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Abstract

Metal artifact reduction (MAR) methods are used to reduce artifacts from metals or

metal components in computed tomography (CT). In radiotherapy (RT), CT is the

most used imaging modality for planning, whose quality is often affected by metal

artifacts. The aim of this study is to systematically review the impact of MAR meth-

ods on CT Hounsfield Unit values, contouring of regions of interest, and dose calcu-

lation for RT applications. This systematic review is performed in accordance with

the PRISMA guidelines; the PubMed and Web of Science databases were searched

using the main keywords “metal artifact reduction”, “computed tomography” and

“radiotherapy”. A total of 382 publications were identified, of which 40 (including

one review article) met the inclusion criteria and were included in this review. The

selected publications (except for the review article) were grouped into two main

categories: commercial MAR methods and research‐based MAR methods. Conclu-

sion: The application of MAR methods on CT scans can improve treatment planning

quality in RT. However, none of the investigated or proposed MAR methods was

completely satisfactory for RT applications because of limitations such as the intro-

duction of other errors (e.g., other artifacts) or image quality degradation (e.g., blur-

ring), and further research is still necessary to overcome these challenges.
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1 | INTRODUCTION

Radiotherapy (RT) is one of the primary curative treatment options

for different types of cancer, for example, cancers of head and neck,

prostate, cervix, breast, as well as sarcomas. RT aims to deliver ther-

apeutic ionizing radiation dose to a treatment target, while sparing

healthy organs at risk (OARs) as much as possible. The therapeutic

radiation dose is delivered to the target using beams produced by a

clinical linear accelerator (LINAC) in external beam radiation therapy

(EBRT), while in brachytherapy radioactive sources invasively placed

near or inside the target are used. Typically, RT workflows include a

simulation stage and a treatment delivery stage. During the treat-

ment planning process at the simulation stage, computed tomogra-

phy (CT) scans serve as a primary source of anatomical information

to identify and delineate the target and OARs. In addition, they are

used to calculate the electron densities which are derived from the

Hounsfield unit (HU) values of those CT scans. This electron density

information in combination with the delineations of the anatomical

structures is used to calculate the therapeutic radiation dose.

CT scans with insufficient quality may greatly affect the treat-

ment planning process, potentially resulting in the target receiving

insufficient dosage and/or extra toxicity to the OARs. Metal implants

or metal components inside the body of the patient can induce

errors during the CT reconstruction, which appear as artifacts on the

resulting CT scans. These metal artifacts are typically bright and/or

dark streaks (see Fig. 1) and are produced by beam hardening, pho-

ton starvation, edge gradient effect, scatter, or their combination.1,2

The degree of metal artifacts mainly depends on the atomic number,

density, size, and shape of this metal component as well as its orien-

tation with respect to the CT scan plane.3,4 Among others, dental

implants or dental fillings in the head and neck (H&N) area, bilateral

or unilateral metal prostheses in the hip region, and metal screws in

the spine produce a large amount of metal artifacts and, thus, signifi-

cantly deteriorate the quality of CT scans.5–7

Dark streaks near the metal components result from highly

attenuated polychromatic x‐ray beams, which become for this reason

harder.8 Because of this, insufficient photons reach the CT detectors

(photon starvation), resulting in large statistical errors in data acquisi-

tion, which induce fine bright and dark streaks along the direction of

highest attenuation7,8. As a consequence, the appearance of these

streak‐shaped metal artifacts adversely affects the accuracy of organ

contouring and the electron density calculation. This can eventually

result in errors in planned radiation dose distributions and particle

range measurements in photon and particle beams, respectively.9,10

In the literature, several papers have been published on algo-

rithms which perform metal artifact reduction (MAR) on CT scans.

The working principle of traditional MAR algorithms may be catego-

rized into three overall approaches: image inpainting techniques,11

sinogram inpainting techniques,12 and model‐based iterative recon-

struction (MBIR) techniques13 or their combination. The image

inpainting techniques are applied to already reconstructed CT scans

and they replace artifact corrupted CT pixels with good‐estimated

values. The sinogram inpainting techniques follow a similar principle,

but are used on projection data (sinograms) instead of on recon-

structed CT slices. Finally, MBIR techniques are advanced CT recon-

struction techniques which use probabilistic forward and backward

models to reduce error propagations during CT reconstruction.14

Recently, thanks to the increasing availability of computational

resources, very promising results in the field of medical imaging have

been produced using machine learning (and in particular its subset

deep learning),15–18 including metal artifact reduction in CT

scans.19,20 For example, the performance of convolutional neural

networks (CNNs) has been assessed in combination with sinogram

inpainting for artifact correction.19,21 The deep learning techniques

are powerful in learning and capturing the detailed features and pat-

terns of the metal artifacts.

In general, the application of a MAR method on a CT scan with

artifacts (CTart) results in the creation of a corrected CT scan (CTcor)

on which the impact of the artifacts is reduced, either in terms of

image quality or dosimetric outcome on the treatment. To measure

the effectiveness of the methods, several different metrics have

been introduced in the literature to compare CTart and CTcor. Image

quality metrics proposed include visual inspection, quantification of

HU values, artifact index,22 contrast‐to‐noise ratio (CNR), signal‐to‐
noise ratio (SNR), peak SNR (PSNR), structural similarity (SSIM),

Hausdorff distance (HD),23 and the Dice similarity coefficient

(DSC).24–26 To evaluate the dosimetric impact, instead, the calculated

dose distributions on CTart and CTcor for the target and OARs pro-

vided by a treatment planning system (TPS) can be compared. Vari-

ous dose metrics can be used to express the dosimetric impact,

including gamma (γ) index,27,28 dose‐area histogram (DAH),29 quan-

tifications of D90%, D100%, V100%, and V150%,
30 and therapeutic range

calculation (in particular, water equivalent thickness (WET)31 in parti-

cle therapy).

A topical review article has been previously published by Giant-

soudi et al. on the evaluation of the dosimetric effects of metal

F I G . 1 . CT scan with artifacts induced by a unilateral hip implant
with the appearance of bright streaks (indicated by yellow arrow)
and dark streaks (indicated by red arrow).
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artifacts on treatment planning and the potential dosimetric improve-

ments resulting from the application of various MAR methods.10 The

article addressed the impact of sinogram inpainting and MBIR on the

dose distributions, mainly focusing on research‐based MAR methods

while, among the commercially available MAR methods, only the

Orthopaedics Metal Artifact Reduction (O‐MAR (Philips Health Sys-

tem, Cleveland, USA)) algorithm was reported. Instead, this system-

atic review article aims to include all MAR methods which have

been investigated or proposed for RT applications in the last 5 yrs at

the time of publication (2015–2020). These methods include com-

mercial MAR methods and research‐based MAR methods based on

either traditional algorithms or deep learning. In addition, our review

extensively reports not only the works on dosimetric impact of the

methods but also on the ones evaluating the effects on organ con-

touring, and image quality and HU restoration for RT applications.

2 | METHODS

2.A | Literature search

The systematic review search was performed in accordance with the

Preferred Reporting Items for Systematic Reviews and Meta‐Analy-
ses (PRISMA) guidelines.32,33 A comprehensive electronic search

from the databases of PubMed® (U.S. National Library of Medicine,

USA) and Web of Science (Clarivate Analytics, USA) was performed

in October 2020. Combinations and synonyms of the main keywords

“metal artifact reduction,” “computed tomography,” and “radiother-

apy” were used. The search was limited to the English language and

to the last 5 yrs. Initially, title and abstract of the identified articles

were read to screen their suitability for the selection. Then, the full

texts were read from the selected articles to check their eligibility

for inclusion. Finally, a manual search was performed using the list

of references of the included articles to find any additional data

missed by the initial database searches (see Fig. 2).

2.B | Inclusion and exclusion criteria

An article was considered if it investigated the use of one or multiple

MAR methods on CT scans for RT applications, with the exclusion

of dual‐energy CT (DECT), dental cone‐beam CT (CBCT), C‐arm CT,

spectral CT, micro‐CT, or photoacoustic CT. Also, editorial commen-

taries and book chapters were excluded.

3 | RESULTS

A total of 40 full‐text publications were selected for this systematic

review, including one review article, as mentioned in the Introduc-

tion section. The selected publications (except the review article)

have further been categorized into application of commercial meth-

ods (n = 25), and application of research‐based MAR methods

(n = 14). The category of commercial methods includes the articles

on commercial MAR algorithms (n = 21) and TPS‐based density

correction (n = 4). Research‐based MAR methods include the articles

on traditional MAR algorithms (n = 11) and deep learning‐based
MAR algorithms (n = 3).

3.A | Commercial MAR methods

Commercial MAR methods are available on CT scanners or on the

TPS to reduce metal artifacts on CTart for RT applications. The algo-

rithms implemented directly on CT scanners use a sinogram inpaint-

ing technique with iterative reconstruction and include: O‐MAR

(Philips Health System, Cleveland, USA),34 iterative metal artifact

reduction (iMAR [Siemens Healthcare, Forchheim, Germany]),35

smart metal artifact reduction (Smart MAR [General Electric Health-

care, Chicago, IL, USA]),36 and single‐energy metal artifact reduction

(SEMAR [Canon/Toshiba Medical Systems, Otawara, Japan]).37 These

algorithms work on projection data (projection‐based MAR algo-

rithms) and they typically use an image‐based metal segmentation

method as a starting point.7 Their basic concept is to detect and seg-

ment the corrupted projection data which corresponds to the metal

components. Subsequently, the corrupted data are replaced by esti-

mated corrected values.

Several studies have investigated the applicability of commercial

MAR algorithms, especially O‐MAR, in RT. These commercial MAR

algorithms are not openly accessible; however, O‐MAR is chosen

here for a general introduction to the working principles of all of

them. The O‐MAR algorithm is optimized for orthopedic metal

implants and uses an iterative projection modification method to

reduce the artifacts (see Fig. 3). First, a tissue classification process

is performed which assigns tissue labels to all the pixels of an origi-

nal input image (see arrows ‘a’ in Fig. 3). Two separate images are,

thus, produced: one including only tissues and one only the metal

component. Subsequently, both segmented images (tissue classified

and metal only) and the original input image are forward projected

to make their respective sinograms (see arrows ‘b’ in Fig. 3). After

the sinograms are made, the tissue classified sinogram is subtracted

from the original sinogram (see arrows ‘c’ in Fig. 3) resulting in the

creation of a difference sinogram. Then, the metal‐only sinogram is

used as a mask to remove the nonmetal pixels from the difference

sinogram (see arrows ‘d’ in Fig. 3) and a mask sinogram is created.

A correction image is then produced by filtered back projection of

the mask sinogram (see arrow ‘e’ in Fig. 3), and subtraction of the

correction image from the original input image is created (see

arrows ‘f’ and ‘g’ in Fig. 3). Finally, the corrected image is used as

an input in an iterative loop for further correction (see arrow ‘h’ in

Fig. 3).

A density correction or a density override method on the TPS

can also be used to reduce the metal artifacts on CTart. When these

approaches are used, regions corrupted by metal artifacts and metal

regions are identified manually through contouring on CTart. Then, a

manual density override or density correction is performed by

replacing the metal artifacts commonly with the density of water or

by replacing the physical density of a metal implant by the appropri-

ate value.38,39
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3.A.1 | Evaluation of HU values restoration

The capability of the commercial MAR algorithms to improve the

HU values for RT applications was evaluated by several studies.

Generally, during the HU measurements for an anatomical region on

a CT scan, a 10%–20% variations in HU values are expected. For

example, at routine CT scans, the HU value of water is set to 0 HU.

The HU value of air is approximately −1000 HU and bone is around

1000 HU, while soft tissue HU values range from 20 HU to

30 HU.40 Table 1 provides an overview of the studies which investi-

gate the HU value improvements.

Kwon et al. studied the impact of O‐MAR on both clinical H&N

CT scans with dental implants, and on CT scans of a custom‐made

phantom with aluminum (Al), titanium (Ti), zirconium (Zr), and chro-

mium (Cr) metal implants.41 The CTcor after O‐MAR application

showed HU values closer (not quantified) to the actual values, while

the noise on clinical H&N CT scans was reduced. For the phantom,

a comparison between CTcor after O‐MAR application and CT scans

without metal implants (CTref) did not show significant differences

while significant differences (P < 0.05) were observed between CTart

and CTref.

For the evaluation of iMAR by Bär et al., a Gammex 467 (Gam-

mex, Middleton, WI, USA) phantom was used with several tissue‐

equivalent inserts, such as lung, adipose tissue, breast, liver, and

bone.42 The phantom was scanned with and without Al, Ti, and

stainless steel (SS) implants. This study revealed that iMAR applica-

tion improved the HU accuracy on CTcor compared to CTart. For

example, iMAR approximated the HU values for tissue‐equivalent
substitutes in the phantom up to ±44 HU compared to CTref. A simi-

lar finding was found by the authors for H&N clinical CT scans with

dental fillings and/or implants. Moreover, they stated that iMAR cor-

rected the HU values independently of the metal density. In another

study by Axente et al., a standard electron density phantom (CIRS,

Model 062MA, Norfolk, VA, USA) was used with multiple inserts,

such as plastic water, bone, muscle, adipose tissue, breast, bone,

lung, and liver.35 The phantom with and without SS inserts with

varying diameters was CT scanned. It was shown that the CTcor after

iMAR application restored the HU values well and it had absolute

differences of less than 25 HU compared to CTref. Nevertheless,

residual HU errors (not quantified) were observed on the resulting

CTcor. Furthermore, the study mentioned that iMAR restored the HU

independently of the metal component’s size and configuration.

Maerz et al. reported, in their dental cylindrical phantom study, that

the use of iMAR reduced the average HU deviation, from 1006 HU

on CTart to 408 HU in the area which included the metal inserts,

and from 283 HU on CTart to 33 HU in tissue areas.43

F I G . 2 . PRISMA flow chart for the
selection of the articles for this review.
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Guilfoile et al. investigated the ability of Smart MAR to restore

the HU values. To this end, a breast expander consisting of a samar-

ium cobalt magnet was placed on an adult male phantom (CIRS,

Model ATOM 701‐B, Norfolk, VA, USA).44 The authors compared

the mean HU value on CTref (not given) with both CTart and CTcor

after Smart MAR application. The results showed a reduction in the

HU value difference from 29 HU to 3 HU in ipsilateral lung, and

from 21 HU to 8 HU in bone close to the metal implant, respec-

tively. In addition, small differences in mean HU values were mea-

sured in regions that were further away from the implant. In a study

with a Catphan® 504 phantom (The Phantom Laboratory, NY, USA)

with a SS implant, Huang and Kohli found that Smart MAR substan-

tially reduced the metal artifacts.45 On average, the standard devia-

tion (STD) was reduced by 9.1 HU on CTcor after Smart MAR

application in comparison with CTart. Another study used a custom‐
made water equivalent phantom with lead implants and concluded

that Smart MAR application improved the mean HU value in a region

of interest (ROI) close to a lead implant from −862 HU on CTart to

−185 HU on CTcor.
46 This low HU value measurement for water on

CTart (water usually is around 0 HU) resulted from the severe dark

streak artifact from the metal implant. The application of iMAR on

CTart reduced the severity of the dark streaks and, therefore,

improved the HU value of water.

A study by Murazaki et al. investigated the results of SEMAR

application on HU value measurements accuracy.47 The authors

made use of a standard electron density phantom (CIRS, Model

062A, Norfolk, VA, USA) with and without Ti implants. To simulate

the different tissue types, plugs with different densities were

inserted into the phantom, such as muscle plugs and soft tissue

plugs. They found that, in the muscle plug, the mean HU value on

CTref, CTart, and CTcor after SEMAR application were 25.9 HU,

−281.8 HU, and 26.1 HU, respectively. A similar pattern of HU value

measurements was observed in other tissue plugs. In an experiment

by Miki et al., an anthropomorphic head phantom was CT scanned

with and without the insertion of metal crews.48 In areas with sev-

ere artifacts, HU value measurements on both CTart and CTcor after

SEMAR application were compared with CTref. This resulted in dif-

ferences of −79.5 ± 97.2 HU (mean ± STD) and −1.4 ± 19.5 HU

(mean ± STD), respectively. The HU value of CTref was not reported.

The CTcor after SEMAR application brought the HU values closer to

the reference values.

In general, the majority of the studies used phantoms to investi-

gate the capability of the commercial MAR algorithm to restore HU

values and they concluded that the investigated commercial MAR

algorithms improved the accuracy of HU value measurements. Nev-

ertheless, residual HU errors were observed on CTcor, either under-

estimating or overestimating the correct HU values. Underestimation

resulted from incomplete correction of dark streak artifacts, while

overestimation resulted from incomplete correction of bright streaks

on CTcor.

F I G . 3 . Working principle of the O‐MAR algorithm. Starting from tissue classification, O‐MAR produces original, tissue class, and metal‐only
sinograms (a and b). Subtraction (c) of the tissue class sinogram from the original sinogram results in a difference sinogram. Then, the metal‐
only sinogram is used to mask (d) the difference sinogram and a correction image is produced after filtered back projection (e). Subtraction of
the correction image from the input (f and g) produces a corrected image which then undergo (h) in order to apply further corrections.
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3.A.2 | Evaluation of organ contouring

The commercial MAR algorithms have been also evaluated on their

ability to improve organ contouring in RT (see Table 2). A study by

Sillanpaa et al. evaluated the easiness of contouring of the parotid

gland on clinical H&N CT scans with dental fillings.49 The contouring

of the parotid was performed on CTart and CTcor after O‐MAR appli-

cation. During the contouring, 79% of the CTcor and 11% of the

CTart were classified as easy to contour. Furthermore, the authors

calculated the dice similarity coefficient (DSC) to assess the

contouring interobserver variability. The perfect match between two

contours, on the same anatomy, would result in the highest DSC

value of 1, while the lowest DSC value of 0 represents no overlap of

two contoured structures. The average DSC for the parotid contour-

ing was 0.775 ± 0.045 (mean ± STD) on both CTcor (after O‐MAR

application) and CTart. These clinical H&N CT scans had large

amounts of small dental fillings on either side of jaw, which might

cause incomplete correction of metal artifacts. The authors sug-

gested that this was one of the reasons for classifying 11% of the

CTart as easy to contour.

TAB L E 1 Summary of the studies which investigated commercial MAR algorithms for HU value restoration for RT applications.

Author MAR Images Metals CT scans

ROI; [Refer-
ence HU
value (Mean)] Measurements Results Findings

Kwon

et al.41
O‐MAR Clinical

(H&N, open

mouth),

(n = 3)

Dental implants CTart & CTcor Air in outer

cavity;

[−1000 HU]

Mean HU ‐238.7 HU &

‐441.8 HU

O‐MAR

increased the

accuracy of HU

values

Bär et al.42 iMAR Phantom Al, Ti & SS CTref vs CTcor Tissue

equivalent

substitutes;

[Not reported]

Absolute HU

difference

44 HU iMAR restored

the HU values

independent of

the metal

density

Axente

et al.35
iMAR Phantom SS with varying

diameters

CTref vs CTcor Multiple

places

Absolute HU

difference

25 HU iMAR restored

the HU values

independent of

the metal size

and

configuration

Maerz

et al.43
iMAR Phantom Dental implants (CTart vs CTref) &

(CTcor vs CTref)

Tissue;

[Not reported]

Metal inserts;

[Not reported]

Mean HU

difference

283 HU & 33

HU

1006 & 408

HU

iMAR improved

the accuracy of

HU value

measurements

Guilfoile

et al.44
Smart

MAR

Phantom Samarium cobalt

magnet

(CTart vs CTref ) &

(CTcor vs CTref)

Ipsilateral lung

Spinal bone

[Not reported]

Mean HU 29HU & 2HU

21HU & 8HU

Application of

Smart MAR

improved the

HU values

restoration

Huang &

Kohli45
Smart

MAR

Phantom SS CTcor vs CTart Multiple

places

STD reduction 9.1 HU Smart MAR

reduced the

STD of HU

values

Inal &

Sarpün46
Smart

MAR

Phantom Lead CTart & CTcor Area close to

the metal

edge;

[Around 0

HU]

Mean HU ‐862 HU &

−185 HU

Smart MAR

improved the

accuracy of HU

value

measurements

Murazaki

et al.47
SEMAR Phantom Metal inserts CTart & CTcor Muscle

substitute;

[25.9 HU]

Mean HU −281.8 HU &

26.1 HU

SEMAR restored

the HU values

with high level

of accuracy

Miki et al.48 SEMAR Phantom Metal screws (CTart vs CTref ) &

(CTcor vs CTref)

Severe

artifact

region;

[Not reported]

Mean (± STD) HU ‐79.5 (± 97.2)

HU &

‐1.4 (± 19.5)

HU

SEMAR

improved the

HU value

measurements

accuracy

HU Hounsfield units, H&N Head and neck, Al Aluminum, Ti Titanium, SS Stainless steel, CTart CT scans with artifacts, CTcor Corrected CT scans, CTref

Reference CT scans, vs versus.
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In another study by Andersson et al., visual grading was used for

the evaluation of anatomical delineation.50 A comparison between

CTart and either O‐MAR or iMAR‐corrected CTcor was performed.

Visual grading resulted in significantly (P < 0.001) higher scores on

both CTcor. However, new induced artifacts were also identified on

CTcor. Kohan et al. used clinical H&N CT scans with dental implants

for their O‐MAR evaluation.51 Reviewers with different experience

levels in contouring performed area measurements of selected struc-

tures on CTart, CTcor after O‐MAR application, and CTref. The intra-

class correlation coefficient (ICC) was calculated to assess inter‐
reader variability. The highest ICC value of 1 indicates the lowest

inter‐reader variability, while ICC value of 0 indicates the highest

inter‐reader variability. For all reviewers, the ICCs for CTart, CTcor

after O‐MAR application, and CTref were 0.884, 0.971, and 0.989,

respectively, without outliers; and 0.903, 0.948, and 0.985, respec-

tively, with outliers. For the experienced readers, the ICC for CTart,

CTcor after O‐MAR application, and CTref were 0.934, 0.975, and

0.990, respectively, without outliers; and 0.904, 0.979, and 0.976,

respectively, with outliers. Application of O‐MAR improved the ICC

values and brought them closer to the reference ones. For this rea-

son, CTcor after O‐MAR application reduced the inter‐reader variabil-
ity during contouring. Another study by Hansen et al. also concluded

that the application of O‐MAR on clinical H&N CTart increased the

organ delineation and contouring accuracy.52 The authors also mea-

sured and compared the gross tumor volume (GTV) and parotid vol-

ume on CTcor after O‐MAR application and on CTart. Removal of

streak artifacts increased the signals from the artifact corrupted

areas, thus depicting a consistently larger contoured GTV (mean

22%, P < 0.06) and parotid volume (mean 7%, P = 0.05). However,

the authors noted that to determine the actual volumes of the delin-

eated structures the measured volumes should be compared with

the reference volumes. A similar finding was reported by Hagen

et al.; they found that contouring on CTcor after iMAR application

would increase the mean GTV tongue in H&N cases.53 The GTV

tongue increased (P = 0.267) from 28 ± 6 cm3 (mean ± STD) on

CTart to 30 ± 7 cm3 (mean ± STD) on CTcor. However, the mean vol-

ume of the parotid as an OAR was reduced in this study. Moreover,

the authors evaluated the size of the prostate GTVs on bilateral

implanted pelvis CT scans, and they were reduced (P = 0.168) from

87 ± 44 cm3 (mean ± STD) on CTart to 75 ± 22 cm3 (mean ± STD)

on CTcor after iMAR application. For the OARs on CTcor after iMAR

application in the pelvis case, the mean volume for rectum and blad-

der was reduced and increased, respectively. The DSC of the con-

tours with respect to the reference increased more for the CTcor

after iMAR application than for the CTart. Both the GTV of the ton-

gue and the prostate on CTcor after iMAR application were underes-

timated in comparison with the predefined reference. Nevertheless,

it improved the confidence in contouring, as indicated by higher

DSC values. Axente et al. assessed the image quality and visual con-

spicuity of CTart and CTcor after iMAR application.35 Different types

of clinical images were used, such as hip cases with unilateral or

bilateral metal implants, H&N cases with dental fillings, a spine with

metal implants, a knee with prosthesis, and a breast with expander.

The median score for the image quality and visual conspicuity of

CTart and CTcor after iMAR application increased from 3 to 4 of 5.

During the image quality assessment, new secondary artifacts were

identified on CTcor. Another study investigated iMAR for its anatomi-

cal delineation accuracy.54 For this study, clinical CT scans (H&N,

spine, and hip) with metal implants were used. Maximum Hausdorff

(HD) distance and DSC were calculated to quantify the anatomical

delineation accuracy. High HD distance indicates large difference

between two contours while short HD distance indicates small varia-

tion. Contouring was performed on CTart and CTcor after iMAR appli-

cation and the maximum HD distance with respect to contours on

CTref was 10.7 mm and 5.1 mm on dental scans, 18.2 mm and

18.6 mm on spine scans, and 7.7 mm and 3.5 mm on hip scans, for

CTart and CTcor, respectively. In dental and hip scans, the maximum

HD distance on CTart had the largest values and differed significantly

(P < 0.05) from CTref. Furthermore, the calculated DSC values for

contours on CTart and CTcor after iMAR application were 0.75 and

0.87 on dental, 0.57 and 0.74 on spine, and 0.5 and 0.87 on hip,

respectively. The higher DSC values on CTcor after iMAR application

indicate that there is less variability in contouring and a higher accu-

racy.

The SEMAR algorithm was evaluated by Shiraishi et al. to quan-

tify its ability to improve the detection accuracy of implanted iodine

seeds which contain Ti and silver (Ag) in brachytherapy.55 To identify

seeds on both CTart and CTcor after SEMAR application an automatic

seed finder was used, and the results were compared with reference

positions. The mean true‐positive fraction (TPF) was calculated, and

it had significantly higher values (P < 0.05) for CTcor after SEMAR

application (0.992 ± 0.0103, [mean ± STD]) than for CTart

(0.982 ± 0.0159, [mean ± STD]). Thus, the application of SEMAR on

CTart improved implanted seed detection.

Overall, CTcor after application of the above‐mentioned commer-

cial MAR algorithms improved the anatomical conspicuity and con-

touring accuracy. On the other hand, new artifacts induced by the

MAR algorithms appeared on resulting CTcor and it is clear that the

external factors such as physician’s knowledge and experience con-

siderably influence these results.

3.A.3 | Dose‐based evaluations and corrections

Dosimetric impact of commercial MAR algorithms

The commercial MAR algorithms were also evaluated to assess their

ability to improve the dose calculation accuracy in RT. Table 3 pro-

vides a summary of these research studies. O‐MAR was evaluated

by Kwon et al. in clinical and phantom studies.41 Clinical H&N CT

scans with dental implants were acquired in open‐mouth and closed‐
mouth positions. In the close‐mouth case, the nasopharynx, the par-

otid, and the submandibular salivary gland were contoured as targets

and dose calculation was performed on CTart and CTcor after O‐MAR

application. A nonsignificant (P > 0.05) mean gamma passing rate (%

GP) of 99.4 ± 0.5% (mean ± STD) was reported between them using

a 1%/1 mm gamma criterion. However, for targets such as the ton-

gue and the tonsil, a large discrepancy in %GP was found between
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CTart and CTcor after O‐MAR application under the same criteria in

the open‐mouth scans. A virtual build‐up region was created in front

of the oral cavity due to the metal artifacts on CTart which resulted

in this dose discrepancy. Furthermore, the phantom studies revealed

that the calculated dose on CTcor after O‐MAR application was clo-

ser to the delivered dose (measured with films) than the calculated

dose on CTart. Also Huang et al. studied the application of O‐MAR

to improve dose calculation using phantoms.56 A custom‐made geo-

metric phantom with inserts of Ti or Cerrobend, and two anthropo-

morphic phantoms, one with spinal implants and another one with

dental fillings, were used. In the geometric phantom with Ti insert,

the dose errors between calculated and measured dose with a 2%/

2 mm gamma criterion were 15% for CT art and 11.1% for CTcor

after O‐MAR application in the region which was under the metal

implant. Furthermore, in the anthropomorphic phantoms’ evaluation,

the O‐MAR application improved the dose calculation accuracy in

the dental filling case while it had little impact for the spinal implant

case. Similar findings were reported by Sillanpaa et al. for clinical

H&N CT scans.49

The dosimetric impact of O‐MAR on the spine for stereotactic

body radiation therapy (SBRT) was evaluated by Shen et al. using a

phantom and clinical CT scans.57 SBRT can deliver high ablative radi-

ation dose to the target, while sparing OARs.58 A CT electron den-

sity phantom (Gammex, Model RMI 465, Middleton, WI, USA) with a

Ti implant was used in this study. A similar calculated planar dose

distribution was observed on CTart and CTcor after O‐MAR applica-

tion and %GP was larger than 99.98% for a 2%/2 mm gamma crite-

rion and 99.96% for a 1%/1 mm gamma criterion. The evaluation of

the clinical CT scans revealed similar findings. Thus, the study con-

cluded that O‐MAR does not significantly affect the dose calculation

accuracy and can, therefore, be safely used for SBRT treatment plan-

ning. In another recent study, Akdeniz et al. evaluated the dosimetric

effects of metal implants in small‐field RT using a custom‐made slab

phantom (PTW, Freiburg, Germany).59 The study revealed that small

differences in dose were observed between the calculated and mea-

sured dose on both CTart and CTcor after O‐MAR application. The

authors found that the type of dose calculation algorithms available

on the TPS also influences the dose differences. The Anisotropic

Analytical Algorithm (AAA)60 and Acuros External Beam (AXB) algo-

rithm61 available in the Eclipse™ TPS (Varian Medical Systems, Palo

Alto, CA) were evaluated. On CTcor after O‐MAR application the use

of the AXB algorithm better reduced the dose differences between

the calculated and measured dose compared to the AAA algorithm.

Jia et al. studied the dosimetric impact of O‐MAR on proton

therapy treatment planning using a solid water phantom with a SS

crew inserted.62 The discrepancies of relative depth dose distribution

were calculated on CTcor after O‐MAR application and CTart, and

they were 2 mm at 20% relative dose and 4 mm at 80% relative

dose, respectively. The O‐MAR and iMAR algorithms were evaluated

for proton therapy in phantom and clinical studies by Andersson

et al.50 A head phantom (CIRS, Model 731‐HN, Norfolk, VA, USA)

was CT scanned with and without a removable dental filling and a

neck implant. Deviation in water equivalent thickness (ΔWET) was

calculated to find the proton range errors on CTref, CTart, and CTcor.

In case of the dental filling, along a dark streak, ΔWET was improved

from −17.0 mm to −4.3 mm by O‐MAR, and from −16.1 mm to

−2.3 mm by iMAR. For other directions, ΔWET increased or

remained unchanged on CTcor. Generally, ΔWET was reduced in case

of the neck implant; however, residual deviations up to −2.3 mm

with O‐MAR and up to −1.5 mm with iMAR remained. In the clinical

H&N study with dental implants, planned dose distributions to a

neck node were calculated on CTart and CTcor, and minor differences

were observed. On the other hand, in a phantom (Gammex Inc., Mid-

dleton, WI, USA) study with a Ti implant, Righetto et al. reported

that the calculated proton range using WET was overestimated more

on the CTcor after O‐MAR application than on both CTart and

CTref.
63 The reference was obtained using stopping power values

from the data which were published by NIST (Gaithersburg, MD,

USA). As a result, ΔWET on CTcor after O‐MAR application and CTart

were 0.57 cm and 0.16 cm, respectively, when compared with the

reference value.

Bär et al. focused their work on the iMAR algorithm using CT

scans from the Gammex 467 phantom with and without the metal

inserts, and the clinical CT scans of H&N and a hip with implants.42

In the phantom, a target was contoured in the center between two

implanted metals, and dose calculations were performed on CTref,

CTart, and CTcor after iMAR application. A %GP for a 1%/1 mm

gamma criterion of 62.1% was found between the CTref and CTart

while CTcor improved it up to 85.7%. In the clinical CT scans, dose

differences up to ±5% have been shown when comparing the plans

which were calculated on CTcor and CTart. The application of iMAR

reduced the dose errors and, therefore, the authors recommended

to use this method for RT applications. A similar finding was

reported by another cylindrical phantom study with dental implants.

The dose distributions were calculated on CTart and CTcor and it was

shown that the application of iMAR improved the %GP from 90.6%

to 96.2% for a 3%/3 mm gamma criterion.43 In the CIRS phantom

study,35 the calculated dose distribution on CTcor after iMAR applica-

tion was closer to the CTref dose distribution than the dose distribu-

tion calculated on CTart. In addition to dose distributions, the %GP

of photons (6 MV and 15 MV) and protons (195 MeV) were derived

from the calculated dose distributions on CTart and CTcor. For the

6MV photon beam, iMAR increased the photon %GP for a 2%/

2 mm gamma criterion from 97% to 99.4% and for the 15 MV pho-

tons similar results were shown. For the proton beam, iMAR

increased the %GP from 88.6% to 91.9% under the same criteria.

Smart MAR was evaluated for dose calculation accuracy in RT by

Huang and Kohli using clinical CT scans of H&N with dental fillings

and of a pelvis with a metal prosthesis.45 The average conformity

index (CI), D99%, and V100% were calculated on CTcor after Smart

MAR application and CTart and then compared. The average percent-

age (mean ± STD) differences in CI, D99%, and V100% on H&N CT

scans were −0.3% ± 0.9%, −0.1% ± 0.1%, and −0.1% ± 0.5%,

respectively. For the CT scans of the pelvis, they were (mean ± STD)

−8.8% ± 11.4%, −0.1% ± 0.4%, and −8.8% ± 12.1%, respectively.

Also, this study found that the calculated dose differences between
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the CTcor and CTart were not significant. In another study, Inal and

Sarpün evaluated Smart MAR for dose calculation accuracy in 12 dif-

ferent intensity‐modulated radiation therapy (IMRT)64 plans with 5‐,
7‐, and 9‐field beam arrangements and segment numbers.46 IMRT is

an inverse planning‐based treatment delivery method which is opti-

mized until the target volume and normal tissue reached the pre-

scribed dose. A custom‐made metal‐containing phantom was CT

scanned. For the five, seven, and nine fields, the calculated dose dis-

tributions on CTart and CTcor after Smart MAR application were com-

pared with the measured dose. The %GP for a 3%/3 mm gamma

criterion of the above‐mentioned dose distribution were 94.98% and

96.11% (for five fields), 94.72% and 95.90% (for seven fields), and

91.34% and 92.83% (for nine fields), respectively. The improvement

of %GP on CTcor shows that Smart MAR increased the dose calcula-

tion accuracy. A similar finding was reported by Guilfoile et al. using

a custom‐made hip phantom with bilateral hip prostheses.44

Murazaki et al. evaluated the SEMAR algorithm for dose calcula-

tion accuracy using a standard electron density phantom (CIRS,

Model 062A, Norfolk, VA, USA) with metal inserts.47 Several differ-

ent treatment plans were prepared, using forward planning with one

field, with two opposite fields, and four fields; and with volumetric‐
modulated arc therapy (VMAT).65 The AXB and AAA algorithms

were used to calculate the dose distribution on CTart and CTcor after

SEMAR application. In AXB for the two opposite fields, SEMAR

increased the %GP for a 1%/0 mm criterion from 89.89% to 95.03

%, and similar results were observed also in AAA as well as for the

other forward planning methods under the same criteria. This implies

that the calculated dose distribution was improved with the use of

SEMAR. Miki et al. studied the dosimetric impact of the SEMAR

algorithm in carbon ion therapy using phantom and clinical CT

scans.48 An anthropomorphic head phantom was scanned with and

without metal inserts and then SEMAR was applied to create CTcor

from the CTart. A planning target volume (PTV)66 was placed on the

dark streak band and PTV‐D95% was measured. The calculated PTV‐
D95% on clinical H&N scans with dental implants and with tumors

near the spinal cord as the treatment target showed a higher PTV‐
D95% (from 82.4% to 95.4%) for CTcor than for CTart. To investigate

brachytherapy applications, Shiraishi et al. used clinical pelvis CT

scans with implanted iodine seeds (which contain Ti and Ag).55

SEMAR was applied to generate CTcor from CTart, and then D90%,

V100%, and V150% were calculated on those CT scans and compared

with CTref. The differences in dosimetric calculations were signifi-

cantly smaller (P < 0.05) between CTcor and CTref than between

CTart and CTref.

In general, the CTcor after application of a commercial MAR algo-

rithm improves the dose calculation accuracy in RT. This improve-

ment is indicated by increment of %GP, reduction of errors in dose

calculation compared to CTart, and minor differences from the mea-

sured dose using films and/or ion chambers or calculated dose on

CTref. Furthermore, improvements in the WET calculation were also

reported after artifact correction by commercial MAR algorithms in

proton therapy. However, the amount of improvement in calculated

dose depends on the utilized dose calculation algorithm and on

radiation therapy technique. Studies reported that the AXB algorithm

increases the dose calculation accuracy more than the AAA. More-

over, application of VMAT is preferable to improve the accuracy in

calculated dose compared to IMRT.

Dosimetric impacts of density correction methods

The density correction methods which are available in the TPSs can

also be used to reduce the metal artifacts on CT scans for RT appli-

cations, see Table 4. Maerz et al. used a dental implant cylindrical

phantom to evaluate dose calculation accuracy after application of a

density correction method.38 IMRT and VMAT plans were calculated

on CTart and CTcor after density correction and then compared with

dose measurements using films. Findings revealed that the accuracy

of dose calculation was higher (P = 0.015) on CTcor than on CTart for

both IMRT and VMAT plans. Moreover, the VMAT plan increased

the %GP for a 3%/3mm gamma criterion in comparison with the

IMRT plan on both CTart and CTcor. On the other hand, Acquah

et al. used a phantom (CIRS, Model 002LFC, Norfolk, VA, USA) to

compare the calculated dose on CTcor after density correction with

the measured dose using ion chambers.67 The authors found that

treatment planning on CTcor gave a 16% higher average dose dis-

crepancy. The dose discrepancy between the calculated dose on

CTart and the measured one was not mentioned in this study. This

study suggested that caution should be taken while planning on

CTcor after density correction. Parenica et al. evaluated the impact of

a density correction method on a VMAT plan using CT scans of a

custom‐made phantom and on clinical pelvis CT scans with hip pros-

theses.68 Densities of the prostheses and surrounding tissue which

contain metal artifacts were overridden with the appropriate cor-

rected density. Dose calculation algorithms with collapsed cone con-

volution superposition (CCCS)69 available on Pinnacle (Philips,

Fitchburg, Wisconsin) and a Monte Carlo70‐based algorithm available

in Monaco (ELEKTA, Stockholm, Sweden) TPS were used. The calcu-

lated dose on CTart and CTcor after density override was compared

with the respective measured dose using a thermoluminescence

dosimeter (TLD). In the phantom, the dose errors were 9.2% and

4.4% for Pinnacle and 3.6% and 0.2% for Monaco, respectively. For

the clinical pelvis scans, the prostate was contoured as the target.

Subsequently, a comparison of the calculated average D95% without

and with density correction was 99.3% and 82.7% for Pinnacle and

99.0% and 90.6% for Monaco, respectively. The reduced D95% on

CTcor resulted from a reduced PTV. The same authors in another

study71 found similar results for density correction method on data

of a phantom with Al, Zn, and SS inserts, and clinical H&N CT scans

with dental implants.

3.B | Research MAR methods

3.B.1 | Traditional MAR algorithms

Several research MAR algorithms which utilize traditional image pro-

cessing methods have been proposed and/or evaluated for the

reduction in metal artifacts on CT scans for RT applications. These

algorithms rely on several different principles. Some approaches are
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based on image inpainting or sinogram inpainting72–75; some others

require the acquisition of additional tilted CT scans,76 propose novel

image acquisition, and reconstruction methods77,78; or require the

use of magnetic resonance imaging (MRI)79,80 or megavoltage CT

(MVCT).81,82

For the metal deletion technique (MDT)75 (Fig. 4) which uses

sinogram inpainting iteratively, initially pixels which contain metal

data are segmented from CTart (Fig. 4, image 2). Then, linear interpo-

lation (LI)83 and edge‐preserving blur filters (Fig. 4, image 4) are

applied on this CT scan to calculate the missing pixel values and to

reduce the noise, respectively. Subsequently, the linearly interpolated

and noise‐reduced image is forward projected to create an initial

sinogram (Fig. 4, number 5). This sinogram is used iteratively (four

iterations in total) to replace the pixels which contain metal artifacts

in the original sinogram. On each iteration, rays that pass through

the metal are replaced with the value from the previous iteration

(Fig. 4, number 6). This procedure results in a corrected sinogram.

Finally, the filtered back‐projection of the corrected sinogram (Fig. 4,

image 7) with added metal data produces the CTcor.

An MRI‐based MAR algorithm was proposed by Park et al.79 The

proposed method reduces the metal artifacts by mapping the HU

values from a nearby artifact‐free CT slice using a coregistered MRI

scan. Initially, the CTart slice and adjacent artifact‐free slice are

manually identified and then registered with their corresponding MRI

slice. Based on the intensity values of pixels on the paired MRI slice

and HU values from the artifact‐free CT slice, HU values of pixels on

CTart slice are calculated. Nielsen et al. evaluated their proposed

MR‐based MAR algorithm (kerMAR)80 to reduce the metal arti-

facts.84 kerMAR requires aligned CT and MRI scans of the same

anatomy. It uses a Bayesian modelling85 approach to compute the

corrected HU values of a corrupted CT slice from the corresponding

coregistered MRI slice.

Liugang et al. proposed a MAR method which makes use of

megavoltage computed tomography (MVCBCT) and kilovoltage com-

puted tomography (kVCT) scans for MAR.81 Initially, the metal part

in the MVCBCT scan is segmented and forward projected to obtain

the metal trace. Then, a prior image is obtained by combining both

scans through the fusion method proposed by Wang et al.86 and this

image is forward projected to obtain missing data to replace the

metal trace on the kVCT scan. Finally, the kVCT scan with reduced

metal artifacts is created through filtered back projection. In a similar

study by Jeon et al., a hybrid sinogram‐based MAR method was pro-

posed for helical tomotherapy.82 It also requires a kVCT scan and a

MVCT scan of the same anatomy. During the MAR application, it

replaces the metal affected signals of the forward‐projected kV sino-

gram with the corresponding forward‐projected MV sinogram.

TAB L E 4 Summary of the studies which investigated the dosimetric impact of density correction in RT.

Author

Images;
No. of
sample (n) Metal

Beam, Energy,
and (Mode of
therapy)

Dose calculation
algorithm (TPS);
[Dose

measurement] CT Scans

Calculation
and
Measurement Results Comments

Maerz

et al.38
Phantom Dental

implants

Photon, 6 MV

(VMAT & IMRT)

PB and CC

(Oncentra

External Beam)

CTart &

CTcor

%GP

IMRT

VMAT

0.954% & 0.980%

0.983% & 0.990%

Density correction

increased the dose

calculation accuracy

Acquah

et al.67
Phantom Spine

implant

Photons, 6 MV &

15MV (3D‐CRT)
CC & PB

(Oncentra

External Beam)

CTcor vs

CTart

Mean dose

discrepancy

(%)

16% Density correction

resulted in higher dose

discrepancy

Parenica

et al.68
Phantom

Clinical

(Pelvis);

(n = 6)

Ti

Hip

prosthesis

Photons, 6 MV

(VMAT)

CCC (Pinnacle,

Philips) & MC

(Monaco)

[Ion chamber]

(CTart &

CTcor) vs

Measured

CTart &

CTcor

Dose errors

(%)

Pinnacle

Monaco

Average D95%

Pinnacle

Monaco

9.2% & 4.4 %

3.6% & 0.2%

99.3% & 82.7%

99.0% & 90.6%

Density override can be

used to optimize the

dose calculation

planning with MC

Parenica

et al.71
Phantom

Clinical

(H&N);

(n = 9)

AL, Zn &

SS

Dental

implants

Photons, 6 MV

(VMAT)

CCC (Pinnacle,

Philips) & MC

(Monaco)

[TLD]

(CTart &

CTcor) vs

Measured

CTart &

CTcor

Dose errors

(%) for Al

Pinnacle

Monaco

for Zn

Pinnacle

Monaco

for SS

Pinnacle

Monaco

D95%

4% & 4%

3.9% & 1.7%

8.6% and 7.1%

9.8% and 2.3%

8.8% and 5.8%

9.5% and 3.0%

Refer to Table 5 in

Ref. [71]

The density override

reduced the potential

risk of compromising

the dose to the target

and healthy tissues

Ti Titanium, SS Stainless Steel, Ag Silver, Zn Zinc, CRT Conformal Radiation Therapy, IMRT Intensity‐Modulated Radiation Therapy, VMAT Volumetric‐
Modulated Arch Therapy, CCC Convolution Collapsed Cone, PB Pencil Beam, MC Monte‐Carlo, CTart CT scans with artifacts, CTcor Corrected CT scans,

CTref Reference CT scans, vs versus, %GP gamma passing rate.
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Finally, the application of filtered back projection on the corrected

kVCT sinogram produces a kVCT scan with corrected artifacts.

A study by Kim et al. proposed to acquire an additional tilted CT

scan in which less metal artifacts are present.76 First, an artifact map

is generated from the denoised initial CT scan (CTart) and the addi-

tional tilted CT scan. Then, utilizing the SSIM metric, correlation

maps are generated from the CTart and the additional CT scan in

comparison with the artifact map. A minimum value in the correla-

tion map represents smaller amounts of metal artifacts and, thus, the

CTcor is reconstructed using the minimum correlation values.

A new CT reconstruction algorithm, augmented likelihood image

reconstruction (ALIR)78 was investigated for MAR for RT applica-

tions. It utilizes an iterative scheme and prior information of the

metal implant such as shape and attenuation coefficient. A new

sinogram is created by masking the metal on the initial sinogram.

Using this new sinogram an image is iteratively reconstructed using

log‐likelihood function87 and prior information. During each iteration,

a bilateral filter is applied on the reconstructed image to reduce the

remaining metal artifacts and then a forward projection of this

images is used to calculate new projection values, which are com-

bined with the initial projection values thereafter. Finally, the CT

scan is reconstructed with reduced metal artifacts.

Dong et al. developed an image‐based MAR method which uti-

lizes the anatomical similarity in adjacent CT slices which are free

from the metal artifacts (CTref).
72 Initially, a gamma map is calcu-

lated which is a weighted summation of the relative HU error and

the distance error for each pixel between the CTart slice and the

relative artifact‐free CT slice. Then, the minimum value in the

F I G . 4 . Working principle of the MDT MAR algorithm. A metal segmented CT slice (image 2) undergoes linear interpolation (image 3) and
edge preserving filtration (image 4). Then, the filtered image is forward projected (number 5) and used to replace the metal data on the original
projection (number 1). The resulting projection (number 6) is filtered back projected and undergoes edge preserving filtering. This process is
iterated four times and results in a metal artifact reduced CT slice (image 7). Finally, the segmented metal is added to create the artifact‐
corrected CT slice. (Reproduced, with permission, from Boas F E, Fleischmann D. Evaluation of Two Iterative Techniques for Reducing Metal
Artifacts in Computed Tomography. Radiology 2011; 259:894‐902. The Radiological Society of North America (©RSNA)).
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gamma map is used to identify and replace the artifact‐corrupted
pixels on the CTart slice by the corresponding pixels on the arti-

fact‐free CT slice.

An MAR method which includes a sinogram precorrection (which

is not described) and a hardware adaptation for proton therapy was

proposed by Jin et al.77 The hardware adaptation includes an

increase in the X‐ray energy from 120 kVp (standard energy) to

180kVp, and an increase in the triggering rate of data acquisition

system (DAS)88 of the X‐ray detectors. In the end, the prelog itera-

tive CT reconstruction method89 is applied to yield the resulting

CTcor.

Miksys et al. studied image‐based MAR methods and a sinogram‐
based MAR method to reduce the metal artifacts from and around

implanted radioactive seeds which contain Ag and Ti for brachyther-

apy procedures.74 The image‐based MAR methods include simple

threshold replacement (STR), 3D median filter, and the generation of

a virtual sinogram. STR utilizes a HU thresholding technique to iden-

tify the seeds and bright spot artifacts,90 and correct them by replac-

ing them with predefined HU value. The 3D median filter instead

reduces the metal artifacts by smoothing the high voxel values which

are identified through HU thresholding. In the virtual sinogram gen-

eration, first the metal on CTart is segmented using thresholding and

then CTart and the segmented metal are forward projected. Subtrac-

tion of the metal projection from the CTart projection resulted in a

partial sinogram. Finally, through the application of interpolation and

filtered back projection, the partial sinogram yields the CTcor. The

sinogram‐based MAR method also utilizes similar steps, but instead

of generating a virtual sinogram, it uses the sinogram from the CT

scanner.

Evaluation of HU values retrieval and image quality

Research‐based MAR algorithms based on traditional image process-

ing methods were evaluated for their ability to restore HU values

and their ability to improve image quality of CT scans which will be

used for RT applications. Table 5 summarizes the details of the cor-

responding publications.

The proposed MRI‐based MAR algorithm by Park et al. was eval-

uated for its ability to improve the HU values.79 Simulated metal

artifacts were introduced on clinical H&N and brain CTref, and then

the proposed MAR algorithm was applied to generate a CTcor. The

comparison of CTart and CTcor with CTref showed a reduction in

absolute mean HU difference from 495 HU to 108 HU in the brain,

and from 370 HU to 92 HU in the H&N. The HU of CTref was not

reported. Nielsen et al. evaluated their kerMAR method for image

quality improvements.84 During the image quality evaluation, CT

scans from a custom‐made veal shank phantom with metal inserts

and clinical H&N CT scans with dental implants were used. In addi-

tion to kerMAR, also O‐MAR was applied to the CT scans for a com-

parison. On the scans of the phantom, kerMAR and O‐MAR reduced

the metal artifacts similarly (P > 0.05); however, on the clinical CT

scans kerMAR outperformed O‐MAR (P < 0.01). This difference can

be explained by the fact that O‐MAR produces residual artifacts and

by the fact that kerMAR uses corresponding MRI images as an

external source of prior information. However, if the acquired CT

and MRI scans are not aligned properly, the kerMAR method intro-

duces new artifacts as well.

The MVCBCT‐ and kVCT‐based MAR method81 was evaluated

for HU value improvement using an intensity‐modulated verification

phantom (CIRS, Norfolk, VA, USA) with SS inserts and clinical H&N

CT scans with dental implants. The study found that the proposed

MAR method reprojected the HU values with high accuracy. The

hybrid sinogram‐based MAR method by Jeon et al. was evaluated

using a standard “cheese” phantom (Standard Imaging, Middleton,

USA) with metal inserts made of Ag, tin (Sn), copper (Cu), and iron

(Fe), and clinical H&N CT scans with dental implants.82 Application

of the proposed method improved the accuracy of true densities

and HU values for metal and non‐metal tissues (e.g., air, lung, and

bone) on the phantom and the clinical scans, respectively. In addition

to the HU value improvements, also CNR and SNR improved on the

CTcor after application of the hybrid sinogram‐based MAR in compar-

ison with CTart.

The MAR method which requires the acquisition of an additional

tilted CT scan76 was evaluated for its ability to improve HU values

In an experimental study, a customized RANDO head phantom (The

Phantom Laboratory Inc., NY, USA) with dental implants was used,

while in a simulation study an XCAT numerical phantom91 with bilat-

eral hip implants was used. The mean absolute percentage errors in

HU values were calculated for CTart and CTcor in comparison with

CTref. This showed a reduction for CTcor of up to 89% in the experi-

mental study, and up to 86% in the simulation study. Dong et al.

evaluated their image‐based MAR method on clinical H&N CT scans

with dental fillings and on a CT scan of a pelvis with simulated hip

implants.72 The mean HU error was calculated on both CTart and

CTcor compared with CTref and it reduced from 360 HU to 24 HU in

the H&N case, and from 460 HU to 34 HU in the pelvis case. Thus,

the study concluded that the proposed image‐based MAR can be

used to reduce the metal artifacts and improve HU for RT applica-

tions.

The proposed image‐based MAR methods and sinogram‐based
MAR method for brachytherapy by Miksys et al. were applied on CT

scans of a custom‐made agarose gel phantom and on clinical pros-

tate CT scans with implanted seeds.74 The STR removed bright spot

artifacts around the seeds, but failed to mitigate any dark streak arti-

facts. Although the 3D median filter successfully mitigated the white

and dark streak artifacts, it blurred the resulting CTcor. The virtual

sinogram and the raw sinogram methods reduced the streak arti-

facts, however, they introduced new artifacts on CTcor. The authors

concluded that the image‐based MAR methods, especially the STR

and 3D median filter, were more successful in reducing the artifacts

in comparison with the sinogram‐based MAR.

Dosimetric impacts of traditional MAR algorithms

In addition to the improvement of HU and image quality, dosimetric

impacts of research‐based traditional MAR algorithms were evalu-

ated in several research studies. Table 6 describes the findings of

these evaluations.
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The MRI‐based MAR algorithm79 was evaluated to assess its abil-

ity to improve the proton range error (ΔWET) for proton therapy

applications. On clinical CT scans of a brain and H&N, the applica-

tion of this proposed method improved the absolute ΔWET from

2.4 cm in brain and 1.7 cm in H&N to less than 2 mm for both

cases. In a study by Nielsen et al.,84 the performance of kerMAR

was studied and compared with O‐MAR for dosimetric impact in

photon, electron, and proton therapy. In the phantom evaluation, a

depth/range calculation on CTcor for the proton, photons, and elec-

trons did not show any significant difference (P > 0.05) between the

O‐MAR and kerMAR. However, an evaluation of the absolute parti-

cle range difference on clinical CTcor showed that kerMAR signifi-

cantly (P < 0.001) improved for electron beams nearly by 1 mm and

proton beams by 2 mm in comparison with O‐MAR. However, the

photon beam evaluation showed an insignificant difference in depth/

range calculations on CTcor.

In a MVCBCT‐ and kVCT‐based MAR study,81 a custom‐made

phantom with a SS metal rod containing an air‐filled hole in its cen-

ter was CT scanned. The MAR method was applied to generate a

CTcor from CTart. Subsequently, dose calculations were performed on

CTart, CTcor, and CTref using a single irradiation field in two instances,

one crossing the hole and the other one crossing only the phantom

and the metal. The calculated maximum percentage of dose error

through the hole was 5.1% on CTcor and 11.8% on CTart in compar-

ison with CTref. The dose error through the phantom and the metal

was 3.3% on CTcor and 17.2% on CTart. So, this seems to imply that

the calculated dose on the CTcor after application of this MAR

method was improved and better approximated the dose distribution

on CTref.

ALIR was studied by Ziemann et al.92 To simulate a pelvis with

bilateral hip prostheses, a polymethylmethacrylate phantom with two

SS rods was CT scanned. Then, ALIR, linear interpolation (LI), and

density correction MAR methods were applied to create correspond-

ing CTcor. Next, a PTV was chosen at the center of the phantom

between the metal implants and dose calculations were performed

on CTcor. Dose errors were computed between the calculated doses

and respective measured doses using ion chambers. These dose

errors were 2.7% for ALIR, 3.2% for LI, and 4.1% for the density cor-

rection. The CTart showed a higher dose error of 8.4%. However,

calculated dose to the simulated rectum as an OAR was higher for

the ALIR method than for the LI method. The study concluded that

ALIR can be applied for successful RT planning.

The image‐based MAR72 was assessed for the dosimetric impact

on clinical H&N CT scans with dental fillings and on a CT scan of a

pelvis with simulated hip implants. The calculation of gamma failure

rates for a 3%/3 mm gamma criterion on CTart and CTcor compared

to CTref resulted in 23.25% and 0.02%, respectively. In clinical stud-

ies, Odlozilikova et al. evaluated the MDT algorithm for dose error

to cardiac implantable electronic devices (CIEDs) as an OAR while

planning to irradiate the adjacent target tissues.93 The total planned

dose to the PTV was used to calculate the dose error to the CIEDs

on CTart and CTcor. The largest dose error for the CIEDs was on the

CTart, and it was more than 3% of the total planned dose. Hence,

the application of MDT significantly improved RT planning and

reduced the dose error to the CIEDs.

Aziz et al. evaluated dose calculation errors induced by a dental

amalgam in a custom‐made phantom experiment.73 An in‐house
developed LI was applied to correct the metal artifacts, and a simu-

lated electron beam was used to evaluate the dosimetric errors

between the dose calculation plans on CTart and CTcor. Uncertainties

in the calculated dose error reduced from 46% on CTart to 2% on

CTcor at d80.
94 For this reason, it was suggested to apply the pro-

posed method to improve the dose calculation accuracy in electron

beam therapy. In another study, clinical CT scans of a hip with simu-

lated Ti implants were used for dose calculation on CTart, CTcor after

application of MAR method by Jin et al.,77 and CTref. The proposed

MAR method reduced the proton mean ΔWET from 7 mm on CTart

to less than 1 mm on CTcor in comparison with CTref.

3.B.2 | Deep learning‐based MAR algorithms

Few research studies using deep learning‐based methods to reduce

metal artifacts on CT scans for RT applications were found in litera-

ture. These deep learning MAR approaches are either based on 2D

residual learning‐based convolutional neural networks (CNNs)95,96 or

2D cycle generative adversarial networks (GANs).97

A dual‐stream deep network was proposed by Gjesteby et al.

which utilizes the residual learning‐based CNNs (see Fig. 5).96 This

network requires paired data, CTart and CTref, during the artifact

reduction. First, a custom implementation of normalized MAR

(NMAR)98 and guided filtering99 are applied to the artifact corrupted

CT slice to reduce the metal artifacts and preserve the edge informa-

tion of a CT slice, respectively. Subsequently, patches [indicated by

‘red’ squares in Fig. 5(a)] are extracted from these CT scans and are

input into two identical parallel streams f and g [Fig. 5 (b)]. Each of

these parallel streams starts with an initial parameter layer and is fol-

lowed by 20 residual units. This network structure is referred to as

DestreakNet.100 Each residual unit consists of two convolutional lay-

ers (Conv) followed by batch normalization (BN) and a rectified linear

unit (ReLU) [Fig. 5(b)]. The residual units help the network to learn

the residual errors and generate respective feature maps. Finally, the

feature maps from these streams are summed and passed together

through h [Fig. 5(b)] to produce patches with metal artifact correc-

tion. The stream h contains another eight parameter layers and a

final layer without the BN. During training, DestreakNet is optimized

using a mean square error (MSE) loss function and perceptual loss

function.101 The MSE loss function is used to calculate the pixel‐by‐
pixel error between the output and the target, while the perceptual

loss function mitigates oversmoothing which can result from the

MSE loss function.

A similar study, also using a residual learning‐based artifact

reduction CNN (RL‐ARCNN) and paired data for artifact reduction,

was proposed for brachytherapy applications by Huang et al.95 This

network architecture consists of a CNN, and ReLU is applied to

increase the nonlinearity of the input layer. In subsequent convolu-

tional layers, BN is applied between the convolution and ReLU to
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achieve faster training. This network was trained for MAR through

the residual learning method as proposed by He et al.102

The main limitation of the above both networks, dual‐stream
deep network and RL‐ARCNN, is that they both need paired data

for training. To overcome this challenge, Koike et al. developed a

deep learning‐based MAR (DL‐MAR)97 using CycleGANs in which U‐
Net and PatchGAN architecture of the pix2pix model103 are used as

generator and discriminator, respectively. The generator synthesizes

CTcor from CTart and vice versa, while the discriminator aims to dis-

tinguish the synthetic CTcor scans as fake. The authors made the fol-

lowing modifications from the paper published by Isola et al.103: an

instance normalization layer104 replaced the BN layer in the genera-

tor, the kernel size of convolutional layer was set to 4X4 with a

stride of 2 instead of the maximum pooling filter, the image size was

expanded by using the upsampling filters and one filter convolution

layer was applied followed by a tanh activation function as the last

filter. For all the other layers, a leaky rectified linear unit (LeakyR-

eLU) with a slope of 0.2 was used as an activation function. In this

proposed method, the CTart is translated into CTcor using adversarial

loss, cycle consistency loss,105 and identity map loss which were

introduced to regularize the generator during the conversion.

Evaluation of HU values restoration and image quality

The proposed dual‐stream deep network, RL‐ARCNN, and DL‐MAR

were evaluated for their ability to restore HU values and image qual-

ity. The findings of these studies are summarized in Table 7.

F I G . 5 . Overview of the deep learning
approach proposed by Gjesteby et al.96 (a)
The proposed dual‐stream deep network
for metal artifacts reduction. (b) Details of
the CNN training of (a). (Reproduced from
Gjesteby et al.96. © Institute of Physics
and Engineering in Medicine. Reproduced
by permission of IOP Publishing. All rights
reserved).
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The dual‐stream deep network with residual learning96 was eval-

uated on synthesized data. Two kinds of voxelized phantoms were

created from volumetric data of the pelvis and spinal regions from

the visible human project.106 CT scans of these voxelized phantoms

were simulated by an industrial CT simulation software107 with and

without a Ti implants to mimic hip prostheses and spinal implants.

Then, the proposed MAR algorithm was trained to generate CTcor

from these CT scans. The authors measured the mean HU near the

metal implant on CTref, CTart, and CTcor and the results were as fol-

lows: 80.56, 2.25, and 94.26 HU in the hip case and 94.27, 121.73,

and 89.18 HU in the spine case, respectively. Also, calculations of

SSIM and PSNR were performed for CTart and CTcor in comparison

with CTref. For the SSIM calculation, a value of 1 indicates the high-

est similarity between the compared CT scans, while 0 indicates the

lowest similarity. The calculated SSIM were 0.2382 for CTart and

0.8262 for CTcor for the hip case, and 0.6930 for CTart and 0.8723

for CTcor for the pelvis case. In addition, the calculated PSNR were

9.1830 dB for CTart and 22.1685 dB for CTcor for the hip case, and

15.5450 dB for CTart and 21.8480 dB for CTcor for the pelvis case.

These results indicate that the proposed dual‐stream deep network

with residual learning can be used to reduce the metal artifacts for

RT applications. However, this proposed MAR algorithm heavily

depends on the performance of NMAR, used for data preprocessing.

For the brachytherapy application, RL‐ARCNN95 was evaluated.

During the training, paired clinical cervical CT scans which include

CTref and simulated artifacts on CTref, and CT scans with residual

artifacts were used. The CT scans with residual artifacts were

obtained from the difference between CTref and CTref with simulated

artifacts. During the MAR evaluation, clinical cervical CT scans with

implanted seeds were used (CTart). The calculated PSNR was

38.09 dB for CTcor after application of RL‐ARCNN and 25.38 dB for

CTart. So, the proposed method seems to reduce the metal artifacts.

DL‐MAR was studied on CT scans with dental implants by Koike

et al.97 The Adam optimizer was used to train the network using

unpaired clinical H&N CT scans with (CTart) and without (CTref) the

dental implant. The calculation of the artifact index22 (mean ± STD)

between CTcor and CTart resulted in significant differences

(P < 0.001), and it was 13.2 ± 4.3 on CTcor and 267.3 ± 113.7 on

CTart. Therefore, this proposed MAR algorithm can be used to

reduce the metal artifacts for RT applications. However, the authors

stated that the proposed MAR algorithm was trained and modified

for the H&N CT scans and can only be applied on these scans.

Dosimetric impact of deep learning‐based MAR algorithms

During the evaluation of DL‐MAR97 for RT, clinical H&N CT scans

with dental implants were used. A density correction method using

water density (1.0 g cm‐3) was used for the comparison. IMRT plan-

ning with 6MV photons was performed using seven fields. To calcu-

late the dose for the oral cavity on CTart and CTcor, the AAA

algorithm was used. DAH was used to evaluate the calculated doses

on CTcor after application of DL‐MAR and CTart in comparison with

the CTcor after application of density correction. The maximum dose

differences were −2.4% on CTcor after application of DL‐MAR and

−7.2% on CTart. Moreover, very small dosimetric differences were

found between the calculated doses on CTcor after application of

DL‐MAR and CTcor after application of density correction. However,

TAB L E 7 Summary of the studies which investigated the restoration of HU values and image quality of deep learning‐based MAR algorithms
for RT application.

Author MAR

Images; No. of CT
slices /samples (n)
[for training &
for MAR] Metals CT scans ROI Measurements Results Comments

Gjesteby

et al.96
Dual‐stream
CNN with

residual

learning

Phantom derived

clinical (Hip &

Spine); [42 & 08]

Simulated

Ti

(CTart vs CTref ) &

(CTcor vs CTref )

CTref, CTart & CTcor

Whole image

Hip

Spine

Near to metal

implants on

Hip

Spine

SSIM

PSNR in dB

Mean HU

0.2382 & 0.8262

0.6930 & 0.8723

9.1830 & 22.1685

15.5450 & 21.8480

80.56, 2.25 & 94.26

94.27, 121.73 &

89.18

The proposed

method is highly

effective to

reduce metal

artifacts

Huang

et al.95
RL‐ARCNN Clinical (Prostate);

[550 &550]

Simulated

& real

artifacts

(CTcor vs CTref ) &

(CTart vs CTref )

Whole image PSNR in dB 38.09 & 25.38 RL‐CNN

eliminates the

metal artifacts

better than

conventional

image

processing‐based
MAR methods

Koike

et al.97
Cycle GAN Clinical (H&N);

[(n = 92) &

(n = 15)]

Dental

fillings

(CTart vs CTref ) &

(CTcor vs CTref)

Oral cavity Artifact index

[mean ± STD]

13.2 ± 4.3 &

267.3 ± 113.7

The proposed

method reduced

the metal

artifacts from

H&N CT scans

H&N Head & Neck, Ti Titanium, CTart CT scans with artifacts, CTcor Corrected CT scans, CTref Reference CT scans, vs versus, SSIM Structural similarity,

PSNR Peak Signal‐to‐Noise Ratio.
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the plan dose distribution on CTcor after application of density cor-

rection may not reflect the actual dose distribution.

4 | DISCUSSION

Table 8 lists the strength and weakness of the proposed or evalu-

ated MAR methods for RT applications. Commercial MAR algorithms

are used in clinical environments to improve the treatment delivery

in wide range of cases. These algorithms are self‐optimized (auto-

matic) and do not require skills from an operator. On the other hand,

in density correction methods, metal artifacts are identified by an

expert and corrected by appropriate density overrides. Among the

investigated research‐based traditional MAR algorithms, the applica-

tion of kerMAR reduced the metal artifacts more efficiently for H&N

cases than O‐MAR did. Even though ALIR improved the dose calcu-

lation accuracy more than the density correction method, it failed to

reduce the planned radiation dose to certain OARs. MRI‐based CT

MAR79 requires manual selection of CT scans for artifact correction.

Most of the proposed MAR algorithms based on traditional image

processing such as MVCT‐based MAR, additional tilted CT scan‐
based MAR, and ALIR were performed better than LI or/and NMAR

TAB L E 8 Strengths and weaknesses of proposed and/or investigated MAR methods for RT applications.

MAR methods Strength Weakness

Commercial MAR methods O‐MAR, iMAR, Smart MAR &

SEMAR 35,41–57,59,62,63
Standard methods and are used routinely

in the clinic.

Applicable on a wide range of clinical cases

for RT applications.

Incomplete removal of artifacts

with HU errors.

Induce new artifacts.

Scanner specific.

Density correction

methods 38,67,68,71

Available in TPS. Manual methods.

Operator needs specialized

knowledge and experience for

artifact identification and density

overrides.

Research‐based traditional

MAR algorithms

Image based MAR72 Do not use sinogram data Semi‐automatic

MDT93 Reduces the dose to CIEDs during various

RT procedures.

May requires long processing time

Sinogram‐based MAR73 Reduces the dose errors from amalgam in

H&N RT.

Applicable for minor streaks

artifacts

STR, 3D median filter and Sinogram‐
based correction74

STR removes the spot artifacts.

3D median filter and sinogram‐based
corrections reduce the dark and white

streaks.

STR and 3D median filter use

predefined HU values and are

applicable only for brachytherapy.

Sinogram‐based corrections induce

new artifacts.

Additional tilted CT scan‐based
MAR76

Reduces the HU errors better than LI and

NMAR.

Additional radiation burden.

ALIR92 Improves the dose calculation accuracy

more than density correction method and

LI do.

Increases the calculated doses for

OAR.

MAR with hardware adaptation77 Addresses the photon starvation during

the artifact reduction.

Modified CT image acquisition in

comparison with the standard.

MRI‐based CT MAR79 Does not require sinogram and threshold‐
based tissue classification.

Requires aligned MRI & CT scan.

Semi‐automatic.

kerMAR84 Reduces the metal artifacts better than O‐
MAR in H&N cases.

Requires aligned MRI & CT scan.

Applicable only for H&N case.

MVCBCT & kVCT method81 Performs better than LI and NMAR for

artifact reduction.

Requires MVCBCT scan.

Hybrid sinogram‐based MAR82 Performs better than LI for artifact

reduction.

Requires MVCT scan.

Deep learning‐based MAR

algorithms

Dual‐stream CNN with residual

learning96
Reduces the remaining metal artifacts on

CT scans after NMAR application.

Requires paired data and depends

on the performance of NMAR

RL‐ARCNN95 Does not require sinogram data. Needs paired data.

DL‐MAR97 Does not require paired data.

Comparable performance to density

correction for accuracy in dose

calculation.

Applicable only in H&N cases.
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for artifact correction. Among the deep learning‐based MAR algo-

rithms, DL‐MAR does not require paired data for artifact correction,

and it provided similar results for dose calculation when compared

with the water density override.

The application of MAR methods on CT scans for RT applications

was summarized in this review. Commercial MAR methods are uti-

lized in clinical environments to correct the metal artifacts and

improve the dosimetric accuracy in RT. However, residual artifacts

and/or creation of new artifacts which may negatively impact in RT

planning are often identified. Also, planned dose distributions on CT

scans after application of TPS‐based density correction methods

show large‐dose discrepancies compared to delivered dose. Thus,

the performance of commercial MAR methods is not always com-

pletely satisfactory in RT application.

Among the research‐based MAR methods, some of the MAR

methods which are based on traditional image processing require an

additional CT or aligned MRI scan which may result in extra radiation

burden for the patient, or which may not be accessible. Only few

studies compared the efficiency of the proposed MAR methods with

the commercial MAR methods for RT applications. In addition, the

ability of the proposed deep learning‐based MAR algorithms to cor-

rect artifacts depends on the amount of CT scans from a specific

anatomy which are used to train them. Thus, they are typically opti-

mized to reduce the metal artifacts for a specific anatomy. Further-

more, their dosimetric impacts for RT applications were not

extensively evaluated.

The commercial MAR methods and research‐based MAR meth-

ods still have a limitation in metal artifact correction and/or dose

improvements for RT applications. Their ability of the metal artifact

corrections mainly depends on the anatomical region of CT scans

which are corrupted by the metal artifacts from a specific implanted

metal. The patterns and severity of the metal artifacts from each of

implants are unique and different. The traditional MAR methods

have difficulties in recognizing the patterns of the metal artifacts,

but deep learning approaches can efficiently handle this complicated

challenge. Also, newly induced artifacts were identified on CT scans

after application of MAR algorithms which utilize the sinogram for

the metal artifacts reduction. The deep learning‐based MAR algo-

rithms often work on reconstructed CT scans and, thus, the arti-

facts‐corrected CT scans are free from these induced artifacts.

Moreover, recent developments of MAR algorithms which utilize

deep learning, for example, Cycle GANs do not require paired clinical

CT scans for artifact reduction. Therefore, developing a MAR

method while targeting a specific pattern of metal artifacts and a

specific anatomical structure using a deep learning approach will be

a promising solution. This method should be explored further and

then evaluated for the RT applications.
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