been applied
to water quality evaluation at an early stage.

Conclusions

Water quality monitoring programmes generate complex multi-dimensional data, which
requires multivariate statistical processing to analyse and interpret its basic information. In this
study, different multivariate statistical techniques were used to evaluate the spatial and temporal
variations in the surface water quality of the Shuangji River. Cluster analysis (CA) divided the
12 months and 14 sampling points into three categories according to the similarity of river
water quality characteristics and pollution. It provided an effective basis for the classification of
surface water in the studied area and can effectively reduce the number of sampling points to
analyse the river under the premise of lower loss of information. Discriminant analysis (DA)
provides the best results for spatial and temporal analysis. It used only four factors (CODMn,
Cu, As, Se) to distinguish the seasons temporally and achieved a 68% (79% reduction) accuracy
rate and used only seven parameters (COD, TP, CODMn, F, LAS, Cu, and Cd) to allocate the
three areas and achieve a 93% (63% reduction) accuracy rate. Although the FA/PCA pointed
out the 7 parameters required to explain 68% of the data variability (37% of the original 19
parameters), only a small amount of data was reduced. However, the six VFs obtained from the
PC indicated that the quality parameters of the river water were mainly divided into natural
(soluble salts) and anthropogenic (organic pollution) components. Therefore, multivariate sta-
tistical techniques are an excellent exploration tool for analysing and interpreting complex data-
sets related to water quality and understanding their temporal and spatial changes.
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