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ABSTRACT
Objectives. Reliable identification of population-specific variants is important for
building the single nucleotide polymorphism (SNP) profile. In this study, genomic
variation using allele frequency differences of pharmacologically important genes for
Gujarati Indians in Houston (GIH) and Indian Telugu in the U.K. (ITU) from the 1000
Genomes Project vis-à-vis global population data was studied to understand its role in
drug response.
Methods. Joint genotyping approach was used to derive variants of GIH and ITU
independently. SNPs of both these populations with significant allele frequency
variation (minor allele frequency ≥ 0.05) with super-populations from the 1000
Genomes Project and gnomADbased onChi-square distributionwith p-value of≤ 0.05
and Bonferroni’s multiple adjustment tests were identified. Population stratification
and fixation index analysis was carried out to understand genetic differentiation.
Functional annotation of variants was carried out using SnpEff, VEP and CADD score.
Results. Population stratification of VIP genes revealed four clusters viz., single cluster
of GIH and ITU, one cluster each of East Asian, European, African populations and
Admixed American was found to be admixed. A total of 13 SNPs belonging to ten
pharmacogenes were identified to have significant allele frequency variation in both
GIH and ITU populations as compared to one or more super-populations. These
SNPs belong to VKORC1 (rs17708472, rs2359612, rs8050894) involved in Vitamin K
cycle, cytochrome P450 isoforms CYP2C9 (rs1057910), CYP2B6 (rs3211371), CYP2A2
(rs4646425) andCYP2A4 (rs4646440); ATP-binding cassette (ABC) transporter ABCB1
(rs12720067), DPYD1 (rs12119882, rs56160474) involved in pyrimidine metabolism,
methyltransferase COMT (rs9332377) and transcriptional factor NR1I2 (rs6785049).
SNPs rs1544410 (VDR), rs2725264 (ABCG2), rs5215 and rs5219 (KCNJ11) share high
fixation index (≥ 0.5) with either EAS/AFR populations. Missense variants rs1057910
(CYP2C9), rs1801028 (DRD2) and rs1138272 (GSTP1), rs116855232 (NUDT15);
intronic variants rs1131341 (NQO1) and rs115349832 (DPYD) are identified to be
‘deleterious’.
Conclusions. Analysis of SNPs pertaining to pharmacogenes in GIH and ITU popula-
tions using population structure, fixation index and allele frequency variation provides
a premise for understanding the role of genetic diversity in drug response in Asian
Indians.
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INTRODUCTION
Pharmacogenomics approaches enable understanding the spectrum of genetic diversity
responsible for drug response (Roden et al., 2011). The advent of high throughput
sequencing technologies enabled population-scale sequencing which led to efforts like
the 1000 Genomes Project (1000 Genomes Project Consortium et al., 2015) and gnomAD
(Karczewski et al., 2020) that have in-turn provided opportunities to probe genetic diversity
in previously understudied populations. Owing to such advances, precision public health
is gaining acceptance and the focus is now shifting from disease treatment to its prevention
and early detection (Khoury, Iademarco & Riley, 2016). Most of the clinical trials for drug
responses are majorly conducted in populations of European descent (Thiers, Sinskey &
Berndt, 2008). Even though the need for large-scale ‘megatrials’ across different populations
has been understood, factors like lack of resources, insufficient expertise and under-
powered studies have hindered the implementation of the same (Allison, 2012). Adverse
drug response due to pharmaco-ethnic influence of population-specific variations has
been well-documented for anticancer agents and warfarin (Kaye et al., 2017; Huang &
Ratain, 2009). Clues towards predicting variable drug response due to influence of genetic
structure of population(s) have been reported previously (Bachtiar et al., 2019; Wilson et
al., 2001). The focus of precision public health is intervention at the population-level.
Hence, understanding the genetic landscape of pharmacogenomic variants promises to
tailor population-based pharmacogenomic interventions and testing (Nagar et al., 2019;
Sivadas & Scaria, 2019).

In this context, the knowledge of genetic diversity amongst Indian sub-continent
population and understanding its complex population structure are valuable as the
sub-continent constitutes 20% of the world population (Sengupta et al., 2016; Banerjee,
2011; Majumder, 2010). There are few genome wide association studies (GWAS) carried
out for understanding the role of allele variation in populations pertaining to Indian
subcontinent (Prasad et al., 2019; Nagrani et al., 2017; Giri et al., 2016). Such studies aid in
hypothesis-free detection of genetic variant catalog and provide insight into pleiotropy.
It needs to be mentioned that the resolution of causal variants derived using GWAS is
influenced by cohort constitution, secondary diseases, environmental variations along with
ethnic diversity (Wijmenga & Zhernakova, 2018; Gamazon & Perera, 2012).

The 1000 Genomes Project (1KGP) provides data of 26 ethnic groups spread across
the globe with an aim to capture genetic variants with frequencies of at least 1% in
the population (1000 Genomes Project Consortium et al., 2015). Similarly, resources like
gnomAD include aggregated and harmonized datasets of both disease-specific as well
as large-scale population genomics studies (Karczewski et al., 2020). Samples included in
1KGP have varied coverage ranging from low (2-4X) to high (50X). Joint variant calling
overcomes challenges associated with low-coverage by providing a consistent set of calls
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at all possible sites (Chen, Boehnke & Fuchsberger, 2020). In 1KGP samples were selected
from different ethnic groups and annotated as ‘population’. These ‘populations’ were
then grouped together on the basis of geographical location into ‘super-population’ and
allele frequencies reported in 1KGP are derived based on super-population information
(1000 Genomes Project Consortium et al., 2015). The ∼85 million variants listed in Phase
3 of 1KGP were obtained by taking into consideration ∼2500 samples belonging to
all the ethnic groups included in the study (derived based on five super-populations).
The ‘super-population derived variant set’ may have lower resolution to ascertain
individual population-specific variants that may be responsible for adaptation to the local
environment. Hence, variant profiles obtained after joint variant detection of ‘individual
populations’ promise to provide a more precise call set of variants for population genomics
studies based on comparison of allele frequencies.

Allele frequency variation is a complementary measure to conventional metrics like
fixation index (Fst ) and is proposed to be a robust population differentiation parameter
(Berner, 2019). Fixation index hints at the proportion of total genetic variation at a
given locus between populations and is influenced by minor allele frequency (MAF) and
population sample size (Berner, 2019). Population stratification approaches are known to
provide a framework to understand genetic differentiation based on admixture patterns
by taking into account complex evolutionary models (Grünwald et al., 2017). Hence
a combined approach of allele frequency comparison, fixation index calculation and
population structure has been used in this study.

The present work is an effort towards cataloguing genetic variants and their distribution
across two ethnic groups of Indian ancestry i.e., Gujarati Indian from Houston, Texas
(GIH) and Indian Telugu in the U.K. (ITU) as compared to the combined data set of
global variants. GIH population was chosen as it occupies a unique position in the genetic
ancestry of Indian subcontinent due to its preponderance of ancient North Indian gene
pool as compared to the rest of the subcontinent (ITU) which has ancient South Indian
ancestry (Silva et al., 2017; Reich et al., 2009). There are reports of underestimation of
genetic diversity of Indian sub-continent in 1KGP owing to the fact that GIH and ITU
along with Sri Lankan Tamil in the UK (STU) have been sampled from Indian diaspora
wherein a major driver of social hierarchy in India i.e., caste/tribe and endogamy are not
observed (Sengupta et al., 2016). However in the absence of availability of more appropriate
samples in the public domain we have used 1KGP data. GIH and ITU are part of South
Asian (SAS) super-population which also includes Punjabis in Lahore (PJL), Bengali in
Bangladesh (BEB) and STU populations. Allele frequencies of GIH and ITU in 1KGP are
hence influenced by cohort constitution of other populations in the SAS group. As we
are interested in ascertaining individual population-specific variants of GIH and ITU,
independent joint variant calling of GIH and ITU was performed.

Our group has earlier analysed skin pigmentation related genes for positive selection
in GIH and ITU populations (Jonnalagadda et al., 2017). In the present study, we attempt
to prioritize single nucleotide polymorphism (SNPs) associated with very important
pharmacogenes (VIP) in terms of allele frequency variation between populations and
fixation index. The study of such variants in the GIH and ITU populations would help
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to deduce the underlying pattern/distribution and aid in understanding the landscape of
genetic variation in pharmacologically important genes in Indian subcontinent.

MATERIALS AND METHODS
Variant calling
Genome alignments of 109 and 112 samples belonging to South Asian descent namely
GIH and ITU respectively included in the Phase 3 of 1KGP (available as of December
2018) were used for joint variant calling with human genome build GRCh38 as reference.
Only autosomal chromosomes were included in this study. It should be mentioned that
low-coverage samples were included in this study as high-coverage data was available only
for a small proportion of the samples. Joint variant calling of low-coverage samples was
carried out using GATK-3.8 (McKenna et al., 2010). GATK-HaplotypeCaller was run per
sample resulting in the generation of an intermediate output in genomic variant calling
format (GVCF). HaplotypeCaller was used with default parameters for depth and mapping
quality. Joint genotyping was carried out independently for GIH and ITU populations
using GenotypeGVCFs (with default parameters) using individual sample GVCF files as
input (Fig. 1). It must be mentioned that only SNPs were used for further analysis and
indels were excluded in this study.

Variant filtering and annotation
Variants were filtered based on minimum allele frequency (MAF) ≥ 0.05 in GIH and ITU
populations. To understand the variation in the SNP profile across samples, principal
component analysis (PCA) was performed using R package snprelate (Zheng et al., 2012).
Phasing of variants was carried out using Beagle 5.0 (Browning, Zhou & Browning, 2018).
Annotation was carried out using SnpEff 4.3 (Cingolani et al., 2012) and VEP (McLaren
et al., 2016) along with dbSNP build 154 (Sherry et al., 2001). The variants were sorted
according to chromosome number along with genic and intergenic regions that were
obtained using SnpSift (Cingolani et al., 2012). Variants were annotated with CADD scores
using GRCh38-v1.6 database and variants with score ≥ 15 were considered deleterious
(Rentzsch et al., 2021).

Gene-set
Genes categorised as ‘Very Important Pharmacogenes’ listed in PharmGKB (Whirl-Carrillo
et al., 2012) have been retrieved. This data was further filtered to remove genes part of
chromosome X and mitochondria which resulted in 65 genes.

Populations analysed
1KGP: Samples pertaining to European (EUR), East Asian (EAS), African (AFR), Ad
Mixed American (AMR) were analysed. Ad Mixed Americans were further divided into
two ‘‘subpopulations’’ based on ancestry viz., European-derived (CLM and PUR) and
Latino (MXL and PEL) respectively as these are known to be genetically different (Gómez
et al., 2021) (File S1A).
gnomAD v3: Samples pertaining to European (EUR), East Asian (EAS), African (AFR),
Ad Mixed American (AMR), Amish (AMI), Ashkenazi Jewish (ASJ), European-Finnish
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Figure 1 Flow-chart for identification and analysis of SNPs pertaining to VIP genes.
Full-size DOI: 10.7717/peerj.12294/fig-1

(FIN), European-non-Finnish (NFE), Other (OTH) and South Asian (SAS) were analysed.
(File SB) gnomAD v3 was included for comparison of allele frequency variation across
different populations as this database is a more extensive resource when compared to 1KGP
(which has ∼2500 samples as of December 2018 that are part of 5 super-populations).
gnomAD v3 in comparison has 76,156 samples pertaining to 9 populations (available as
of September 2020). Hence in order to take into account existing samples available in
the public domain databases we included gnomAD for comparison of allele frequency
variation of VIP genes in our study.

Test of significance, prioritization and functional annotation
For the comparison of allele frequencies, variants listed in the Phase 3 of 1KGP database
(derived from 26 populations) and gnomAD (v3) were used as reference sets. The current
version of gnomAD includes only genome samples with >18X coverage (and hence do
not include 1KGP genome data). It is to be noted that the earlier version of this database
(v2.1.1) has a wider coverage but was not included in this study as GRCh37 was used as the
reference genome. Allele frequency variation was calculated only for SNPs annotated in
PharmGKB (URL: https://api.pharmgkb.org/v1/download/file/data/variantAnnotations.zip).
The difference in allele frequencies of the GIH and ITU populations with respect to
other super-populations in 1KGP and gnomAD were calculated in terms of Chi-square
statistics. To capture significant allele frequency differences between theGIH/ITU and other
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super-populations, two-way Chi-square values were calculated wherein GIH population
allele frequencies and ‘‘super-population derived allele frequencies’’ were compared
with respect to each other as observed and expected values. Thus Chi-square statistics
of variants were obtained by cumulative χ2 values for both the scenarios of observed
frequencies of GIH/ITU population(s) alleles and super population alleles. Then under
the null hypothesis of Chi-square distribution, p-values associated with χ2 statistics of all
the variants were calculated. Statistically significant variants were obtained for all those
Chi-square distributions of individual populations using p-value of ≤ 0.05.

The SNPs with p-value ≤ 0.05 were corrected using Bonferroni’s multiple tests to
calculate the level of significance (p ≤ (0.05/(#variants ×#super-populations)). Alleles
with frequency in the range of 5–100% (Sachidanandam et al., 2001) in GIH and ITU
populations that satisfied the p-value cut-off of ≤ 0.05 were analysed further. SNPs absent
in populations other than GIH and ITU were assigned allele frequency values of 10−10

in order to enable calculation of Chi-square statistics. Comparative analysis of significant
SNPs in GIH and ITUwere carried out and SNPs unique as well as shared between GIH and
ITU populations were analysed further based on their annotation. Significant SNPs were
also mapped with ClinVar database (Landrum et al., 2014) to obtain clinical association, if
any.

Population stratification
fastSTRUCTURE which is based on variational Bayesian framework was used to infer
the population structure of the VIP genes (Raj, Stephens & Pritchard, 2014). PGDSpider
(2.1.1.5) was used for input file preparation for fastSTRUCTURE (Lischer & Excoffier,
2012). Simple prior was used with (k) 1 to 10. Optimal values of k were selected based
on maximum likelihood values and membership coefficient values ≥ 0.05 were assessed.
Genetic differentiation was analysed using fixation index which was calculated using
VCFtools (v0.1.16) (Danecek et al., 2011), that implementsWeir andCockerham’s unbiased
estimator (Cadzow et al., 2014;Weir & Cockerham, 1984).

RESULTS
Joint genotyping
Genome-wide joint variant calling of GIH and ITU populations independently predicted
7,319,189 and 7,228,257 SNPs in GIH and ITU respectively with MAF≥ 0.05. Comparison
of these variants with that listed in Phase 3 data of 1KGP revealed 5,602,124 and 5,638,042
SNPs to be common with variants predicted using joint genotyping of GIH and ITU
respectively. Similar observation was noted during comparison of joint genotyping of GIH
and ITU variants with gnomAD, wherein 6,59,4122 and 6,64,8248 SNPs respectively were
found to be common. Of these 12286 (GIH) and 12144 (ITU) belong to VIP genes. The
variant set was filtered further based on variants listed in PharmGKB which resulted in
250 and 249 SNPs in GIH and ITU respectively (Table 1). This variant dataset was used
for analysing population structure and for comparison of allele frequency variation across
super-populations to understand SNPs with significant allele frequency variation and
fixation index.

Bharti et al. (2021), PeerJ, DOI 10.7717/peerj.12294 6/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.12294


Table 1 SNPs in GIH and ITU at each filtering step for both genome-wide and VIP datasets.

SNP filtering step #SNPs in GIH #SNPs in ITU

Genome-wide SNPs
MAF ≥0.05 7,319,189 7,228,257
Common with 1KGP 5,602,124 5,638,042
Common with gnomAD 6,59,4122 6,64,8248

Very Important Pharmacogenes
MAF ≥0.05 12,286 12,144
Common with 1KGP 11,407 11,527
Common with gnomAD 12,050 12,179
Common with 1KGP and PharmGKB 250 249
Common with gnomAD and PharmGKB 262 261

Figure 2 (A) Venn diagram depicting the common and unique SNPs belonging to VIP genes identified
by joint genotyping of GIH population and that from 1KGP. (B) Venn diagram depicting the common
and unique SNPs belonging to VIP genes identified by joint genotyping.

Full-size DOI: 10.7717/peerj.12294/fig-2

Comparison of variants of VIP genes obtained in this study (using population-specific
genotyping of GIH and ITU) with corresponding samples in 1KGP (where in GIH and
ITU are included in SAS super-population) revealed that for GIH and ITU 8–9% SNPs are
unique in both the datasets (Fig. 2 and Files S2–S3). Missense variants rs2279343 (CYP2B6)
and rs1801030 (SULT1A1 involved in sulfate conjugation) are part of the exclusive SNPs
identified by joint genotyping of GIH and ITU which are also annotated in PharmGKB
variant list but absent in 1KGP (Files S2–S3).

Population structure
A total of 163722 SNPs belonging to 65 VIP genes were used for population structure
analysis. VIP variants were found to have stratified into k = 3 to 6 clusters (Fig. 3A,
File S4). Optimal k = 4 was chosen based on the maximum number of individuals in a
population having membership to a given cluster and marginal likelihood values. This
resulted in the majority of GIH and ITU individuals being part of a single cluster (with
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Figure 3 Genetic diversity of VIP genes. (A) Population stratification of VIP genes at k = 4; (B) Prin-
cipal Component analysis of VIP genes. Color legend: AFR in dark blue, EUR in lavender, EAS in olive
green, AMR1 in mustard, AMR2 in beige, GIH in black and ITU in stone grey.

Full-size DOI: 10.7717/peerj.12294/fig-3

few members reported to be admixed with EUR) (Fig. 3A). AMR1 and AMR2 are admixed
with membership to two or more clusters (AFR, EUR and EAS). EUR, AFR and EAS are
part of distinct clusters.

PCA of genome-wide SNPs revealed three major clusters viz., one each of AFR and EAS;
the third cluster includes AMR1, AMR2, GIH, ITU and EUR (File S5). The first PC separates
EAS from the rest of the populations whereas the second PC further separates AFR from
other populations. When SNPs (#163722) pertaining to VIP genes were clustered using
PCA, four clusters were observed that include three independent clusters of AFR, EUR and
GIH/ITU. The fourth cluster consists of AMR1, AMR2 and EAS members (Fig. 3B).
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Allele frequency variation analysis across populations
Of the 65 VIP genes analyzed in this study, 12286 and 12144 SNPs in GIH and ITU
populations respectively have been obtained with MAF ≥ 0.05. Comparison of these SNPs
with 1KGP and gnomAD populations/super-populations was carried out to identify shared
and unique SNPs (Table 2, Fig. 4, File S6). The study revealed that ∼9% (#1053) SNPs are
unique in the GIH population for the above mentioned gene set. Similarly, ∼8% (#911)
SNPs are unique to the ITU population for the pharmacologically important genes (Fig. 5).

The proportion of MAFs of the variants for pharmacogenes is found to be higher as
observed in other populations (Gravel et al., 2011). Moreover, the major allele frequency
distribution amongst the populations remains comparatively undifferentiated. The number
of SNPs with significant allele frequency variation (in GIH and ITU) is highest in AFR
followed by EAS whereas AMR and EUR super-populations have comparatively lower
numbers of SNPs. The trend of high differentiation of GIH and ITU with AFR and EAS
super-populations agrees with ethnic, linguistic and similar factors (Ayub & Tyler-Smith,
2009).

SNPs with significant allele frequency variation
SNPs with lower allele frequency in GIH and ITU
A total of seven SNPs with MAF ≤ 0.05 in GIH and ITU populations were found to have
significant allele frequency variation in other populations or super-populations of 1KGP
and gnomAD. In addition, seven and three SNPs in GIH and ITU are exclusively significant
with one or more super-populations (File S7).

SNPs with higher allele frequency in both GIH and ITU
A total of 13 SNPs belonging to 10 genes have significant allele frequency variation in both
GIH and ITU populations as compared to one or more super-populations (Table 2, Fig.
6). Majority of the shared SNPs are intronic except for one synonymous and two missense
variants. These SNPs belong to VKORC1 involved in Vitamin K cycle, cytochrome P450
isoformsCYP2C9,CYP2B6,CYP2A1 andCYP2A4; ATP-binding cassette (ABC) transporter
ABCB1, DPYD1 involved in pyrimidine metabolism and transcriptional factor NR1I2. It is
interesting to note that the CADD score for CYP2C9 missense variant (rs1057910) is ∼17
and hence is identified as ‘deleterious substitution’.

SNPs with higher allele frequency in GIH
Nine SNPs, part of eight genes, are unique to GIHwith significant allele frequency variation
when compared to one or more super-populations (Table 2, Fig. 7). Unique SNPs in GIH
include two intronic SNPs of VKORC1 and one intronic SNP ofDPYD, two missense SNPs
one each belonging toGSTP1 andDRD2, one synonymous SNP of solute carrier SLCO1B1,
3′ UTR SNP in CYP2A13 and 5′UTR SNP in ABCG2. Of these, missense variants rs1801028
(DRD2) and rs1138272 (GSTP1); intronic variants rs1131341 (NQO1) and rs115349832
(DPYD) have CADD score >15 and hence are predicted to be ‘deleterious’. Intronic SNP
rs115349832 (DYPD) has been exclusively identified in the variant call-set obtained using
joint genotyping of GIH (MAF≥ 0.05). It is interesting to note that MAF of the same allele
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Table 2 List of SNPs with significant allele frequency variation in GIH and ITU populations.

ID Annotation Gene CADD REF ALT 1KGP gnomAD

Significant SNPs in both GIH and ITU (# Only significant with GIH; *Only significant with ITU )
rs1057910 Missense CYP2C9 17.39 A C AFR –
rs12119882 Intronic DPYD 4.724 A G AFR –
rs12720067 Intronic ABCB1 0.45 C T AFR –
rs17708472 Intronic VKORC1 9.163 G A EAS EAS#
rs2359612 Intronic VKORC1 0.526 A G EAS EAS
rs3211371 Missense CYP2B6 0.341 C T EAS –
rs3786362 Synonymous TYMS 7.958 A G EAS and AFR AMI, ASJ, FIN, NFE and AFR#
rs4646425 Intronic CYP1A2 4.632 C T AFR –
rs4646440 Intronic CYP3A4 3.246 G A EUR AMI, FIN, NFE and ASJ*
rs56160474 3′UTR DPYD 2.272 A G EAS –
rs6785049 Intronic NR1I2 0.004 G A AFR –
rs8050894 Intronic VKORC1 0.72 C G EAS EAS
rs9332377 Intronic COMT 4.427 C T EAS –

Significant SNPs unique in GIH
rs1131341 Intronic NQO1 23.7 G A AFR –
rs1138272 Missense GSTP1 19.3 C T EAS EAS
rs115349832 Intronic DPYD 17.92 A C EAS and AFR AMR
rs1801028 Missense DRD2 25.6 G C AFR –
rs2231135 5′UTR ABCG2 9.399 A G EAS –
rs2884737 Intronic VKORC1 1.955 A C EAS –
rs9934438 Intronic VKORC1 14.2 G A EAS EAS
rs1709083 3′UTR CYP2A13 0.73 C G – AMR
rs2291075 Synonymous SLCO1B1 7.098 C T – AMI

Significant SNPs unique in ITU
rs116855232 Missense NUDT15 21.9 C T EUR and AFR AMI
rs2293347 Synonymous EGFR 9.124 C T AFR –
rs2725264 Intronic ABCG2 5.246 C T AFR –
rs6018 Missense F5 14.24 T G AFR –
rs7294 3′UTR VKORC1 1.521 C T EAS EAS
rs1544410 Intronic VDR 2 C T – EAS

Notes.
EAS, East Asian; AFR, African; AMR, Ad Mixed American; AMI, Amish; ASJ, Ashkenazi Jewish; FIN, European-Finnish; NFE, European-non-Finnish.

in 1KGP (for GIH) is 0.047 and would have been filtered as it does not satisfy the criteria
of MAF ≤ 0.05 (File S2).

SNPs with higher allele frequency in ITU
Six SNPs, part of six genes, are unique to ITU (Table 2, Fig. 8). These include two missense
SNPs one each in NUDT15 and F5, two intronic SNPs one each in ABCG2 and VDR, one
synonymous SNP in EGFR and 3′ UTR SNP in VKORC1. Of these, the missense variant
rs116855232 (NUDT15) is identified as deleterious (CADD score ≥15).
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Figure 4 Venn diagram depicting SNPs with significant allele frequency variation in GIH and ITU
with other populations/super-populations in 1KGP and gnomAD.

Full-size DOI: 10.7717/peerj.12294/fig-4

Figure 5 Venn diagram depicting shared and unique SNPs in GIH and ITU.
Full-size DOI: 10.7717/peerj.12294/fig-5
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Figure 6 Histogram of SNPs (shared by GIH and ITU) belonging to VIP genes that show significant al-
lele frequency variation with at least one super-population from 1KGP.
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Figure 7 Histogram of SNPs in GIH population belonging to VIP genes that show significant allele
frequency variation with at least one super-population from 1KGP.

Full-size DOI: 10.7717/peerj.12294/fig-7

SNPs with fixation index ≥ 0.5
A total of 367 variants belonging to 39 genes with fixation index≥ 0.5 in both GIH and ITU
when compared with one or more super-populations were observed (Table 2, File S8). Of
these∼78% are intronic and∼16% are intragenic SNPs whereas the rest include missense,
synonymous and 3′/5′UTR SNPs. Seven SNPs viz., missense variant rs5219 (KCNJ11),
intronic variants: rs74105153 (DPYD); rs2302535 (EGFR); rs12471933 and rs12466048
(ALK ), 5′UTR variant rs75147926 (BCR) and 3′UTR variant rs712 (KRAS) are predicted
to be ‘deleterious’ (CADD score ≥15). Genes ALK, CFTR, EGFR, VDR, CYP2C9, ABCG2,
DPYD and BCR harbour more than 15 SNPs each with high fixation index (≥ 0.5).
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Figure 8 Histogram of SNPs in ITU population belonging to VIP genes that show significant allele fre-
quency variation with at least one super-population from 1KGP.
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DISCUSSION
Indian-subcontinent is one of the understudied regions in terms of exploring genetic
diversity of native populations even though it constitutes a major proportion of the global
population (Sengupta et al., 2016; Banerjee, 2011; Majumder, 2010). Understanding the
spectrum of genetic variations in pharmacogenes is crucial for drug response studies
(Wright et al., 2018). Population-level pharmacogenomics studies for understanding the
dosage as well as drug adverse effects can be enabled by precision public health initiatives.
In this study variants pertaining to ‘Very Important Pharmacogenes’ were computed for
GIH and ITU populations from 1KGP and analysed based on allele frequency variation,
fixation index and population structure with respect to other super-populations. Inclusion
of a larger number of samples from gnomAD for comparison of allele frequency (derived
using smaller dataset viz., 1KGP) provided a stronger measure of support for the observed
variations.

GIH and ITU were chosen to represent the North-Indian and South-Indian ancestry of
the Indian sub-continent respectively (Reich et al., 2009). Overall, we observe that GIH and
ITU group together as a homogenous population both in population stratification and in
clustering using PCA (Fig. 3). Of the total VIP variants, only 8% in GIH and 7% in ITU
have been found to be unique with MAF ≥ 0.05. The low proportion of distinct alleles in
GIH and ITU can be attributed to samples being sourced from Indian diaspora which lack
social hierarchy and endogamy, a prevalent factor in Indian sub-continent (Sengupta et al.,
2016). Of the four clusters observed in population stratification, majority of themembers of
GIH and ITU formed a distinct cluster with a few members found to be admixed with EUR
(Fig. 3A). GIH and ITU share similar allele frequencies for VIP genes with AMR1, AMR2
and EUR and hence significant allele frequency variation was observed predominantly with
AFR and EAS. It is interesting to note that AFR and EAS remain as independent clusters

Bharti et al. (2021), PeerJ, DOI 10.7717/peerj.12294 13/22

https://peerj.com
https://doi.org/10.7717/peerj.12294/fig-8
http://dx.doi.org/10.7717/peerj.12294


Table 3 List of SNPs with Fst and significant allele frequency variation.

Gene ID Annotation CADD GIH- AFR GIH- AMR GIH- EAS GIH -EUR ITU- AFR ITU- AMR ITU- EAS ITU- EUR GIH-ITU

VDR rs1544410 Intronic 2 0.04 0.05 0.38 0.00 0.13 0.14 0.52 0.02 0.02
ABCG2 rs2725264 Intronic 5.246 0.59 0.01 0.00 0.10 0.68 0.06 0.02 0.01 0.02
NR1I2 rs6785049 Intronic 0.004 0.58 0.05 0.00 0.05 0.61 0.03 0.01 0.04 0
VKORC1 rs2359612 Intronic 0.526 0.00 0.10 0.68 0.07 0.00 0.15 0.72 0.11 0
VKORC1 rs7294 3′UTR 1.521 0.09 0.14 0.57 0.18 0.21 0.28 0.69 0.31 0.04
VKORC1 rs8050894 Intronic 0.72 0.03 0.16 0.72 0.12 0.09 0.25 0.77 0.20 0.02
VKORC1 rs9934438 Intronic 14.2 0.02 0.19 0.75 0.16 0.00 0.25 0.79 0.21 0.01

Notes.
Fst values ≥ 0.5 are in bold.
EUR, European; EAS, East Asian; AFR, African; AMR, Ad Mixed American; GIH, Gujaratis in Houston; ITU, Indian Telugu in the U.K.
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even at larger k values (File S4). Majority of the SNPs (MAF ≥ 0.05) with significant allele
frequency variation observed in our study had high values in GIH/ITU as compared to
populations/super-populations of 1KGP and gnomAD. The converse scenario was only
observed in SNPs with MAF≤ 0.05 in GIH/ITU (File S7). This observation may vary when
larger numbers of samples are taken into consideration for deriving allele frequencies.

Joint genotyping of individual populations (GIH and ITU independently) enabled
identification of SNPs (with MAF ≥ 0.05) which hitherto would have been either filtered
due to low allele frequency in 1KGP (rs115349832 ofDYPD) or not identified in the dataset
at all as observed in the case of rs2279343 (CYP2B6) and rs1801030 (SULT1A1) (Files
S2–S3).

SNPs with significant allele frequency variation with EAS and high fixation index
identified in this study include three intronic SNPs ( rs2359612, rs8050894, rs9934438) and
one in 3′UTR ( rs7294) of VKORC1 gene. Missense SNP rs1057910 (CYP2C9) along with
the observed VKORC1 variants have been associated with varied warfarin dosage in both
South-Indian and North-Indian populations (Nizamuddin et al., 2021; Arun Kumar et al.,
2015; Krishna Kumar et al., 2014; Giri et al., 2014; Shalia et al., 2012). Similarly, intronic
SNP (rs6785049) present inNR1I2has significant allele frequency variation inAFR.NR1I2 is
a member of the nuclear receptor superfamily of transcriptional factors that regulates many
genes like CYP3A4, a promiscuous cytochrome P450 enzyme involved in the metabolism
of >50% drugs (Bertilsson et al., 1998). The AG genotype has a higher allele frequency in
GIH and ITU. This genotype was found to be associated in patients with bladder cancer
to have decreased exposure to temsirolimus or sirolimus as compared to patients with the
GG genotype, and decreased likelihood of bone marrow and gastrointestinal toxicities, or
other adverse events as compared to patients with the AA genotypes (Mbatchi et al., 2017).
Also AG genotype has been found to be associated with increased risk for hypertension
when treated with sunitinib as compared to patients with the GG genotype (Narjoz et al.,
2015). It needs to be mentioned that so far there are no reports of association of this SNP
with any phenotype in case of Indian population and hence this SNP is a good candidate
to be probed for further validation studies.

SNP rs1544410 (Bsml) present in the intronic region of gene VDR has ≥ 0.5 fixation
index with EAS in case of ITU population. Association ofVDR polymorphism with diseases
like tuberculosis, osteoporosis and obesity has been reported earlier (Uitterlinden et al.,
2004). CT genotype has higher allele frequency in ITU population and this genotype is
known to be associated with decreased response to drug deferasirox leading to higher liver
stiffness in thalassemia major patients (Allegra et al., 2019). This genotype is also associated
with increased likelihood of resistance when treated with clodronate in people with Osteitis
Deformans (Mossetti et al., 2008). Ezhilarasi, Dhamodharan & Vijay (2018) have found
Bsml to be associated with decreased levels of vitamin D circulation in Type 2 diabetic
patients of South Indians. Gulati et al. (2020) have found Bsml to be associated with weight
loss after lifestyle interventions in Asian Indians. Similarly, SNP rs2725264 present in the
intronic region of gene ABCG2 has ≥ 0.5 fixation index with AFR. ABCG2 is an efflux
protein involved in drug resistance to cancer treatment using platinum based drugs (Stacy,
Jansson & Richardson, 2013). The pharmacokinetic effect of rs2231135 (5′UTR of ABCG2)
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in Asian cancer patients was found to have no major impact for three-week regimen of
irinotecan (Jada et al., 2007). Role of this SNP in Indian population needs to be explored
further taking into account the underlying ethnic diversity and social hierarchy.

Missense SNPs (rs5215 and rs5219) belonging to gene KCNJ11 have≥ 0.5 fixation index
with AFR. Both these variants are found to be associated with Type 2 diabetes in EAS (Yang
et al., 2012). However, Phani et al. (2014) did not find significant association in the South
Indian population. It is interesting to note that rs5219 is predicted to be ‘deleterious’ and
needs to be validated further to understand its role.

This study hence provides a catalog of significant variants in GIH and ITU populations
for ‘Very Important Pharmacogenes’ that have a potential role in understanding the drug
response in Indian populations. Further experimental studies of the variants need to
be carried out to validate the findings. As allele frequencies are influenced by size and
source of sampling, there is a need for a large-scale effort to aggregate appropriate and
adequate samples by taking into account social hierarchy and endogamy prevalent in
Indian subcontinent.
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