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Abstract: Tilapia lake virus (TiLV) causes an emerging viral disease associated with high mortality
and economic damage in tilapia farming around the world. The use of probiotics in aquaculture
has been suggested as an alternative to antibiotics and drugs to reduce the negative impact of
bacterial and viral infections. In this study, we investigate the effect of probiotic Bacillus spp.
supplementation on mortality, viral load, and expression of immune-related genes in red hybrid
tilapia (Oreochromis spp.) upon TiLV infection. Fish were divided into three groups, and fed with:
control diet, 0.5% probiotics-supplemented diet, and 1% probiotics-supplemented diet. After 21 days
of experimental feeding, the three groups were infected with TiLV and monitored for mortality and
growth performances, while organs were sampled at different time points to measure viral load and
the transcription modulation of immune response markers. No significant difference was found
among the groups in terms of weight gain (WG), average daily gain (ADG), feed efficiency (FE), or
feed conversion ratio (FCR). A lower cumulative mortality was retrieved from fish fed 0.5% and 1%
probiotics (25% and 24%, respectively), compared to the control group (32%). Moreover, fish fed with
1% probiotic diet had a significantly lower viral load, than those fed with 0.5% probiotic and control
diet at 5, 6, 9, and 12 days post infection-challenge (dpc). The expression patterns of immune-related
genes, including il-8 (also known as CXCL8), ifn-γ, irf-3, mx, rsad-2 (also known as VIPERIN) showed
significant upregulation upon probiotic treatment during the peak of TiLV pathogenesis (between 9
and 12 dpc) and during most of the study period in fish fed with 1% probiotics-supplemented diet.
Taken together, these findings indicate that dietary supplementation using Bacillus spp. probiotics
may have beneficial effects to strengthen tilapia immunity and resistance against TiLV infections.
Therefore, probiotic treatments may be preventively administered to reduce losses caused by this
emerging viral infection in tilapia aquaculture.
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1. Introduction

Tilapia are the most economically important farmed fish species produced in aquaculture systems
worldwide [1]. In 2018, global tilapia production was estimated at 6.8 million tonnes, accounting for
an economic value of USD 11 billion [2]. Although tilapia can adapt and tolerates variable farming
conditions, recent outbreaks of emerging bacterial and viral diseases pose severe threats to the global
tilapia aquaculture production [3]. Recently, the outbreak of a new viral disease, caused by tilapia lake
virus (TiLV), has drawn attention due to the rapidity of it spreading between farms and countries [4,5].
TiLV was identified as a single-stranded, negative-sense RNA virus sharing some characteristics with
other viruses in the family Orthomyxoviridae [6,7]. Later, the virus was classified as a new species,
Tilapia tilapinevirus, under the genus Tilapinevirus, but in the family Amnoonviridae [8]. Mass mortality
of tilapia associated with TiLV is reported in many countries, such as North America, South America,
Asia, and Africa [9,10]. All stages of tilapia farming including fry, juveniles, adults, and broodstocks
are susceptible to TiLV infection, with a wide range of morbidity and mortality ranging from 5 to
90% [7,10–15]. As there is no specific treatment against TiLV infections, preventing or reducing the
infection risk is an important control measure to minimize the negative impact of this infection once
the virus is expected to enter a production system.

The application of probiotics to reduce bacterial and viral infections in fish is seen as an alternative
strategy to improve farmed fish health. Multiple bacterial species have been used to formulate
probiotics for aquaculture, including a wide range of Gram-positive, Gram-negative bacteria, or yeasts,
such as Bacillus, Carnobacterium, Enterococcus, Lactobacillus, Vibrio, Pseudomonas, and Saccharomyces
cerevisiae [16–18]. Among these, bacteria of the genus Bacillus are commonly applied as feed additives
due to their potential benefits for improving growth [19–21], promoting disease resistance [22] and
boosting the host immune response [23]. In tilapia, Bacillus extracts probiotics were shown to improve
resistance against Streptococcus agalactiae and Aeromonas hydrophila, two common and important
bacteria that pose health issues to the global tilapia aquaculture [24,25]. Although probiotics have been
commonly used in aquaculture to control bacterial infections, previous studies also indicated the benefits
of probiotic supplementation in farmed fish diets to improve growth performance [26] and resistance
to virus infections [27,28]. For example, olive flounder (Paralichthys olivaceus) fed with Lactobacil and
Sporolac (Inter Care, India) probiotics showed higher survival against lymphocystic disease virus
(LCDV) [27]. Similarly, orange-spotted grouper (Epinephelus coioides) fed a probiotics-supplemented
diet for 28 days had over 50% survival during grouper iridovirus (GIV) infection than fish fed the
control diet [29].

Currently, there are no control measures or vaccines available against TiLV infection in tilapia.
The aim of this study was to evaluate the effects of Bacillus spp. probiotics supplementation to improve
the survival of tilapia during TiLV infection. Our results reveal that such dietary supplementation
could improve fish survival and strengthen the antiviral response upon TiLV infection. Therefore, the
administration of Bacillus spp. probiotics could provide a suitable alternative strategy to mitigate the
losses caused to tilapia farming by this emerging viral threat.

2. Results

2.1. Bacillus spp. Probiotics Improve Tilapia Survival against TiLV Infection

During our infection challenge study, TiLV infection was obtained upon cohabitation of TiLV-IP
injected red tilapia with fish fed control or probiotic diets. At 3 days post infection-challenge (dpc),
the IP-injected fish started to develop typical TiLV infection symptoms, including lethargy (lying at
the bottom of the tanks), and haemorrhaging along the body side and at the base of the fins [30]. As
the pathogenesis progressed, the mortality of IP-injected fish started at 5 dpc, reaching a cumulative
mortality of 96.57% (84.62%–100%) (experiment terminated at 28 dpc). All probiotics and control diets
fed red tilapia that cohabitate with IP-injected fish showed similar clinical signs of TiLV infection,
starting at 7 dpc. Furthermore, mortality in the cohabitated groups started at 9 dpc, and persisted
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until 20 dpc (Figure 1). The cumulative mortality reached in the control group was 32%, while in
groups preventively fed with 0.5% and 1% probiotics-supplemented diets, was, respectively, of 25
and 24%. Both probiotics treatments significantly improved the survival of red tilapia over TiLV
infection (p < 0.05) (Figure 1). No mortality or clinical signs were observed in the sham-challenged
group during the entire study. The growth performance parameters assessed, including weight gain,
average daily gain, feed conversion ratio, and feed efficiency were not significantly changed in all
experimental groups (Table 1). However, although the 1% Bacillus spp.-supplemented diet group
showed the greatest weight gain and feed conversion ratio by the end of the experiment, there was no
statistical significance of these values between the control and probiotics supplementation groups.
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Figure 1. Cumulative mortality of red hybrid tilapia fed with the standard control diet, or with diets
supplemented with 0.5% or 1% of a commercial mixture of Bacillus spp. Fish were challenged by
cohabitation with tilapia lake virus-infected fish. Each group has 3 replicates with 40 fish/tank. All
treatment groups were compared to the control diet group with significant differences shown as:
* p < 0.05.

Table 1. Growth performance of red hybrid tilapia (n = 25) fed with a control diet and 0.5% and 1%
mixtures of Bacillus spp. probiotics-supplemented diet for 21 days.

Parameters
Treatments

Control Diet 0.5% Probiotics 1% Probiotics

Initial weight (g) 11.4 ± 0.82 11.3 ± 1.04 9.9 ± 0.20
Final weight (g) 24.9 ± 0.99 25.0 ± 0.78 24.2 ± 0.24
Weight gain (g) 13.6 ± 0.18 13.7 ± 0.61 14.3 ± 0.10
Weight gain (%) 218.1 ± 7.59 220.2 ± 15.65 242.1 ± 2.79
Feed efficiency 0.97 ± 0.01 0.98 ± 0.04 1.02 ± 0.007

Average daily gain (ADG) (g) 0.65 ± 0.009 0.65 ± 0.02 0.68 ± 0.004
Feed conversion ratio (FCR) 1.03 ± 0.01 1.02 ± 0.04 0.98 ± 0.006

2.2. Differential Viral Load Assessment

Although TiLV clinical signs were still not apparent in the cohabitation group when the first
IP-injected fish died, at 5 dpc, the viral RNA was detected in liver, spleen, and head kidney from
all cohabitated fish (Figure 2). The viral load peaked at 9 dpc, with the highest load of 5.38, 5.19,
and 5.09 log10 TiLV copy/µg of total TiLV RNA, respectively, in the liver, spleen and head kidney
of fish from the control diet group; thereafter, viral loads gradually declined in all TiLV-challenged
groups. These viral loads from the control diet group at 9 dpc were significantly higher than
those from the probiotics-supplemented groups, between which also a significant difference was
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observed. Importantly, viral loads from the control diet groups were never matched in the 0.5% and 1%
probiotics-supplemented groups. The mean viral concentration in the liver, spleen, and head kidney
of 0.5% probiotics-supplemented group was comparable to those from the control diet group. The
viral loads from the 1% probiotics-supplemented group were instead always lower at all time points
measured, with a more marked difference at 9 and 12 dpc. Of note, less than one log10 copy/µg of total
TiLV RNA was detected in the organs sampled at 19 dpc from all challenged groups. No TiLV genomic
RNA was detected in the sham-challenged fish and cohabitation fish during each sampling period.
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Figure 2. Viral load in liver (A), spleen (B) and head kidney (C) of red hybrid tilapia (n = 5) fed control
or Bacillus spp. probiotics-supplemented diets for 21 days and thereafter infected with TiLV. Data were
collected from five fish at 5, 6, 9, 12 and 19 dpc. All treatment groups were compared to the control diet
group with significant differences shown as: * p < 0.05.

2.3. Differential Modulation of Antiviral Response Markers during TiLV Infection

During the TiLV experimental infection, the expression profile of genes encoding for antiviral
and pro-inflammatory cytokines was measured in the liver, spleen, and head kidney from the three
dietaries treatment groups.

All TiLV-challenged fish showed a consistent up-regulation of CXCL8 chemokine, also known
as interleukin-8 (il-8), transcription from 5 to 19 dpc (Figure 3). The induction of il-8 in the 1%
probiotics-supplemented group was higher in all three internal organs, when compared to the control
diet and to the 0.5% probiotics-supplemented group. Il-8 transcription modulation was considerably
higher in the liver during the infection, with some differences seen already at 5 dpc between groups
(Figure 3A). A protracted higher il-8 upregulation was seen in the 1% probiotics-supplemented group
at the late stages of TiLV infection, i.e. 12 and 19 dpc.

Pathogens 2020, 9, x FOR PEER REVIEW 4 of 15 

 

probiotics-supplemented groups, between which also a significant difference was observed. 
Importantly, viral loads from the control diet groups were never matched in the 0.5% and 1% 
probiotics-supplemented groups. The mean viral concentration in the liver, spleen, and head kidney 
of 0.5% probiotics-supplemented group was comparable to those from the control diet group. The 
viral loads from the 1% probiotics-supplemented group were instead always lower at all time points 
measured, with a more marked difference at 9 and 12 dpc. Of note, less than one log10 copy/µg of 
total TiLV RNA was detected in the organs sampled at 19 dpc from all challenged groups. No TiLV 
genomic RNA was detected in the sham-challenged fish and cohabitation fish during each sampling 
period. 

 
Figure 2. Viral load in liver (A), spleen (B) and head kidney (C) of red hybrid tilapia (n = 5) fed control 
or Bacillus spp. probiotics-supplemented diets for 21 days and thereafter infected with TiLV. Data 
were collected from five fish at 5, 6, 9, 12 and 19 dpc. 

2.3. Differential Modulation of Antiviral Response Markers during TiLV Infection 

During the TiLV experimental infection, the expression profile of genes encoding for antiviral 
and pro-inflammatory cytokines was measured in the liver, spleen, and head kidney from the three 
dietaries treatment groups. 

All TiLV-challenged fish showed a consistent up-regulation of CXCL8 chemokine, also known 
as interleukin-8 (il-8), transcription from 5 to 19 dpc (Figure 3). The induction of il-8 in the 1% 
probiotics-supplemented group was higher in all three internal organs, when compared to the control 
diet and to the 0.5% probiotics-supplemented group. Il-8 transcription modulation was considerably 
higher in the liver during the infection, with some differences seen already at 5 dpc between groups 
(Figure 3A). A protracted higher il-8 upregulation was seen in the 1% probiotics-supplemented group 
at the late stages of TiLV infection, i.e. 12 and 19 dpc. 

 
Figure 3. Transcription modulation of il-8 (CXCL8) in liver (A), spleen (B), and head kidney (C) of 
fish in the control diet and 0.5% and 1% mixtures of Bacillus spp. probiotics-supplemented diet for 21 
days before TiLV infection. Samples were collected from five fish (n = 5) at 5, 6, 9, 12 and 19 dpc. All 
treatment groups were compared to the control diet group with significant differences shown as: * p 
< 0.05. 

The expression pattern of interferon regulatory factor 3 (irf-3) gene showed different induction 
trends between the examined organs. An early upregulation was seen in the 1% probiotics-
supplemented group in spleen (Figure 4B) and head kidney (Figure 4C), at 5 and 9 dpc. Irf-3 

Figure 3. Transcription modulation of il-8 (CXCL8) in liver (A), spleen (B), and head kidney (C) of
fish in the control diet and 0.5% and 1% mixtures of Bacillus spp. probiotics-supplemented diet for
21 days before TiLV infection. Samples were collected from five fish (n = 5) at 5, 6, 9, 12 and 19 dpc.
All treatment groups were compared to the control diet group with significant differences shown as:
* p < 0.05.

The expression pattern of interferon regulatory factor 3 (irf-3) gene showed different
induction trends between the examined organs. An early upregulation was seen in the 1%
probiotics-supplemented group in spleen (Figure 4B) and head kidney (Figure 4C), at 5 and 9 dpc. Irf-3
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expression instead gradually increased from 5 to 19 dpc in the liver of 1% probiotics-supplemented
fish (Figure 4A), but peaking at the later stage of TiLV infection, i.e. 12 and 19 dpc. Interestingly irf-3
transcription was also considerably higher in probiotics-supplemented groups at 9 and 12 dpc in the
liver, while at 19 dpc remained considerably higher only in the 1% probiotics-supplemented group.
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Figure 4. Transcription modulation of irf-3 in liver (A), spleen (B), and head kidney (C) of fish in the
control diet and 0.5% and 1% mixtures of Bacillus spp. probiotics-supplemented diet for 21 days before
TiLV infection. Samples were collected from five fish (n = 5) at 5, 6, 9, 12 and 19 dpc. All treatment
groups were compared to the control diet group with significant differences shown as: * p < 0.05.

A quicker and more sustained ifn-γ transcription was differentially seen in the liver and head
kidney of 1% probiotics-supplemented group, although in the liver it was already significant at 5
dpc and protracted over the course of TiLV infection (Figure 5A,C). In spleen, higher transcriptional
levels of ifn-γwere measured upon 1% probiotics supplementation, but from 9 to 19 dpc (Figure 5B).
Generally, fish from the 1% probiotic-supplemented group showed the highest up-regulation of ifn-γ,
compared to both the control diet group and also the 0.5% probiotics-supplemented group, and this
difference was consistent at 9 dpc (Figure 5).
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Figure 5. Transcription modulation of ifn-γ in liver (A), spleen (B), and head kidney (C) of fish in the
control diet and 0.5% and 1% mixtures of Bacillus spp. probiotics-supplemented diet for 21 days before
TiLV infection. Samples were collected from five fish (n = 5) at 5, 6, 9, 12 and 19 dpc. All treatment
groups were compared to the control diet group with significant differences shown as: * p < 0.05.

The transcription of Mx (mx) gene, a key IFN-stimulated gene, showed contrasting patterns of
induction (Figure 6). The higher changes were measured in the head kidney starting at 5 dpc in all
infected groups but remaining selectively sustained until 19 dpc in the 1% probiotics-supplemented
group (Figure 6C). In contrast, mx expression was selectively induced in the 1% probiotics-supplemented
group from 9 to 19 dpc (Figure 6A), while, in spleen, mx expression was sustained in all infected groups
at the early TiLV infection stages (Figure 6B).
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control diet and 0.5% and 1% mixtures of Bacillus spp. probiotics-supplemented diet for 21 days before
TiLV infection. Samples were collected from five fish (n = 5) at 5, 6, 9, 12 and 19 dpc. All treatment
groups were compared to the control diet group with significant differences shown as: * p < 0.05.

The expression of Radical S-Adenosyl Methionine Domain Containing (rsad) 2 gene, also known
as VIPERIN, was sustained in all infection groups, but with a higher induction pattern seen in
probiotics-supplemented groups (Figure 7). A rapid up-regulation of rsad-2 expression was detected
in all organs, already at 5 dpc, peaking at 6 dpc in liver, spleen, and head kidney of fish fed 1%
probiotics-supplemented diet. Thereafter, rsad-2 expression in liver was very contained at 9 dpc,
peaking at 12 dpc lowering to 19 dpc (Figure 7A). In contrast, in both spleen and head kidney rsad-2
transcription followed by a gradual decline from 9 to 19 dpc (Figure 7B,C).
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Taken together, results about the transcription of pro-inflammatory and anti-viral markers indicate
that the dietary supplementation of 1% Bacillus spp. probiotics significantly improved the antiviral
defense during the course of TiLV infection.

3. Discussion

TiLV is an important virus causing mass morbidities and mortalities to wild and farmed tilapia
stocks worldwide [7,9,10,13]. Therefore, there is an urgent need to prevent and control TiLV disease,
especially where tilapia are intensively cultured. An effective therapy or vaccine is still yet to be
available to protect tilapia from TiLV infection. Probiotics have been widely used in human and farmed
animals to promote general health, and successfully applied as alternatives to antibiotics [31,32]. Even
in fish, several reports have shown that the dietary administration of probiotics, including live bacteria
and bacteria extracts, could promote health. Probiotics may enhance fish growth performances [33],
modulating digestive and antioxidant enzymes activity [34], and strengthen the innate immune
response through the modulation of cytokines, innate immune cells, and the expression of genes
encoding for innate defense effectors [35–37]. In addition, probiotics may have antagonistic effects
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against pathogenic microorganisms in fish [38], as shown in using Pdp11 and 51M6 (Vibrionaceae)
against Vibrio harveyi [39]. Bacillus spp. showed antagonistic activity against V. vulnificus, V. campbelli, V.
parahaemolyticus and V. alginolyticus promoting the growth of whiteleg shrimp (Litopenaeus vannamei) [40].
However, until recently, no research had demonstrated the application of probiotics to reduce the
impact of TiLV infection in tilapia. To the best of our knowledge, this study is the first to evaluate the
potential of Bacillus spp. as probiotics supplementation in fish diet and its beneficial features on tilapia
health during TiLV infection.

During our study in red hybrid tilapia, despite a positive finding on the weight gain, together with
lower feed conversion ratio (FCR) in the 1% probiotics-supplemented group, statistical analysis showed
no difference in dietary administration of Bacillus spp. towards the improvement of growth parameters.
Similar findings suggested that Nile tilapia (O. niloticus) fed with probiotics had insignificant effects on
FCR improvement [41] and weight gain [41,42] during feeding trials. In contrast, a positive effect of
probiotics supplementation to promote growth performance in fish was reported. Both Lactobacillus
acidophilus and Bacillus subtilis-supplemented diets for 8 weeks promoted Nile tilapia growth, increased
their final weight, and resulted in lower FCR [43]. Moreover, the diet supplementation with B. cereus var.
toyoi for 93 days was shown to improve the growth performance of farmed rainbow trout (Oncorhynchus
mykiss) [44]. The application of 1 × 105 and 1 × 106 CFU/g B. licheniformis to feeding, improved growth
parameters in grass carp (Ctenopharyngodon idella) after 56 days [45]. Thus, we hypothesize that a better
impact of Bacillus spp. probiotics on growth performances of red tilapia could have been demonstrated
if supplementing probiotics for a longer time.

Interestingly, the dietary supplementation with Bacillus spp. significantly lowered TiLV viral load
in the internal organs, including liver, spleen, and head kidney of red hybrid tilapia. This finding
may be part of the explanation of the better survival of fish fed Bacillus spp. probiotics. In previous
studies, Bacillus spp. had the ability to inhibit a range of pathogens, including V. vulnificus [46], V.
alginolyticus [47], A. hydrophila [48]. Dietary supplementation with a B. megeterium reduced viral load
in shrimp during the white spot syndrome virus (WSSV) infection [49]. Liu et al. [50] demonstrated
that strains of Bacillus spp. isolated from different aquatic animals had strong inhibitory effects against
V. parahaemolyticus.

To further investigate the beneficial effects of Bacillus spp. as probiotics dietary supplementation
against TiLV infections in tilapia, we examined the transcription of a selection of pro-inflammatory
cytokines and markers of the antiviral response in internal organs sampled at time points after TiLV
infection. Interferon-gamma is a cytokine belonging to the fish type II IFN family, which is induced
through the activation of the signal-transducing pattern recognition receptors of the innate and
adaptive immune system [51]. IFN-γ expression was found to be highly induced by both bacterial
and viral systemic infections, respectively, caused by Piscine novirhabdovirus and Yersinia ruckeri, in
brown trout (Salmo trutta). During these infections, the transcription of IFN-γ was highly correlated
to the bacterial and viral load in both spleen and kidney together with a strong correlation to the
expression of an array of CXC chemokines, including CXCL8 or IL-8 [52,53]. Moreover, the other
antiviral response markers selected for this study in red tilapia, including irf-3, Mx, and VIPERIN
(or rsad-2), were previously found to be strongly induced during several viral infections in other
teleosts [54–56] and involved in the IFN response in tilapia [57]. Previously, studies showed that the
administration of probiotics could modulate the expression of pro-inflammatory cytokines, such as
ifn-γ, useful for activating the cell-mediated immunity, enhancing antigen presentation, and leading to
inhibiting pathogen replication [35,58,59]. Probiotics can also enhance the expression of CXCL8 or
il-8, which is one of the best-studied chemokines in fish, known to attract and activate neutrophils,
and to be induced by a range of pathogens [60–63]. Our study demonstrates that the expression of
ifn-γ and il-8 was significantly upregulated in the liver, spleen, and head kidney in the group fed
1% of Bacillus spp. probiotics-supplemented diet. There is a possibility that the capability of Bacillus
spp. to induce ifn-γ and il-8 in immune cells subsequently contributed to improving the antiviral
response mounted by the host against TiLV. Likewise, an upregulation of ifn-γ upregulation was
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found in Goldfish (Carassius auratus) fed B. velenzensis-supplemented diet [64]. Moreover, dietary
supplementation with Lactococcus lactis increased ifn-γ expression in olive flounder during Streptococcus
iniae infection [65]. The master regulators of the interferon pathway, including irf-3 and irf-7, play a
critical role in triggering ifn-γ activation, thus leading to the activation of interferon stimulate genes
to produce antiviral effectors, such as MX proteins and RSAD-2 that inhibit viral polymerases in
the nucleus and limit viral replications [66,67]. In this present study, the expression of irf-3 was
upregulated in red tilapia fed Bacillus spp. at 0.5% and 1% diets. Moreover, mx and rsad2 were found
to be significantly upregulated in the probiotics-supplemented group during TiLV infection. The
administration of B. subtilis dietary supplementation at (109 CFU kg/diet) was shown to significantly
increase mx expression in the head kidney of Asian seabass (Lates calcarifer) after 24 h of probiotics
feeding [68]. Another probiotic bacteria, Vagococcus fluvialis, also stimulated mx expression in the
head kidney of European sea bass (Dicentrarchus labrax) [69]. Despite these pieces of transcriptional
modulation evidence, further studies are still needed to better understand the exact mechanisms of
probiotics on the activation of tilapia immune responses during TiLV infection.

Probiotics can boost and support the natural antimicrobial resistance of fish, leading to better
survival against pathogen challenge [31]. Liu et al. [70] demonstrated the resistance of Nile tilapia
against S. agalactiae after 8 weeks of feeding on a diet containing B. subtilis at 108 CFU/g. For viral
infections, a diet containing S. cerevisiae at the concentration of 5.3 × 107 CFU/kg increased the survival
of groupers against iridovirus and Streptococcus spp. at the end of a 4 week trial [71]. A similar study
showed that the application of Lactobacillus plantarum at 108 CFU/kg for 4 weeks increased the survival
of orange-spotted grouper during Iridovirus infection [72]. Likewise, hybrid Hulong groupers (E.
fuscoguttatus × E. lanceolatus) fed B. subtilis at 1 × 108 and 1 × 1010 CFU/g diet had lower mortality
during Iridovirus infection [28]. Feeding 0.5% and 1% of 2.4 × 108 CFU/g Lactobacil and Sprolac to
olive flounder for a period of 30 days significantly reduced mortality during the lymphocystis disease
virus [27]. In this study, lower mortality during TiLV infection was found in tilapia fed 0.5% and 1%
Bacillus spp.-supplemented diets, compared to the control diet group. To the extent of our knowledge,
the present study is the first report of the effect of Bacillus spp. probiotic against TiLV infection.

4. Conclusions

In summary, our study demonstrates that an oral administration of Bacillus spp. may have beneficial
antiviral effects against TiLV infection in red hybrid tilapia. The preventive oral administration of
probiotic diet increased the survival of tilapia upon TiLV infection. The host innate immune response was
improved, as indicated by the consistently increased transcription of a pro-inflammatory chemokine
and antiviral markers in probiotics-supplemented groups, and with a higher effect in the group
supplement with 1% of Bacillus spp. probiotics. This pilot study will inform the adoption of prevention
strategies aimed at the control of TiLV infections, opening to further studies on the health management
using probiotics to strengthen the fish immunity against TiLV and other relevant infectious agents.

5. Materials and Methods

5.1. Experimental Fish Source and Use

Seven hundred red hybrid tilapia (total body weight (TBW) 10 ± 0.5 g) were transferred from a
tilapia hatchery certified with no history of TiLV in Saraburi province, Thailand, to aquarium facility at
the Faculty of Veterinary Medicine, Kasetsart University, Thailand. Fish were acclimated for 2 weeks
in a 150 L tank, with the following water quality parameters: 5.54 ± 0.21 mg/L dissolved oxygen,
0.2 ± 0.05 mg/L ammonia, 0.1 ± 0.03 mg/L nitrite, pH 7.2 ± 0.24. Water temperature was maintained at
28 ◦C, and the photoperiod was kept with 12 h light/12 h dark. Fish were fed commercial feed (INVE
Technologies Co., Ltd., Nonthaburi, Thailand) at the rate of 3% of TBW/day, and abnormal behaviors
and daily mortality were recorded. Prior to the start of the experiment, five fish were randomly
sampled and examined for the presence of any ecto- and endo-parasite, using gill mucus, skin, and
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gut smears checked under light microscopy. The head kidney and spleen were screened for bacterial
infections, aseptically streaked onto TSA plates and growth at 30 ◦C for 48 h. The head kidney and
spleen were screened for TiLV infection by RT-qPCR, using the protocol previously described [73]
(primers in Table 2). The animal use protocol was reviewed and approved by the Kasetsart University
Animal Use Committee, under the protocol number ACKU63-VET-017.

5.2. Experimental Diet and Feeding

A commercial mixture of Bacillus subtilis, B. licheniformis, and B. pumilus (Secure Yield) was
provided by INVE Technologies Co., Ltd., Dendermonde, Belgium. A 1.8 mm tilapia diet, with >32%
crude protein, >4% crude fat, was coated with the mixture of Bacillus spp. to reach final concentrations
of 1 and 2 × 107 CFU/g. A total of 480 red hybrid tilapia were randomly distributed to 12 tanks (150 L),
allocating 40 fish/tank. Three experimental groups were defined: (1) control diet; (2) fed supplemented
with 0.5% probiotic; and (3) fed supplemented with 1% probiotic. For each experimental group, one
tank was designed as the sampling tank, used for harvesting tissue samples at defined time points,
while the other three tanks were monitored to record the cumulative mortality until the experiment
termination (mortality tanks). Fish were fed with control and probiotic-supplemented feed for 21 days
prior to any experimental challenge (Figure 8). Additionally, a group of 40 fish was maintained as an
untreated control (sentinel tank) for the entire experimental period and fed the control diet. During the
whole experiment, fish were fed at a daily rate of 3% TBW, according to each experimental diet.
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Figure 8. Experimental design. Fish were fed a commercial diet or probiotics-supplemented diet for 21
days. Thereafter, experimental fish were cohabited with TiLV IP-infected vectors (clipped pelvic fin)
and tissue samples (n = 5 per group) were collected at 5, 6, 9, 12 and 19 days post infection challenge
(dpc). Three replicate tanks were set for cumulative mortality analysis and TiLV quantification, while
fish from an additional tank were sampled for the analysis of immune genes transcription modulation.

5.3. TiLV Source

The TiLV strain (VETKU-TV01) was isolated from infected red hybrid tilapia in Pathum Thani
province, Thailand in 2016 [30]. TiLV was propagated in snakehead fish (Ophiocephalus striatus)
E-11 cells [74]. The E-11 cells were purchased from the European Collection of Authenticated Cell
Cultures (ECACC #01110916) and maintained in L-15 Leibovitz (Sigma, Cambridge, MA, USA) medium
supplemented with foetal bovine serum (Gibco, Paisley, UK) and L-glutamine at 25 ◦C, without CO2,
and without the addition of antibiotics. The titer of TiLV (TCID50/mL) was determined following the
protocol described by Reed and Muench [75]. The cell suspension was centrifuged at 3000× g for 10
min and the supernatant was stored at −80 ◦C until the challenge test.

5.4. TiLV Infection Challenge

Red hybrid tilapia were anesthetized with eugenol (Aquanes®, Better Pharma, Thailand) at
a concentration of 3 mL/L for 5 min prior to be intraperitoneally injected (IP) with 50 µL of viral
suspension in L-15 medium, at the concentration of 105 TCID50/mL. The TiLV IP-challenged fish were
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clipped at the pelvic fin and allocated to each experimental tank for cohabitation with previously
unexposed fish (with unclipped pelvic fin) at a ratio of 1:3 at 0 dpc. For the sham-infection group, 13
fish were IP-injected using 50 µL of L-15 medium suspension collected from uninfected E-11 cells, and
allocated to the sentinel tank at 0 dpc. The experimental design is illustrated in Figure 8.

Water quality parameters were maintained at 0.25 ± 0.63 mg/L ammonia, 0.1 ± 0.05 mg/L nitrite,
4.92 ± 0.57 mg/L of dissolved oxygen, pH 7.2 ± 0.03, and water temperature kept at 28 ºC. The
appearance of any clinical sign and occurrence of mortality were recorded daily until 28 dpc using
the tanks designed for mortality recording. At 5, 6, 9, 12, and 19 dpc, five fish with unclipped pelvic
fin were randomly sampled from the sampling tank of each treatment group and from the sentinel
tank after 21 days feeding. Fish were sacrificed using eugenol (Aquanes®, Better Pharma, Bangkok,
Thailand) solution at a concentration of 3 mg/L. Liver, head kidney, and spleen were aseptically
dissected and stored at −20 ◦C until the analysis was performed.

5.5. Growth Performances

The experimental fish (n = 25 from each tank) were weighed at the beginning prior to the feeding
experiment (initial body weight), and at 21 days before the challenge study (final body weight). Weight
gain (WG) average daily gain (ADG), feed conversion ratio (FCR) and feed efficiency (FE) were
determined as follows.

WG = [final body weight (g) − initial body weight(g)] ÷ initial body weight(g)
Feed efficiency (FE) = [weight gain(g) ÷ amount of ingested feed (g)]
FCR = feed intake ÷weight gain
ADG (g) = weight gain ÷ number of days on feed

5.6. Total RNA Extraction and cDNA Synthesis

Total RNA was extracted from sampled tissues at the defined experimental time points using
Trizol® solution (Invitrogen, Waltham, MA, USA), following the manufacturer’s instructions. RNA
quality and concentration were estimated using spectrophotometry (NanoDrop 2000C, Thermoscientific,
USA). One µg of total RNA was reverse transcribed using ReverTraAce® kit (Toyobo, Japan), following
the manufacturer’s instructions. The resulting cDNA was diluted with TE buffer pH 8.0 and stored at
−80 ◦C.

5.7. Viral Load Quantification

The amount of TiLV genomic RNA in liver, spleen, and head kidney of control and probiotic
supplementation fish was analyzed by an RT-qPCR assay as previously described [73,76]. The assays
were performed in the CFX96™ thermocycler (BioRad, Hercules, CA, USA). The load of TiLV genomic
RNA was calculated from the standard curve of ten-fold serial dilutions of plasmid containing TiLV
segment 3, as previously described [76].

5.8. Gene Expression Analysis by RT-qPCR

RT-qPCR was performed using a MicroAmp Optical 96-well reaction plate (BioRad) in a 10 µL
reaction: consisting of 5 µL iTaq™ universal SYBR green supermix (BioRad), 0.3 µL of each forward and
reverse primer, 0.4 µL of molecular grade water, and 4 µL of cDNA template. All samples were run in
triplicate. General cycling parameters were set as follows: denaturation at 95 ◦C for 3 min, followed by
40 cycles of 95 ◦C for 10 s, and 60 ◦C for 30 s. At the end of the qPCR cycle, samples were subjected
to melting curve analysis at a temperature ranging from 65 to 95 ◦C with 0.5 ◦C per 5 s increments.
RT-qPCR assays were performed using a CFX96 Touch™machine (BioRad). Primer pairs used in this
experiment are listed in Table 2. RT-qPCR data were retrieved using CFX Maestro™ software (Biorad).
Differences in the Ct (∆Ct) values of immune genes and β-actin gene were calculated. The difference
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of ∆Ct for the probiotic-supplemented samples and control samples was expressed as (∆∆Ct) value
that allowed for measurement of the change in the expression of immune-related genes [77].

Table 2. List of primers used for RT-qPCR in red hybrid tilapia.

Gene Primer Sequence (5′-3′) Amplicon
Size (bp)

Accession
Number Source

β-actin F: GTGGGTATGGGTCAGAAAGAC 111 XM003443127 Mugimba et al., 2019
R: GTCATCCCAGTTGGTCACAATA

TiLV F: CTGAGCTAAAGAGGCAATATGGATT 112 KU751816 Tattiyapong et al., 2018
R: CGTGCGTACTCGTTCAGTATAAGTTCT

il-8 F: TCGCCACCTGTGAAGGCA 116 NM001279704 this study
R: GCAGTGGGAGTTGGGAAGAAT

Irf-3 F: CTGTGTTTTCGGAATCTGCTG 182 XM005448320 this study
R: CATTACTGGATACTGCTGTTGC

ifn-γ F: GAAACTTCTGCAGGGATTGG 132 NM001287402 Velázquez et al., 2017
R: CTCTGGATCTTGATTTCGGG

Mx F: ACCCTTGAGCTGGTGAATCA 174 XM003442686 Velázquez et al., 2017
R: ATCCTGAGTGAATGCGGTCA

RSAD-2 F: ATCAACTTCTCTGGCGGA 161 XM003453237 this study
R: AGATAGACACCATATTTCTGGAAC

5.9. Statistical Analysis

Data retrieved from growth performance, viral load, and the expression of immune-related genes
were expressed as mean ± standard error of mean in control and treatment groups. An ordinary
one-way ANOVA with Tukey’s multiple comparisons test, using GraphPad Prism software 5.0.1
(GraphPad Inc., La Jolla, CA, USA), was applied to the statistically significant difference at p < 0.05,
where the different amounts of experimental probiotic diets were used as an explanatory variable.
Cumulative mortality significance was set at p < 0.05 during the TiLV infection.
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