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1 | INTRODUCTION

Radiotherapy (RT) is one of the primary curative treatment options
for different types of cancer, for example, cancers of head and neck,
prostate, cervix, breast, as well as sarcomas. RT aims to deliver ther-
apeutic ionizing radiation dose to a treatment target, while sparing
healthy organs at risk (OARs) as much as possible. The therapeutic
radiation dose is delivered to the target using beams produced by a
clinical linear accelerator (LINAC) in external beam radiation therapy
(EBRT), while in brachytherapy radioactive sources invasively placed
near or inside the target are used. Typically, RT workflows include a
simulation stage and a treatment delivery stage. During the treat-
ment planning process at the simulation stage, computed tomogra-
phy (CT) scans serve as a primary source of anatomical information
to identify and delineate the target and OARs. In addition, they are
used to calculate the electron densities which are derived from the
Hounsfield unit (HU) values of those CT scans. This electron density
information in combination with the delineations of the anatomical
structures is used to calculate the therapeutic radiation dose.

CT scans with insufficient quality may greatly affect the treat-
ment planning process, potentially resulting in the target receiving
insufficient dosage and/or extra toxicity to the OARs. Metal implants
or metal components inside the body of the patient can induce
errors during the CT reconstruction, which appear as artifacts on the
resulting CT scans. These metal artifacts are typically bright and/or
dark streaks (see Fig. 1) and are produced by beam hardening, pho-
ton starvation, edge gradient effect, scatter, or their combination.2
The degree of metal artifacts mainly depends on the atomic number,
density, size, and shape of this metal component as well as its orien-
tation with respect to the CT scan plane.>* Among others, dental
implants or dental fillings in the head and neck (H&N) area, bilateral
or unilateral metal prostheses in the hip region, and metal screws in
the spine produce a large amount of metal artifacts and, thus, signifi-
cantly deteriorate the quality of CT scans.>”

Dark streaks near the metal components result from highly
attenuated polychromatic x-ray beams, which become for this reason
harder.® Because of this, insufficient photons reach the CT detectors
(photon starvation), resulting in large statistical errors in data acquisi-
tion, which induce fine bright and dark streaks along the direction of
highest attenuation”®. As a consequence, the appearance of these
streak-shaped metal artifacts adversely affects the accuracy of organ
contouring and the electron density calculation. This can eventually
result in errors in planned radiation dose distributions and particle
range measurements in photon and particle beams, respectively.?"1°

In the literature, several papers have been published on algo-
rithms which perform metal artifact reduction (MAR) on CT scans.
The working principle of traditional MAR algorithms may be catego-
rized into three overall approaches: image inpainting techniques,'!

2 and model-based iterative recon-

sinogram inpainting techniques,*
struction (MBIR) techniques'® or their combination. The image
inpainting techniques are applied to already reconstructed CT scans
and they replace artifact corrupted CT pixels with good-estimated

values. The sinogram inpainting techniques follow a similar principle,
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but are used on projection data (sinograms) instead of on recon-
structed CT slices. Finally, MBIR techniques are advanced CT recon-
struction techniques which use probabilistic forward and backward
models to reduce error propagations during CT reconstruction.'*
Recently, thanks to the increasing availability of computational
resources, very promising results in the field of medical imaging have
been produced using machine learning (and in particular its subset
deep learning),*>*® including metal artifact reduction in CT
scans.'??° For example, the performance of convolutional neural
networks (CNNs) has been assessed in combination with sinogram
inpainting for artifact correction.'®?* The deep learning techniques
are powerful in learning and capturing the detailed features and pat-
terns of the metal artifacts.

In general, the application of a MAR method on a CT scan with
artifacts (CT,n) results in the creation of a corrected CT scan (CTcor)
on which the impact of the artifacts is reduced, either in terms of
image quality or dosimetric outcome on the treatment. To measure
the effectiveness of the methods, several different metrics have
been introduced in the literature to compare CT,+ and CT.,. Image
quality metrics proposed include visual inspection, quantification of
HU values, artifact index,?? contrast-to-noise ratio (CNR), signal-to-
noise ratio (SNR), peak SNR (PSNR), structural similarity (SSIM),
Hausdorff distance (HD),>® and the Dice similarity coefficient
(DSC).24-2¢ To evaluate the dosimetric impact, instead, the calculated
dose distributions on CT,+ and CT.,, for the target and OARs pro-
vided by a treatment planning system (TPS) can be compared. Vari-
ous dose metrics can be used to express the dosimetric impact,
including gamma (y) index,?”?® dose-area histogram (DAH)?’ quan-
tifications of Degy, D10o% V100%, and Visox, O and therapeutic range
calculation (in particular, water equivalent thickness (WET)?! in parti-
cle therapy).

A topical review article has been previously published by Giant-

soudi et al. on the evaluation of the dosimetric effects of metal

Fic. 1.

CT scan with artifacts induced by a unilateral hip implant
with the appearance of bright streaks (indicated by yellow arrow)
and dark streaks (indicated by red arrow).
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artifacts on treatment planning and the potential dosimetric improve-
ments resulting from the application of various MAR methods.'° The
article addressed the impact of sinogram inpainting and MBIR on the
dose distributions, mainly focusing on research-based MAR methods
while, among the commercially available MAR methods, only the
Orthopaedics Metal Artifact Reduction (O-MAR (Philips Health Sys-
tem, Cleveland, USA)) algorithm was reported. Instead, this system-
atic review article aims to include all MAR methods which have
been investigated or proposed for RT applications in the last 5 yrs at
the time of publication (2015-2020). These methods include com-
mercial MAR methods and research-based MAR methods based on
either traditional algorithms or deep learning. In addition, our review
extensively reports not only the works on dosimetric impact of the
methods but also on the ones evaluating the effects on organ con-

touring, and image quality and HU restoration for RT applications.

2 | METHODS

2.A | Literature search

The systematic review search was performed in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) guidelines.®?3% A comprehensive electronic search
from the databases of PubMed® (U.S. National Library of Medicine,
USA) and Web of Science (Clarivate Analytics, USA) was performed
in October 2020. Combinations and synonyms of the main keywords

» o«

“metal artifact reduction,” “computed tomography,” and “radiother-
apy” were used. The search was limited to the English language and
to the last 5 yrs. Initially, title and abstract of the identified articles
were read to screen their suitability for the selection. Then, the full
texts were read from the selected articles to check their eligibility
for inclusion. Finally, a manual search was performed using the list
of references of the included articles to find any additional data

missed by the initial database searches (see Fig. 2).

2.B | Inclusion and exclusion criteria

An article was considered if it investigated the use of one or multiple
MAR methods on CT scans for RT applications, with the exclusion
of dual-energy CT (DECT), dental cone-beam CT (CBCT), C-arm CT,
spectral CT, micro-CT, or photoacoustic CT. Also, editorial commen-

taries and book chapters were excluded.

3 | RESULTS

A total of 40 full-text publications were selected for this systematic
review, including one review article, as mentioned in the Introduc-
tion section. The selected publications (except the review article)
have further been categorized into application of commercial meth-
ods (n=25), and application of research-based MAR methods
(n = 14). The category of commercial methods includes the articles

on commercial MAR algorithms (n = 21) and TPS-based density

correction (n = 4). Research-based MAR methods include the articles
on traditional MAR algorithms (n = 11) and deep learning-based
MAR algorithms (n = 3).

3.A | Commercial MAR methods

Commercial MAR methods are available on CT scanners or on the
TPS to reduce metal artifacts on CT, for RT applications. The algo-
rithms implemented directly on CT scanners use a sinogram inpaint-
ing technique with iterative reconstruction and include: O-MAR
(Philips Health System, Cleveland, USA),%* iterative metal artifact
reduction (iIMAR [Siemens Healthcare, Forchheim, Germany]),*®
smart metal artifact reduction (Smart MAR [General Electric Health-
care, Chicago, IL, USA]),%¢ and single-energy metal artifact reduction
(SEMAR [Canon/Toshiba Medical Systems, Otawara, Japan]).3” These
algorithms work on projection data (projection-based MAR algo-
rithms) and they typically use an image-based metal segmentation
method as a starting point.” Their basic concept is to detect and seg-
ment the corrupted projection data which corresponds to the metal
components. Subsequently, the corrupted data are replaced by esti-
mated corrected values.

Several studies have investigated the applicability of commercial
MAR algorithms, especially O-MAR, in RT. These commercial MAR
algorithms are not openly accessible; however, O-MAR is chosen
here for a general introduction to the working principles of all of
them. The O-MAR algorithm is optimized for orthopedic metal
implants and uses an iterative projection modification method to
reduce the artifacts (see Fig. 3). First, a tissue classification process
is performed which assigns tissue labels to all the pixels of an origi-
nal input image (see arrows ‘a’ in Fig. 3). Two separate images are,
thus, produced: one including only tissues and one only the metal
component. Subsequently, both segmented images (tissue classified
and metal only) and the original input image are forward projected
to make their respective sinograms (see arrows ‘b’ in Fig. 3). After
the sinograms are made, the tissue classified sinogram is subtracted
from the original sinogram (see arrows ‘c’ in Fig. 3) resulting in the
creation of a difference sinogram. Then, the metal-only sinogram is
used as a mask to remove the nonmetal pixels from the difference
sinogram (see arrows ‘d’ in Fig. 3) and a mask sinogram is created.
A correction image is then produced by filtered back projection of
the mask sinogram (see arrow ‘e’ in Fig. 3), and subtraction of the
correction image from the original input image is created (see
arrows ‘' and ‘g’ in Fig. 3). Finally, the corrected image is used as
an input in an iterative loop for further correction (see arrow ‘h’ in
Fig. 3).

A density correction or a density override method on the TPS
can also be used to reduce the metal artifacts on CT,+. When these
approaches are used, regions corrupted by metal artifacts and metal
regions are identified manually through contouring on CT,. Then, a
manual density override or density correction is performed by
replacing the metal artifacts commonly with the density of water or
by replacing the physical density of a metal implant by the appropri-

ate value 383
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3.A.1 | Evaluation of HU values restoration

The capability of the commercial MAR algorithms to improve the
HU values for RT applications was evaluated by several studies.
Generally, during the HU measurements for an anatomical region on
a CT scan, a 10%-20% variations in HU values are expected. For
example, at routine CT scans, the HU value of water is set to 0 HU.
The HU value of air is approximately —1000 HU and bone is around
1000 HU, while soft tissue HU values range from 20 HU to
30 HU.“° Table 1 provides an overview of the studies which investi-
gate the HU value improvements.

Kwon et al. studied the impact of O-MAR on both clinical H&N
CT scans with dental implants, and on CT scans of a custom-made
phantom with aluminum (Al), titanium (Ti), zirconium (Zr), and chro-
mium (Cr) metal implants.*! The CT., after O-MAR application
showed HU values closer (not quantified) to the actual values, while
the noise on clinical H&N CT scans was reduced. For the phantom,
a comparison between CT,,, after O-MAR application and CT scans
without metal implants (CT,e) did not show significant differences
while significant differences (P < 0.05) were observed between CT,
and CT et

For the evaluation of iMAR by Bir et al.,, a Gammex 467 (Gam-
mex, Middleton, WI, USA) phantom was used with several tissue-

equivalent inserts, such as lung, adipose tissue, breast, liver, and
bone.*?> The phantom was scanned with and without Al, Ti, and
stainless steel (SS) implants. This study revealed that iMAR applica-
tion improved the HU accuracy on CT., compared to CT,+ For
example, iIMAR approximated the HU values for tissue-equivalent
substitutes in the phantom up to +44 HU compared to CT,e. A simi-
lar finding was found by the authors for H&N clinical CT scans with
dental fillings and/or implants. Moreover, they stated that iMAR cor-
rected the HU values independently of the metal density. In another
study by Axente et al., a standard electron density phantom (CIRS,
Model 062MA, Norfolk, VA, USA) was used with multiple inserts,
such as plastic water, bone, muscle, adipose tissue, breast, bone,
lung, and liver.3®> The phantom with and without SS inserts with
varying diameters was CT scanned. It was shown that the CT.,, after
iMAR application restored the HU values well and it had absolute
differences of less than 25 HU compared to CT,ys Nevertheless,
residual HU errors (not quantified) were observed on the resulting
CTcor Furthermore, the study mentioned that iMAR restored the HU
independently of the metal component’s size and configuration.
Maerz et al. reported, in their dental cylindrical phantom study, that
the use of iIMAR reduced the average HU deviation, from 1006 HU
on CT,+ to 408 HU in the area which included the metal inserts,
and from 283 HU on CT,,; to 33 HU in tissue areas.*®
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Fic. 3. Working principle of the O-MAR algorithm. Starting from tissue classification, O-MAR produces original, tissue class, and metal-only
sinograms (a and b). Subtraction (c) of the tissue class sinogram from the original sinogram results in a difference sinogram. Then, the metal-
only sinogram is used to mask (d) the difference sinogram and a correction image is produced after filtered back projection (e). Subtraction of
the correction image from the input (f and g) produces a corrected image which then undergo (h) in order to apply further corrections.

Guilfoile et al. investigated the ability of Smart MAR to restore
the HU values. To this end, a breast expander consisting of a samar-
ium cobalt magnet was placed on an adult male phantom (CIRS,
Model ATOM 701-B, Norfolk, VA, USA).** The authors compared
the mean HU value on CT, (not given) with both CT, and CT,
after Smart MAR application. The results showed a reduction in the
HU value difference from 29 HU to 3 HU in ipsilateral lung, and
from 21 HU to 8 HU in bone close to the metal implant, respec-
tively. In addition, small differences in mean HU values were mea-
sured in regions that were further away from the implant. In a study
with a Catphan® 504 phantom (The Phantom Laboratory, NY, USA)
with a SS implant, Huang and Kohli found that Smart MAR substan-
tially reduced the metal artifacts.*> On average, the standard devia-
tion (STD) was reduced by 9.1 HU on CT., after Smart MAR
application in comparison with CT,+. Another study used a custom-
made water equivalent phantom with lead implants and concluded
that Smart MAR application improved the mean HU value in a region
of interest (ROI) close to a lead implant from —862 HU on CT, to
—185 HU on CT,.*¢ This low HU value measurement for water on
CT,t (water usually is around O HU) resulted from the severe dark
streak artifact from the metal implant. The application of iIMAR on
CT,+ reduced the severity of the dark streaks and, therefore,
improved the HU value of water.

A study by Murazaki et al. investigated the results of SEMAR
application on HU value measurements accuracy.*’ The authors

made use of a standard electron density phantom (CIRS, Model
062A, Norfolk, VA, USA) with and without Ti implants. To simulate
the different tissue types, plugs with different densities were
inserted into the phantom, such as muscle plugs and soft tissue
plugs. They found that, in the muscle plug, the mean HU value on
CT.er, CTat, and CT, after SEMAR application were 25.9 HU,
—281.8 HU, and 26.1 HU, respectively. A similar pattern of HU value
measurements was observed in other tissue plugs. In an experiment
by Miki et al., an anthropomorphic head phantom was CT scanned
with and without the insertion of metal crews.*® In areas with sev-
ere artifacts, HU value measurements on both CT, and CT.., after
SEMAR application were compared with CT,.. This resulted in dif-
ferences of —79.5+97.2 HU (mean + STD) and -1.4 + 19.5 HU
(mean = STD), respectively. The HU value of CT,.¢ was not reported.
The CT. after SEMAR application brought the HU values closer to
the reference values.

In general, the majority of the studies used phantoms to investi-
gate the capability of the commercial MAR algorithm to restore HU
values and they concluded that the investigated commercial MAR
algorithms improved the accuracy of HU value measurements. Nev-
ertheless, residual HU errors were observed on CT,, either under-
estimating or overestimating the correct HU values. Underestimation
resulted from incomplete correction of dark streak artifacts, while
overestimation resulted from incomplete correction of bright streaks
on CTeor.
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TasLe 1 Summary of the studies which investigated commercial MAR algorithms for HU value restoration for RT applications.

Author MAR Images Metals CT scans
Kwon O-MAR Clinical Dental implants CT.t & CTeor
et al.*! (H&N, open
mouth),
(n=3)
Biretal** iMAR  Phantom Al, Ti & SS CTrer VS CTeor
Axente iMAR Phantom SS with varying CT,ef vs CTeor
et al®® diameters
Maerz iMAR Phantom Dental implants (CTart Vs CTref) &
et al.* (CTeor Vs CTrer)
Guilfoile Smart  Phantom Samarium cobalt  (CT. vs CTer ) &
et al* MAR magnet (CTeor Vs CTref)
Huang & Smart  Phantom SS CTeor Vs CTart
Kohli*® MAR
Inal & Smart  Phantom Lead CT.t & CTeor

Sarpiin®® MAR

Murazaki SEMAR Phantom Metal inserts CT.t & CTeor
et al.¥’
Miki et al.*®  SEMAR Phantom Metal screws (CTart vs CTrer ) &

(CTcor Vs CTref)

| 203
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ROI; [Refer-
ence HU
value (Mean)] Measurements Results Findings
Air in outer Mean HU -238.7 HU & O-MAR
cavity; -441.8 HU increased the
[-1000 HU] accuracy of HU
values
Tissue Absolute HU 44 HU iMAR restored
equivalent difference the HU values
substitutes; independent of
[Not reported] the metal
density
Multiple Absolute HU 25 HU iMAR restored
places difference the HU values
independent of
the metal size
and
configuration
Tissue; Mean HU 283 HU & 33 iMAR improved
[Not reported] difference HU the accuracy of
Metal inserts; 1006 & 408 HU value
[Not reported] HU measurements
Ipsilateral lung Mean HU 29HU & 2HU Application of
Spinal bone 21HU & 8HU  Smart MAR
[Not reported] improved the
HU values
restoration
Multiple STD reduction 9.1 HU Smart MAR
places reduced the
STD of HU
values
Area close to Mean HU -862 HU & Smart MAR
the metal -185 HU improved the
edge; accuracy of HU
[Around O value
HU] measurements
Muscle Mean HU —281.8 HU & SEMAR restored
substitute; 26.1 HU the HU values
[25.9 HU] with high level
of accuracy
Severe Mean (+ STD) HU -79.5 (+ 97.2) SEMAR
artifact HU & improved the
region; -1.4 (+ 19.5) HU value
[Not reported] HU measurements
accuracy

HU Hounsfield units, H&N Head and neck, Al Aluminum, Ti Titanium, SS Stainless steel, CTart CT scans with artifacts, CTcor Corrected CT scans, CTref

Reference CT scans, vs versus.

3.A.2 | Evaluation of organ contouring

The commercial MAR algorithms have been also evaluated on their
ability to improve organ contouring in RT (see Table 2). A study by
Sillanpaa et al. evaluated the easiness of contouring of the parotid
gland on clinical H&N CT scans with dental fillings.*’ The contouring
of the parotid was performed on CT,; and CT,, after O-MAR appli-
cation. During the contouring, 79% of the CT, and 11% of the
CT,+ were classified as easy to contour. Furthermore, the authors

calculated the dice similarity coefficient (DSC) to assess the

contouring interobserver variability. The perfect match between two
contours, on the same anatomy, would result in the highest DSC
value of 1, while the lowest DSC value of O represents no overlap of
two contoured structures. The average DSC for the parotid contour-
ing was 0.775 + 0.045 (mean = STD) on both CT., (after O-MAR
application) and CT,+ These clinical H&N CT scans had large
amounts of small dental fillings on either side of jaw, which might
cause incomplete correction of metal artifacts. The authors sug-
gested that this was one of the reasons for classifying 11% of the

CT,t as easy to contour.
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In another study by Andersson et al., visual grading was used for
the evaluation of anatomical delineation.® A comparison between
CT,+ and either O-MAR or iMAR-corrected CT., was performed.
Visual grading resulted in significantly (P < 0.001) higher scores on
both CT.,,. However, new induced artifacts were also identified on
CT.or. Kohan et al. used clinical H&N CT scans with dental implants
for their O-MAR evaluation.’* Reviewers with different experience
levels in contouring performed area measurements of selected struc-
tures on CT,, CT.or after O-MAR application, and CT,s. The intra-
class correlation coefficient (ICC) was calculated to assess inter-
reader variability. The highest ICC value of 1 indicates the lowest
inter-reader variability, while ICC value of O indicates the highest
inter-reader variability. For all reviewers, the ICCs for CT,+, CTeor
after O-MAR application, and CT,. were 0.884, 0.971, and 0.989,
respectively, without outliers; and 0.903, 0.948, and 0.985, respec-
tively, with outliers. For the experienced readers, the ICC for CT,,
CT.or after O-MAR application, and CT,; were 0.934, 0.975, and
0.990, respectively, without outliers; and 0.904, 0.979, and 0.976,
respectively, with outliers. Application of O-MAR improved the ICC
values and brought them closer to the reference ones. For this rea-
son, CT,, after O-MAR application reduced the inter-reader variabil-
ity during contouring. Another study by Hansen et al. also concluded
that the application of O-MAR on clinical H&N CT,,; increased the
organ delineation and contouring accuracy.>? The authors also mea-
sured and compared the gross tumor volume (GTV) and parotid vol-
ume on CT,, after O-MAR application and on CT,. Removal of
streak artifacts increased the signals from the artifact corrupted
areas, thus depicting a consistently larger contoured GTV (mean
22%, P < 0.06) and parotid volume (mean 7%, P = 0.05). However,
the authors noted that to determine the actual volumes of the delin-
eated structures the measured volumes should be compared with
the reference volumes. A similar finding was reported by Hagen
et al; they found that contouring on CT.,, after iMAR application
would increase the mean GTV tongue in H&N cases.>® The GTV
tongue increased (P =0.267) from 28 + 6 cm® (mean + STD) on
CTar to 30 = 7 cm® (mean + STD) on CT.,. However, the mean vol-
ume of the parotid as an OAR was reduced in this study. Moreover,
the authors evaluated the size of the prostate GTVs on bilateral
implanted pelvis CT scans, and they were reduced (P = 0.168) from
87 + 44 cm® (mean * STD) on CT. to 75 + 22 cm® (mean + STD)
on CT,, after iMAR application. For the OARs on CT.., after iMAR
application in the pelvis case, the mean volume for rectum and blad-
der was reduced and increased, respectively. The DSC of the con-
tours with respect to the reference increased more for the CT,
after iMAR application than for the CT,+. Both the GTV of the ton-
gue and the prostate on CT,, after iMAR application were underes-
timated in comparison with the predefined reference. Nevertheless,
it improved the confidence in contouring, as indicated by higher
DSC values. Axente et al. assessed the image quality and visual con-
spicuity of CT, and CT.., after iMAR application.®® Different types
of clinical images were used, such as hip cases with unilateral or
bilateral metal implants, H&N cases with dental fillings, a spine with
metal implants, a knee with prosthesis, and a breast with expander.

WILEY——

The median score for the image quality and visual conspicuity of
CT. and CT.,, after iMAR application increased from 3 to 4 of 5.
During the image quality assessment, new secondary artifacts were
identified on CT.,.. Another study investigated iMAR for its anatomi-
cal delineation accuracy.54 For this study, clinical CT scans (H&N,
spine, and hip) with metal implants were used. Maximum Hausdorff
(HD) distance and DSC were calculated to quantify the anatomical
delineation accuracy. High HD distance indicates large difference
between two contours while short HD distance indicates small varia-
tion. Contouring was performed on CT,,; and CT,., after iMAR appli-
cation and the maximum HD distance with respect to contours on
CT.es was 10.7 mm and 5.1 mm on dental scans, 18.2 mm and
18.6 mm on spine scans, and 7.7 mm and 3.5 mm on hip scans, for
CT,+ and CT,,,, respectively. In dental and hip scans, the maximum
HD distance on CT,,; had the largest values and differed significantly
(P < 0.05) from CT,. Furthermore, the calculated DSC values for
contours on CT,+ and CT.,, after iMAR application were 0.75 and
0.87 on dental, 0.57 and 0.74 on spine, and 0.5 and 0.87 on hip,
respectively. The higher DSC values on CT,., after iMAR application
indicate that there is less variability in contouring and a higher accu-
racy.

The SEMAR algorithm was evaluated by Shiraishi et al. to quan-
tify its ability to improve the detection accuracy of implanted iodine
seeds which contain Ti and silver (Ag) in brachytherapy.>® To identify
seeds on both CT,+ and CT.., after SEMAR application an automatic
seed finder was used, and the results were compared with reference
positions. The mean true-positive fraction (TPF) was calculated, and
it had significantly higher values (P < 0.05) for CT.,, after SEMAR
application  (0.992 + 0.0103, [mean + STD]) than for CT.«
(0.982 £ 0.0159, [mean + STD]). Thus, the application of SEMAR on
CT.: improved implanted seed detection.

Overall, CT,,, after application of the above-mentioned commer-
cial MAR algorithms improved the anatomical conspicuity and con-
touring accuracy. On the other hand, new artifacts induced by the
MAR algorithms appeared on resulting CT,, and it is clear that the
external factors such as physician’s knowledge and experience con-

siderably influence these results.

3.A.3 | Dose-based evaluations and corrections

Dosimetric impact of commercial MAR algorithms

The commercial MAR algorithms were also evaluated to assess their
ability to improve the dose calculation accuracy in RT. Table 3 pro-
vides a summary of these research studies. O-MAR was evaluated
by Kwon et al. in clinical and phantom studies.** Clinical H&N CT
scans with dental implants were acquired in open-mouth and closed-
mouth positions. In the close-mouth case, the nasopharynx, the par-
otid, and the submandibular salivary gland were contoured as targets
and dose calculation was performed on CT, and CT,,, after O-MAR
application. A nonsignificant (P > 0.05) mean gamma passing rate (%
GP) of 99.4 + 0.5% (mean + STD) was reported between them using
a 1%/1 mm gamma criterion. However, for targets such as the ton-

gue and the tonsil, a large discrepancy in %GP was found between
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CT,+ and CT., after O-MAR application under the same criteria in
the open-mouth scans. A virtual build-up region was created in front
of the oral cavity due to the metal artifacts on CT, which resulted
in this dose discrepancy. Furthermore, the phantom studies revealed
that the calculated dose on CT,,, after O-MAR application was clo-
ser to the delivered dose (measured with films) than the calculated
dose on CT,+ Also Huang et al. studied the application of O-MAR
to improve dose calculation using phantoms.>® A custom-made geo-
metric phantom with inserts of Ti or Cerrobend, and two anthropo-
morphic phantoms, one with spinal implants and another one with
dental fillings, were used. In the geometric phantom with Ti insert,
the dose errors between calculated and measured dose with a 2%/
2 mm gamma criterion were 15% for CT . and 11.1% for CT.,
after O-MAR application in the region which was under the metal
implant. Furthermore, in the anthropomorphic phantoms’ evaluation,
the O-MAR application improved the dose calculation accuracy in
the dental filling case while it had little impact for the spinal implant
case. Similar findings were reported by Sillanpaa et al. for clinical
H&N CT scans.*?

The dosimetric impact of O-MAR on the spine for stereotactic
body radiation therapy (SBRT) was evaluated by Shen et al. using a
phantom and clinical CT scans.>” SBRT can deliver high ablative radi-
ation dose to the target, while sparing OARs.>® A CT electron den-
sity phantom (Gammex, Model RMI 465, Middleton, WI, USA) with a
Ti implant was used in this study. A similar calculated planar dose
distribution was observed on CT,; and CT,, after O-MAR applica-
tion and %GP was larger than 99.98% for a 2%/2 mm gamma crite-
rion and 99.96% for a 1%/1 mm gamma criterion. The evaluation of
the clinical CT scans revealed similar findings. Thus, the study con-
cluded that O-MAR does not significantly affect the dose calculation
accuracy and can, therefore, be safely used for SBRT treatment plan-
ning. In another recent study, Akdeniz et al. evaluated the dosimetric
effects of metal implants in small-field RT using a custom-made slab
phantom (PTW, Freiburg, Germany).>’ The study revealed that small
differences in dose were observed between the calculated and mea-
sured dose on both CT,: and CT., after O-MAR application. The
authors found that the type of dose calculation algorithms available
on the TPS also influences the dose differences. The Anisotropic
Analytical Algorithm (AAA)®® and Acuros External Beam (AXB) algo-
rithm®? available in the Eclipse™ TPS (Varian Medical Systems, Palo
Alto, CA) were evaluated. On CT,., after O-MAR application the use
of the AXB algorithm better reduced the dose differences between
the calculated and measured dose compared to the AAA algorithm.

Jia et al. studied the dosimetric impact of O-MAR on proton
therapy treatment planning using a solid water phantom with a SS
crew inserted.®? The discrepancies of relative depth dose distribution
were calculated on CT., after O-MAR application and CT,+ and
they were 2 mm at 20% relative dose and 4 mm at 80% relative
dose, respectively. The O-MAR and iMAR algorithms were evaluated
for proton therapy in phantom and clinical studies by Andersson
et al.>® A head phantom (CIRS, Model 731-HN, Norfolk, VA, USA)
was CT scanned with and without a removable dental filling and a
neck implant. Deviation in water equivalent thickness (AWET) was
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calculated to find the proton range errors on CT,ef, CT,, and CTeo,.
In case of the dental filling, along a dark streak, AWET was improved
from —17.0 mm to —4.3 mm by O-MAR, and from —16.1 mm to
—-2.3 mm by iMAR. For other directions, AWET increased or
remained unchanged on CT..,. Generally, AWET was reduced in case
of the neck implant; however, residual deviations up to —2.3 mm
with O-MAR and up to —1.5 mm with iMAR remained. In the clinical
H&N study with dental implants, planned dose distributions to a
neck node were calculated on CT, and CT.,,, and minor differences
were observed. On the other hand, in a phantom (Gammex Inc., Mid-
dleton, WI, USA) study with a Ti implant, Righetto et al. reported
that the calculated proton range using WET was overestimated more
on the CT., after O-MAR application than on both CT,; and
CTrer.?® The reference was obtained using stopping power values
from the data which were published by NIST (Gaithersburg, MD,
USA). As a result, AWET on CT.., after O-MAR application and CT
were 0.57 cm and 0.16 cm, respectively, when compared with the
reference value.

Bar et al. focused their work on the iIMAR algorithm using CT
scans from the Gammex 467 phantom with and without the metal
inserts, and the clinical CT scans of H&N and a hip with implants.*?
In the phantom, a target was contoured in the center between two
implanted metals, and dose calculations were performed on CT,ef,
CT.t, and CT,, after iMAR application. A %GP for a 1%/1 mm
gamma criterion of 62.1% was found between the CT, and CT,
while CT,, improved it up to 85.7%. In the clinical CT scans, dose
differences up to +5% have been shown when comparing the plans
which were calculated on CT, and CT,. The application of iMAR
reduced the dose errors and, therefore, the authors recommended
to use this method for RT applications. A similar finding was
reported by another cylindrical phantom study with dental implants.
The dose distributions were calculated on CT,+ and CT,, and it was
shown that the application of iIMAR improved the %GP from 90.6%
to 96.2% for a 3%/3 mm gamma criterion.*> In the CIRS phantom
study,® the calculated dose distribution on CT.., after iMAR applica-
tion was closer to the CT,s dose distribution than the dose distribu-
tion calculated on CT,.. In addition to dose distributions, the %GP
of photons (6 MV and 15 MV) and protons (195 MeV) were derived
from the calculated dose distributions on CT,+ and CT. For the
6MV photon beam, iIMAR increased the photon %GP for a 2%/
2 mm gamma criterion from 97% to 99.4% and for the 15 MV pho-
tons similar results were shown. For the proton beam, iIMAR
increased the %GP from 88.6% to 91.9% under the same criteria.

Smart MAR was evaluated for dose calculation accuracy in RT by
Huang and Kohli using clinical CT scans of H&N with dental fillings
and of a pelvis with a metal prosthesis.*> The average conformity
index (Cl), Dggy, and Vipo% wWere calculated on CT., after Smart
MAR application and CT,+ and then compared. The average percent-
age (mean + STD) differences in Cl, Dggy, and Vigg on H&N CT
scans were —0.3% * 0.9%, —0.1% +0.1%, and -—0.1% * 0.5%,
respectively. For the CT scans of the pelvis, they were (mean + STD)
—-8.8% + 11.4%, —0.1% + 0.4%, and —8.8% + 12.1%, respectively.
Also, this study found that the calculated dose differences between
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the CT., and CT, were not significant. In another study, Inal and
Sarpilin evaluated Smart MAR for dose calculation accuracy in 12 dif-
ferent intensity-modulated radiation therapy (IMRT)®* plans with 5-,
7-, and 9-field beam arrangements and segment numbers.*® IMRT is
an inverse planning-based treatment delivery method which is opti-
mized until the target volume and normal tissue reached the pre-
scribed dose. A custom-made metal-containing phantom was CT
scanned. For the five, seven, and nine fields, the calculated dose dis-
tributions on CT,; and CT.., after Smart MAR application were com-
pared with the measured dose. The %GP for a 3%/3 mm gamma
criterion of the above-mentioned dose distribution were 94.98% and
96.11% (for five fields), 94.72% and 95.90% (for seven fields), and
91.34% and 92.83% (for nine fields), respectively. The improvement
of %GP on CT..r shows that Smart MAR increased the dose calcula-
tion accuracy. A similar finding was reported by Guilfoile et al. using
a custom-made hip phantom with bilateral hip prostheses.**

Murazaki et al. evaluated the SEMAR algorithm for dose calcula-
tion accuracy using a standard electron density phantom (CIRS,
Model 062A, Norfolk, VA, USA) with metal inserts.*” Several differ-
ent treatment plans were prepared, using forward planning with one
field, with two opposite fields, and four fields; and with volumetric-
modulated arc therapy (VMAT).®> The AXB and AAA algorithms
were used to calculate the dose distribution on CT,+ and CT,, after
SEMAR application. In AXB for the two opposite fields, SEMAR
increased the %GP for a 1%/0 mm criterion from 89.89% to 95.03
%, and similar results were observed also in AAA as well as for the
other forward planning methods under the same criteria. This implies
that the calculated dose distribution was improved with the use of
SEMAR. Miki et al. studied the dosimetric impact of the SEMAR
algorithm in carbon ion therapy using phantom and clinical CT
scans.*® An anthropomorphic head phantom was scanned with and
without metal inserts and then SEMAR was applied to create CT,,
from the CT,. A planning target volume (PTV)®® was placed on the
dark streak band and PTV-Dgysy, was measured. The calculated PTV-
Dgse on clinical H&N scans with dental implants and with tumors
near the spinal cord as the treatment target showed a higher PTV-
Dosy (from 82.4% to 95.4%) for CT.,, than for CT,.. To investigate
brachytherapy applications, Shiraishi et al. used clinical pelvis CT
scans with implanted iodine seeds (which contain Ti and Ag).55
SEMAR was applied to generate CT, from CT,: and then Dggs,
Vi00%, and Visoy were calculated on those CT scans and compared
with CT,e. The differences in dosimetric calculations were signifi-
cantly smaller (P < 0.05) between CT., and CT, than between
CT,t and CT et

In general, the CT,, after application of a commercial MAR algo-
rithm improves the dose calculation accuracy in RT. This improve-
ment is indicated by increment of %GP, reduction of errors in dose
calculation compared to CT,+, and minor differences from the mea-
sured dose using films and/or ion chambers or calculated dose on
CT,er. Furthermore, improvements in the WET calculation were also
reported after artifact correction by commercial MAR algorithms in
proton therapy. However, the amount of improvement in calculated
dose depends on the utilized dose calculation algorithm and on

radiation therapy technique. Studies reported that the AXB algorithm
increases the dose calculation accuracy more than the AAA. More-
over, application of VMAT is preferable to improve the accuracy in

calculated dose compared to IMRT.

Dosimetric impacts of density correction methods

The density correction methods which are available in the TPSs can
also be used to reduce the metal artifacts on CT scans for RT appli-
cations, see Table 4. Maerz et al. used a dental implant cylindrical
phantom to evaluate dose calculation accuracy after application of a
density correction method.*® IMRT and VMAT plans were calculated
on CT,; and CT,, after density correction and then compared with
dose measurements using films. Findings revealed that the accuracy
of dose calculation was higher (P = 0.015) on CT,., than on CT, for
both IMRT and VMAT plans. Moreover, the VMAT plan increased
the %GP for a 3%/3mm gamma criterion in comparison with the
IMRT plan on both CT,+ and CT.,. On the other hand, Acquah
et al. used a phantom (CIRS, Model 002LFC, Norfolk, VA, USA) to
compare the calculated dose on CT,,, after density correction with
the measured dose using ion chambers.®” The authors found that
treatment planning on CT.,, gave a 16% higher average dose dis-
crepancy. The dose discrepancy between the calculated dose on
CT,t and the measured one was not mentioned in this study. This
study suggested that caution should be taken while planning on
CTor after density correction. Parenica et al. evaluated the impact of
a density correction method on a VMAT plan using CT scans of a
custom-made phantom and on clinical pelvis CT scans with hip pros-
theses.®® Densities of the prostheses and surrounding tissue which
contain metal artifacts were overridden with the appropriate cor-
rected density. Dose calculation algorithms with collapsed cone con-
volution superposition (CCCS)®? available on Pinnacle (Philips,
Fitchburg, Wisconsin) and a Monte Carlo”®-based algorithm available
in Monaco (ELEKTA, Stockholm, Sweden) TPS were used. The calcu-
lated dose on CT, and CT,, after density override was compared
with the respective measured dose using a thermoluminescence
dosimeter (TLD). In the phantom, the dose errors were 9.2% and
4.4% for Pinnacle and 3.6% and 0.2% for Monaco, respectively. For
the clinical pelvis scans, the prostate was contoured as the target.
Subsequently, a comparison of the calculated average Dgyso; without
and with density correction was 99.3% and 82.7% for Pinnacle and
99.0% and 90.6% for Monaco, respectively. The reduced Dgysy oN
CT.or resulted from a reduced PTV. The same authors in another
study’* found similar results for density correction method on data
of a phantom with Al, Zn, and SS inserts, and clinical H&N CT scans

with dental implants.

3B |
3.B.1 | Traditional MAR algorithms

Research MAR methods

Several research MAR algorithms which utilize traditional image pro-
cessing methods have been proposed and/or evaluated for the
reduction in metal artifacts on CT scans for RT applications. These

algorithms rely on several different principles. Some approaches are
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TaBLE 4 Summary of the studies which investigated the dosimetric impact of density correction in RT.
Dose calculation
Images; Beam, Energy, algorithm (TPS); Calculation
No. of and (Mode of [Dose and
Author  sample (n) Metal therapy) measurement] CT Scans Measurement Results Comments
Maerz Phantom Dental Photon, 6 MV PB and CC CT.x & %GP 0.954% & 0.980% Density correction
et al.®® implants (VMAT & IMRT) (Oncentra CTeor IMRT 0.983% & 0.990% increased the dose
External Beam) VMAT calculation accuracy
Acquah Phantom Spine Photons, 6 MV & CC & PB CTeor VS Mean dose 16% Density correction
et al.%” implant 15MV (3D-CRT) (Oncentra CTat discrepancy resulted in higher dose
External Beam) (%) discrepancy
Parenica Phantom Ti Photons, 6 MV CCC (Pinnacle, (CTat & Dose errors 92% & 4.4 % Density override can be
et al.®® Clinical Hip (VMAT) Philips) & MC CTeor) Vs (%) 3.6% & 0.2% used to optimize the
(Pelvis); prosthesis (Monaco) Measured  Pinnacle 99.3% & 82.7% dose calculation
(n = 6) [lon chamber] CTat & Monaco 99.0% & 90.6% planning with MC
CTeor Average Dosy,
Pinnacle
Monaco
Parenica Phantom AL, Zn & Photons, 6 MV CCC (Pinnacle, (CTo & Dose errors 4% & 4% The density override
etal.”* Clinical SS (VMAT) Philips) & MC CTeor) VS (%) for Al 3.9% & 1.7% reduced the potential
(H&N); Dental (Monaco) Measured  Pinnacle 8.6% and 7.1% risk of compromising
n=9) implants [TLD] CTat & Monaco 9.8% and 2.3% the dose to the target
CTeor for Zn 8.8% and 5.8% and healthy tissues
Pinnacle 9.5% and 3.0%
Monaco Refer to Table 5 in
for SS Ref. [71]
Pinnacle
Monaco
D95%

Ti Titanium, SS Stainless Steel, Ag Silver, Zn Zinc, CRT Conformal Radiation Therapy, IMRT Intensity-Modulated Radiation Therapy, VMAT Volumetric-
Modulated Arch Therapy, CCC Convolution Collapsed Cone, PB Pencil Beam, MC Monte-Carlo, CT,+ CT scans with artifacts, CT.,, Corrected CT scans,

CT,r Reference CT scans, vs versus, %GP gamma passing rate.

based on image inpainting or sinogram inpainting”2~’>; some others

require the acquisition of additional tilted CT scans,”® propose novel

7778, or require the

image acquisition, and reconstruction methods
use of magnetic resonance imaging (MRI)”*#° or megavoltage CT
(MVCT).8182

For the metal deletion technique (MDT)”® (Fig. 4) which uses
sinogram inpainting iteratively, initially pixels which contain metal
data are segmented from CT, (Fig. 4, image 2). Then, linear interpo-
lation (LI)® and edge-preserving blur filters (Fig. 4, image 4) are
applied on this CT scan to calculate the missing pixel values and to
reduce the noise, respectively. Subsequently, the linearly interpolated
and noise-reduced image is forward projected to create an initial
sinogram (Fig. 4, number 5). This sinogram is used iteratively (four
iterations in total) to replace the pixels which contain metal artifacts
in the original sinogram. On each iteration, rays that pass through
the metal are replaced with the value from the previous iteration
(Fig. 4, number 6). This procedure results in a corrected sinogram.
Finally, the filtered back-projection of the corrected sinogram (Fig. 4,
image 7) with added metal data produces the CT,.

An MRI-based MAR algorithm was proposed by Park et al.”’ The
proposed method reduces the metal artifacts by mapping the HU
values from a nearby artifact-free CT slice using a coregistered MRI

scan. Initially, the CT, slice and adjacent artifact-free slice are

manually identified and then registered with their corresponding MRI
slice. Based on the intensity values of pixels on the paired MRI slice
and HU values from the artifact-free CT slice, HU values of pixels on
CT, slice are calculated. Nielsen et al. evaluated their proposed
MR-based MAR algorithm (kerMAR)® to reduce the metal arti-
facts.8* kerMAR requires aligned CT and MRI scans of the same
anatomy. It uses a Bayesian modelling®> approach to compute the
corrected HU values of a corrupted CT slice from the corresponding
coregistered MRI slice.

Liugang et al. proposed a MAR method which makes use of
megavoltage computed tomography (MVCBCT) and kilovoltage com-
puted tomography (KVCT) scans for MAR.8? Initially, the metal part
in the MVCBCT scan is segmented and forward projected to obtain
the metal trace. Then, a prior image is obtained by combining both
scans through the fusion method proposed by Wang et al.2® and this
image is forward projected to obtain missing data to replace the
metal trace on the kVCT scan. Finally, the kVCT scan with reduced
metal artifacts is created through filtered back projection. In a similar
study by Jeon et al., a hybrid sinogram-based MAR method was pro-
posed for helical tomotherapy.8? It also requires a kVCT scan and a
MVCT scan of the same anatomy. During the MAR application, it
replaces the metal affected signals of the forward-projected kV sino-

gram with the corresponding forward-projected MV sinogram.
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Fic. 4. Working principle of the MDT MAR algorithm. A metal segmented CT slice (image 2) undergoes linear interpolation (image 3) and
edge preserving filtration (image 4). Then, the filtered image is forward projected (number 5) and used to replace the metal data on the original
projection (number 1). The resulting projection (number 6) is filtered back projected and undergoes edge preserving filtering. This process is
iterated four times and results in a metal artifact reduced CT slice (image 7). Finally, the segmented metal is added to create the artifact-
corrected CT slice. (Reproduced, with permission, from Boas F E, Fleischmann D. Evaluation of Two Iterative Techniques for Reducing Metal
Artifacts in Computed Tomography. Radiology 2011; 259:894-902. The Radiological Society of North America (°RSNA)).

Finally, the application of filtered back projection on the corrected
kVCT sinogram produces a kVCT scan with corrected artifacts.

A study by Kim et al. proposed to acquire an additional tilted CT
scan in which less metal artifacts are present.”® First, an artifact map
is generated from the denoised initial CT scan (CT,) and the addi-
tional tilted CT scan. Then, utilizing the SSIM metric, correlation
maps are generated from the CT,. and the additional CT scan in
comparison with the artifact map. A minimum value in the correla-
tion map represents smaller amounts of metal artifacts and, thus, the
CT.or is reconstructed using the minimum correlation values.

A new CT reconstruction algorithm, augmented likelihood image
reconstruction (ALIR)’® was investigated for MAR for RT applica-
tions. It utilizes an iterative scheme and prior information of the

metal implant such as shape and attenuation coefficient. A new

sinogram is created by masking the metal on the initial sinogram.
Using this new sinogram an image is iteratively reconstructed using
log-likelihood function®” and prior information. During each iteration,
a bilateral filter is applied on the reconstructed image to reduce the
remaining metal artifacts and then a forward projection of this
images is used to calculate new projection values, which are com-
bined with the initial projection values thereafter. Finally, the CT
scan is reconstructed with reduced metal artifacts.

Dong et al. developed an image-based MAR method which uti-
lizes the anatomical similarity in adjacent CT slices which are free
from the metal artifacts (CT,eq).”2 Initially, a gamma map is calcu-
lated which is a weighted summation of the relative HU error and
the distance error for each pixel between the CT,. slice and the

relative artifact-free CT slice. Then, the minimum value in the
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gamma map is used to identify and replace the artifact-corrupted
pixels on the CT, slice by the corresponding pixels on the arti-
fact-free CT slice.

An MAR method which includes a sinogram precorrection (which
is not described) and a hardware adaptation for proton therapy was
proposed by Jin et al.”” The hardware adaptation includes an
increase in the X-ray energy from 120 kVp (standard energy) to
180kVp, and an increase in the triggering rate of data acquisition
system (DAS)®® of the X-ray detectors. In the end, the prelog itera-
tive CT reconstruction method® is applied to yield the resulting
CTeor

Miksys et al. studied image-based MAR methods and a sinogram-
based MAR method to reduce the metal artifacts from and around
implanted radioactive seeds which contain Ag and Ti for brachyther-
apy procedures.”* The image-based MAR methods include simple
threshold replacement (STR), 3D median filter, and the generation of
a virtual sinogram. STR utilizes a HU thresholding technique to iden-
tify the seeds and bright spot artifacts,”® and correct them by replac-
ing them with predefined HU value. The 3D median filter instead
reduces the metal artifacts by smoothing the high voxel values which
are identified through HU thresholding. In the virtual sinogram gen-
eration, first the metal on CT,,, is segmented using thresholding and
then CT,¢ and the segmented metal are forward projected. Subtrac-
tion of the metal projection from the CT, projection resulted in a
partial sinogram. Finally, through the application of interpolation and
filtered back projection, the partial sinogram yields the CT.,. The
sinogram-based MAR method also utilizes similar steps, but instead
of generating a virtual sinogram, it uses the sinogram from the CT

scanner.

Evaluation of HU values retrieval and image quality
Research-based MAR algorithms based on traditional image process-
ing methods were evaluated for their ability to restore HU values
and their ability to improve image quality of CT scans which will be
used for RT applications. Table 5 summarizes the details of the cor-
responding publications.

The proposed MRI-based MAR algorithm by Park et al. was eval-
uated for its ability to improve the HU values.”? Simulated metal
artifacts were introduced on clinical H&N and brain CT,, and then
the proposed MAR algorithm was applied to generate a CT,,. The
comparison of CT,: and CT., with CT,; showed a reduction in
absolute mean HU difference from 495 HU to 108 HU in the brain,
and from 370 HU to 92 HU in the H&N. The HU of CT,.s was not
reported. Nielsen et al. evaluated their kerMAR method for image
quality improvements.®* During the image quality evaluation, CT
scans from a custom-made veal shank phantom with metal inserts
and clinical H&N CT scans with dental implants were used. In addi-
tion to kerMAR, also O-MAR was applied to the CT scans for a com-
parison. On the scans of the phantom, kerMAR and O-MAR reduced
the metal artifacts similarly (P > 0.05); however, on the clinical CT
scans kerMAR outperformed O-MAR (P < 0.01). This difference can
be explained by the fact that O-MAR produces residual artifacts and
by the fact that kerMAR uses corresponding MRI images as an

WILEY——

external source of prior information. However, if the acquired CT
and MRI scans are not aligned properly, the kerMAR method intro-
duces new artifacts as well.

The MVCBCT- and kVCT-based MAR method®® was evaluated
for HU value improvement using an intensity-modulated verification
phantom (CIRS, Norfolk, VA, USA) with SS inserts and clinical H&N
CT scans with dental implants. The study found that the proposed
MAR method reprojected the HU values with high accuracy. The
hybrid sinogram-based MAR method by Jeon et al. was evaluated
using a standard “cheese” phantom (Standard Imaging, Middleton,
USA) with metal inserts made of Ag, tin (Sn), copper (Cu), and iron
(Fe), and clinical H&N CT scans with dental implants.82 Application
of the proposed method improved the accuracy of true densities
and HU values for metal and non-metal tissues (e.g., air, lung, and
bone) on the phantom and the clinical scans, respectively. In addition
to the HU value improvements, also CNR and SNR improved on the
CT.or after application of the hybrid sinogram-based MAR in compar-
ison with CT.

The MAR method which requires the acquisition of an additional
tilted CT scan’® was evaluated for its ability to improve HU values
In an experimental study, a customized RANDO head phantom (The
Phantom Laboratory Inc., NY, USA) with dental implants was used,
while in a simulation study an XCAT numerical phantom?? with bilat-
eral hip implants was used. The mean absolute percentage errors in
HU values were calculated for CT, and CT., in comparison with
CT,er. This showed a reduction for CT,, of up to 89% in the experi-
mental study, and up to 86% in the simulation study. Dong et al.
evaluated their image-based MAR method on clinical H&N CT scans
with dental fillings and on a CT scan of a pelvis with simulated hip
implants.”? The mean HU error was calculated on both CT,. and
CTcor compared with CT,es and it reduced from 360 HU to 24 HU in
the H&N case, and from 460 HU to 34 HU in the pelvis case. Thus,
the study concluded that the proposed image-based MAR can be
used to reduce the metal artifacts and improve HU for RT applica-
tions.

The proposed image-based MAR methods and sinogram-based
MAR method for brachytherapy by Miksys et al. were applied on CT
scans of a custom-made agarose gel phantom and on clinical pros-
tate CT scans with implanted seeds.”* The STR removed bright spot
artifacts around the seeds, but failed to mitigate any dark streak arti-
facts. Although the 3D median filter successfully mitigated the white
and dark streak artifacts, it blurred the resulting CT.... The virtual
sinogram and the raw sinogram methods reduced the streak arti-
facts, however, they introduced new artifacts on CT.,,. The authors
concluded that the image-based MAR methods, especially the STR
and 3D median filter, were more successful in reducing the artifacts

in comparison with the sinogram-based MAR.

Dosimetric impacts of traditional MAR algorithms

In addition to the improvement of HU and image quality, dosimetric
impacts of research-based traditional MAR algorithms were evalu-
ated in several research studies. Table 6 describes the findings of

these evaluations.
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The MRI-based MAR algorithm”? was evaluated to assess its abil-
ity to improve the proton range error (AWET) for proton therapy
applications. On clinical CT scans of a brain and H&N, the applica-
tion of this proposed method improved the absolute AWET from
2.4 cm in brain and 1.7 cm in H&N to less than 2 mm for both

cases. In a study by Nielsen et al.®*

the performance of kerMAR
was studied and compared with O-MAR for dosimetric impact in
photon, electron, and proton therapy. In the phantom evaluation, a
depth/range calculation on CT,,, for the proton, photons, and elec-
trons did not show any significant difference (P > 0.05) between the
O-MAR and kerMAR. However, an evaluation of the absolute parti-
cle range difference on clinical CT., showed that kerMAR signifi-
cantly (P < 0.001) improved for electron beams nearly by 1 mm and
proton beams by 2 mm in comparison with O-MAR. However, the
photon beam evaluation showed an insignificant difference in depth/
range calculations on CTo.

In a MVCBCT- and kVCT-based MAR study,®' a custom-made
phantom with a SS metal rod containing an air-filled hole in its cen-
ter was CT scanned. The MAR method was applied to generate a
CTeor from CT,.. Subsequently, dose calculations were performed on
CTart, CTeor, and CT,f using a single irradiation field in two instances,
one crossing the hole and the other one crossing only the phantom
and the metal. The calculated maximum percentage of dose error
through the hole was 5.1% on CT, and 11.8% on CT, in compar-
ison with CT,e. The dose error through the phantom and the metal
was 3.3% on CT,, and 17.2% on CT,,. So, this seems to imply that
the calculated dose on the CT., after application of this MAR
method was improved and better approximated the dose distribution
on CT et

ALIR was studied by Ziemann et al.”? To simulate a pelvis with
bilateral hip prostheses, a polymethylmethacrylate phantom with two
SS rods was CT scanned. Then, ALIR, linear interpolation (LI), and
density correction MAR methods were applied to create correspond-
ing CT.or. Next, a PTV was chosen at the center of the phantom
between the metal implants and dose calculations were performed
on CT,,. Dose errors were computed between the calculated doses
and respective measured doses using ion chambers. These dose
errors were 2.7% for ALIR, 3.2% for LI, and 4.1% for the density cor-
rection. The CT,+ showed a higher dose error of 8.4%. However,
calculated dose to the simulated rectum as an OAR was higher for
the ALIR method than for the LI method. The study concluded that
ALIR can be applied for successful RT planning.

The image-based MAR? was assessed for the dosimetric impact
on clinical H&N CT scans with dental fillings and on a CT scan of a
pelvis with simulated hip implants. The calculation of gamma failure
rates for a 3%/3 mm gamma criterion on CT,; and CT., compared
to CT,es resulted in 23.25% and 0.02%, respectively. In clinical stud-
ies, Odlozilikova et al. evaluated the MDT algorithm for dose error
to cardiac implantable electronic devices (CIEDs) as an OAR while
planning to irradiate the adjacent target tissues.”® The total planned
dose to the PTV was used to calculate the dose error to the CIEDs
on CT, and CTg,. The largest dose error for the CIEDs was on the
CT,1, and it was more than 3% of the total planned dose. Hence,

the application of MDT significantly improved RT planning and
reduced the dose error to the CIEDs.

Aziz et al. evaluated dose calculation errors induced by a dental
amalgam in a custom-made phantom experiment.”> An in-house
developed LI was applied to correct the metal artifacts, and a simu-
lated electron beam was used to evaluate the dosimetric errors
between the dose calculation plans on CT,+ and CT..,. Uncertainties
in the calculated dose error reduced from 46% on CT, to 2% on
CTeor at dgo.”* For this reason, it was suggested to apply the pro-
posed method to improve the dose calculation accuracy in electron
beam therapy. In another study, clinical CT scans of a hip with simu-
lated Ti implants were used for dose calculation on CT,;, CT.o, after
application of MAR method by Jin et al.,”” and CT,. The proposed
MAR method reduced the proton mean AWET from 7 mm on CT,

to less than 1 mm on CT., in comparison with CT .

3.B.2 | Deep learning-based MAR algorithms

Few research studies using deep learning-based methods to reduce
metal artifacts on CT scans for RT applications were found in litera-
ture. These deep learning MAR approaches are either based on 2D

residual learning-based convolutional neural networks (CNNs)?>%¢

or
2D cycle generative adversarial networks (GANs).””

A dual-stream deep network was proposed by Gjesteby et al.
which utilizes the residual learning-based CNNs (see Fig. 5).°° This
network requires paired data, CT,: and CT,y during the artifact
reduction. First, a custom implementation of normalized MAR
(NMAR)?® and guided filtering”® are applied to the artifact corrupted
CT slice to reduce the metal artifacts and preserve the edge informa-
tion of a CT slice, respectively. Subsequently, patches [indicated by
‘red’ squares in Fig. 5(a)] are extracted from these CT scans and are
input into two identical parallel streams f and g [Fig. 5 (b)]. Each of
these parallel streams starts with an initial parameter layer and is fol-
lowed by 20 residual units. This network structure is referred to as
DestreakNet.'° Each residual unit consists of two convolutional lay-
ers (Conv) followed by batch normalization (BN) and a rectified linear
unit (ReLU) [Fig. 5(b)]. The residual units help the network to learn
the residual errors and generate respective feature maps. Finally, the
feature maps from these streams are summed and passed together
through h [Fig. 5(b)] to produce patches with metal artifact correc-
tion. The stream h contains another eight parameter layers and a
final layer without the BN. During training, DestreakNet is optimized
using a mean square error (MSE) loss function and perceptual loss
function.'®* The MSE loss function is used to calculate the pixel-by-
pixel error between the output and the target, while the perceptual
loss function mitigates oversmoothing which can result from the
MSE loss function.

A similar study, also using a residual learning-based artifact
reduction CNN (RL-ARCNN) and paired data for artifact reduction,
was proposed for brachytherapy applications by Huang et al.?® This
network architecture consists of a CNN, and RelU is applied to
increase the nonlinearity of the input layer. In subsequent convolu-
tional layers, BN is applied between the convolution and RelLU to
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achieve faster training. This network was trained for MAR through
the residual learning method as proposed by He et al.1%2

The main limitation of the above both networks, dual-stream
deep network and RL-ARCNN, is that they both need paired data
for training. To overcome this challenge, Koike et al. developed a
deep learning-based MAR (DL-MAR)?” using CycleGANs in which U-
Net and PatchGAN architecture of the pix2pix model*®® are used as
generator and discriminator, respectively. The generator synthesizes
CTeor from CT, and vice versa, while the discriminator aims to dis-
tinguish the synthetic CT.., scans as fake. The authors made the fol-
lowing modifications from the paper published by Isola et al.*°%: an
instance normalization layer'®* replaced the BN layer in the genera-

tor, the kernel size of convolutional layer was set to 4X4 with a

stride of 2 instead of the maximum pooling filter, the image size was
expanded by using the upsampling filters and one filter convolution
layer was applied followed by a tanh activation function as the last
filter. For all the other layers, a leaky rectified linear unit (LeakyR-
eLU) with a slope of 0.2 was used as an activation function. In this
proposed method, the CT, is translated into CT,, using adversarial

5

loss, cycle consistency loss,’> and identity map loss which were

introduced to regularize the generator during the conversion.

Evaluation of HU values restoration and image quality
The proposed dual-stream deep network, RL-ARCNN, and DL-MAR
were evaluated for their ability to restore HU values and image qual-
ity. The findings of these studies are summarized in Table 7.
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TaBLe 7 Summary of the studies which investigated the restoration of HU values and image quality of deep learning-based MAR algorithms

for RT application.

Images; No. of CT
slices /samples (n)
[for training &

Author MAR for MAR] Metals CT scans ROI Measurements Results Comments
Gjesteby Dual-stream Phantom derived  Simulated (CT,¢ vs CTer) &  Whole image SSIM 0.2382 & 0.8262 The proposed
etal?® CNNwith clinical (Hip & Ti (CTeor vs CTres ) Hip PSNR in dB 0.6930 & 0.8723 method is highly
residual Spine); [42 & 08] CTref, CTart & CTeor Spine Mean HU 9.1830 & 22.1685 effective to
learning Near to metal 15.5450 & 21.8480 reduce metal
implants on 80.56, 2.25 & 94.26 artifacts
Hip 94.27,121.73 &
Spine 89.18
Huang RL-ARCNN  Clinical (Prostate); Simulated (CTo, Vs CTer) & Whole image PSNR in dB 38.09 & 25.38 RL-CNN
et al.”” [550 &550] & real (CTart vs CTrer ) eliminates the
artifacts metal artifacts
better than
conventional
image
processing-based
MAR methods
Koike Cycle GAN  Clinical (H&N); Dental (CTart vs CTrer ) &  Oral cavity Artifact index 132 +43 & The proposed
et al.”’ [(n=92) & fillings (CTeor VS CTreq) [mean + STD]  267.3 + 113.7 method reduced

(n = 15)]

the metal
artifacts from
H&N CT scans

H&N Head & Neck, Ti Titanium, CT,¢ CT scans with artifacts, CT,, Corrected CT scans, CT,.s Reference CT scans, vs versus, SSIM Structural similarity,

PSNR Peak Signal-to-Noise Ratio.

The dual-stream deep network with residual learning”® was eval-
uated on synthesized data. Two kinds of voxelized phantoms were
created from volumetric data of the pelvis and spinal regions from
the visible human project.2°® CT scans of these voxelized phantoms
were simulated by an industrial CT simulation software'®” with and
without a Ti implants to mimic hip prostheses and spinal implants.
Then, the proposed MAR algorithm was trained to generate CT,,
from these CT scans. The authors measured the mean HU near the
metal implant on CTef, CT,t, and CT¢or and the results were as fol-
lows: 80.56, 2.25, and 94.26 HU in the hip case and 94.27, 121.73,
and 89.18 HU in the spine case, respectively. Also, calculations of
SSIM and PSNR were performed for CT, and CT., in comparison
with CT,e. For the SSIM calculation, a value of 1 indicates the high-
est similarity between the compared CT scans, while O indicates the
lowest similarity. The calculated SSIM were 0.2382 for CT, and
0.8262 for CT,, for the hip case, and 0.6930 for CT,+ and 0.8723
for CT,, for the pelvis case. In addition, the calculated PSNR were
9.1830 dB for CT,+ and 22.1685 dB for CT.., for the hip case, and
15.5450 dB for CT,+ and 21.8480 dB for CT.,, for the pelvis case.
These results indicate that the proposed dual-stream deep network
with residual learning can be used to reduce the metal artifacts for
RT applications. However, this proposed MAR algorithm heavily
depends on the performance of NMAR, used for data preprocessing.

For the brachytherapy application, RL-ARCNN?> was evaluated.
During the training, paired clinical cervical CT scans which include
CT,ef and simulated artifacts on CT,er, and CT scans with residual
artifacts were used. The CT scans with residual artifacts were

obtained from the difference between CT,¢ and CT,¢ with simulated

artifacts. During the MAR evaluation, clinical cervical CT scans with
implanted seeds were used (CT.y). The calculated PSNR was
38.09 dB for CT,, after application of RL-ARCNN and 25.38 dB for
CT.t. So, the proposed method seems to reduce the metal artifacts.

DL-MAR was studied on CT scans with dental implants by Koike
et al.”” The Adam optimizer was used to train the network using
unpaired clinical H&N CT scans with (CT,+) and without (CT,e) the
dental implant. The calculation of the artifact index?? (mean + STD)
between CT., and CT,: resulted in significant differences
(P < 0.001), and it was 13.2 + 4.3 on CT., and 267.3 £ 113.7 on
CT.+ Therefore, this proposed MAR algorithm can be used to
reduce the metal artifacts for RT applications. However, the authors
stated that the proposed MAR algorithm was trained and modified

for the H&N CT scans and can only be applied on these scans.

Dosimetric impact of deep learning-based MAR algorithms

During the evaluation of DL-MAR?” for RT, clinical H&N CT scans
with dental implants were used. A density correction method using
water density (1.0 g cm™) was used for the comparison. IMRT plan-
ning with 6MV photons was performed using seven fields. To calcu-
late the dose for the oral cavity on CT,: and CT.,, the AAA
algorithm was used. DAH was used to evaluate the calculated doses
on CT,, after application of DL-MAR and CT, in comparison with
the CT,, after application of density correction. The maximum dose
differences were —2.4% on CT,, after application of DL-MAR and
—7.2% on CT,+. Moreover, very small dosimetric differences were
found between the calculated doses on CT,, after application of

DL-MAR and CT,,, after application of density correction. However,
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TaBLE 8 Strengths and weaknesses of proposed and/or investigated MAR methods for RT applications.

MAR methods

Commercial MAR methods O-MAR, iIMAR, Smart MAR &

SEMAR 35,41-57,59,62,63

Strength

Standard methods and are used routinely
in the clinic.

Weakness

Incomplete removal of artifacts
with HU errors.

Applicable on a wide range of clinical cases Induce new artifacts.

for RT applications.
Available in TPS.

Density correction
methods 38,67,68,71

Image based MAR”?
MDT?3

Research-based traditional
MAR algorithms

Do not use sinogram data

Scanner specific.

Manual methods.

Operator needs specialized
knowledge and experience for
artifact identification and density
overrides.

Semi-automatic

Reduces the dose to CIEDs during various May requires long processing time

RT procedures.

Sinogram-based MAR”®

STR, 3D median filter and Sinogram-
based correction”*

Additional tilted CT scan-based
MAR7¢

ALIR"?

Reduces the dose errors from amalgam in
H&N RT.

STR removes the spot artifacts.

3D median filter and sinogram-based
corrections reduce the dark and white
streaks.

Reduces the HU errors better than LI and
NMAR.

Improves the dose calculation accuracy

Applicable for minor streaks
artifacts

STR and 3D median filter use
predefined HU values and are
applicable only for brachytherapy.

Sinogram-based corrections induce
new artifacts.

Additional radiation burden.

Increases the calculated doses for

more than density correction method and OAR.

LI do.

MAR with hardware adaptation’”
MRI-based CT MAR”?
kerMAR®*

MVCBCT & kVCT method®?

Addresses the photon starvation during
the artifact reduction.

Does not require sinogram and threshold-
based tissue classification.

Modified CT image acquisition in
comparison with the standard.

Requires aligned MRI & CT scan.
Semi-automatic.

Reduces the metal artifacts better than O- Requires aligned MRI & CT scan.
MAR in H&N cases.

Performs better than LI and NMAR for

Applicable only for H&N case.
Requires MVCBCT scan.

artifact reduction.

Deep learning-based MAR
algorithms

Hybrid sinogram-based MAR®?

Dual-stream CNN with residual
learning®®

RL-ARCNN?®
DL-MAR®”

Performs better than LI for artifact
reduction.

Reduces the remaining metal artifacts on

CT scans after NMAR application.
Does not require sinogram data.

Does not require paired data.

Comparable performance to density
correction for accuracy in dose
calculation.

Requires MVCT scan.

Requires paired data and depends
on the performance of NMAR

Needs paired data.
Applicable only in H&N cases.

the plan dose distribution on CT,,, after application of density cor-

rection may not reflect the actual dose distribution.

4 | DISCUSSION

Table 8 lists the strength and weakness of the proposed or evalu-
ated MAR methods for RT applications. Commercial MAR algorithms
are used in clinical environments to improve the treatment delivery
in wide range of cases. These algorithms are self-optimized (auto-
matic) and do not require skills from an operator. On the other hand,

in density correction methods, metal artifacts are identified by an
expert and corrected by appropriate density overrides. Among the
investigated research-based traditional MAR algorithms, the applica-
tion of kerMAR reduced the metal artifacts more efficiently for H&N
cases than O-MAR did. Even though ALIR improved the dose calcu-
lation accuracy more than the density correction method, it failed to
reduce the planned radiation dose to certain OARs. MRI-based CT
MAR”? requires manual selection of CT scans for artifact correction.
Most of the proposed MAR algorithms based on traditional image
processing such as MVCT-based MAR, additional tilted CT scan-
based MAR, and ALIR were performed better than LI or/and NMAR
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for artifact correction. Among the deep learning-based MAR algo-
rithms, DL-MAR does not require paired data for artifact correction,
and it provided similar results for dose calculation when compared
with the water density override.

The application of MAR methods on CT scans for RT applications
was summarized in this review. Commercial MAR methods are uti-
lized in clinical environments to correct the metal artifacts and
improve the dosimetric accuracy in RT. However, residual artifacts
and/or creation of new artifacts which may negatively impact in RT
planning are often identified. Also, planned dose distributions on CT
scans after application of TPS-based density correction methods
show large-dose discrepancies compared to delivered dose. Thus,
the performance of commercial MAR methods is not always com-
pletely satisfactory in RT application.

Among the research-based MAR methods, some of the MAR
methods which are based on traditional image processing require an
additional CT or aligned MRI scan which may result in extra radiation
burden for the patient, or which may not be accessible. Only few
studies compared the efficiency of the proposed MAR methods with
the commercial MAR methods for RT applications. In addition, the
ability of the proposed deep learning-based MAR algorithms to cor-
rect artifacts depends on the amount of CT scans from a specific
anatomy which are used to train them. Thus, they are typically opti-
mized to reduce the metal artifacts for a specific anatomy. Further-
more, their dosimetric impacts for RT applications were not
extensively evaluated.

The commercial MAR methods and research-based MAR meth-
ods still have a limitation in metal artifact correction and/or dose
improvements for RT applications. Their ability of the metal artifact
corrections mainly depends on the anatomical region of CT scans
which are corrupted by the metal artifacts from a specific implanted
metal. The patterns and severity of the metal artifacts from each of
implants are unique and different. The traditional MAR methods
have difficulties in recognizing the patterns of the metal artifacts,
but deep learning approaches can efficiently handle this complicated
challenge. Also, newly induced artifacts were identified on CT scans
after application of MAR algorithms which utilize the sinogram for
the metal artifacts reduction. The deep learning-based MAR algo-
rithms often work on reconstructed CT scans and, thus, the arti-
facts-corrected CT scans are free from these induced artifacts.
Moreover, recent developments of MAR algorithms which utilize
deep learning, for example, Cycle GANs do not require paired clinical
CT scans for artifact reduction. Therefore, developing a MAR
method while targeting a specific pattern of metal artifacts and a
specific anatomical structure using a deep learning approach will be
a promising solution. This method should be explored further and
then evaluated for the RT applications.
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