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Abstract

In eukaryotic cells, the trans-Golgi network (TGN) serves as a platform for secretory cargo sorting 

and trafficking. In recent years, it has become evident that a complex network of lipid–lipid and 

lipid–protein interactions contributes to these key functions. This review addresses the role of 

lipids at the TGN with a particular emphasis on sphingolipids and diacylglycerol. We further 

highlight how these lipids couple secretory cargo sorting and trafficking for spatiotemporal 

coordination of protein transport to the plasma membrane.
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The trans-Golgi network (TGN) is the central hub for secretory cargo protein sorting and 

trafficking to the plasma membrane. The TGN membrane is highly dynamic and composed 

of distinct subdomains which differ in their protein and lipid composition. Ultrastructural 

and real-time imaging studies have provided evidence for the existence of fission domains or 

hotspots [1–4]. At these sites, vesicular and tubular carriers destined for the plasma 

membrane or the endolysosomal system emerge from the TGN (Fig. 1A). These fission 

domains are enriched in cargo and decorated with proteins of the vesicle fission machinery 

but do not contain any Golgi resident proteins [3,5]. A prerequisite for the existence of these 

fission hotspots is the segregation of cargo from Golgi resident proteins as well as a proper 

separation of apical and basolateral cargo to maintain cell polarity. Indeed, studies in 

polarized cells have revealed that proteins and lipids destined for apical and basolateral 

plasma membrane leave the TGN at different subdomains [6–9] (Fig. 1A). At these 

subdomains, a tight coordination of sorting and segregation of cargo protein as well as the 

specific recruitment of the vesicle fission machinery is required to ensure proper loading of 
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cargo protein into different membrane carriers. In line with this, Golgi-associated proteins 

such as small GTPases, kinases and phosphatases, lipid transfer proteins, phospholipases as 

well as membrane-bending and molecular motor proteins show divergent localization within 

the TGN and contribute to the segregation of fission domains and the maintenance of the 

dynamic TGN structure [1]. The lipids of the TGN membrane actively participate in this 

process through the recruitment of cargo proteins and the Golgi-associated vesicle fission 

machinery thereby coordinating sorting and trafficking, respectively. In addition to this 

signaling and organizational role, lipids also directly facilitate local membrane curving 

occurring during vesicle fission and tubule formation. Consequently, the pathways regulating 

the synthesis and consumption of lipids impact TGN morphology and functionality. Among 

the major lipids present in the TGN bilayer are phosphatidylinositol (PI) and its 

phosphorylated derivates [the phosphoinositides (PIP)], glycerolipids, sterols, and 

sphingolipids (SL; Fig. 1B). In this review, we will discuss how these lipids and their 

effectors synchronize sorting and trafficking of secretory cargo through a complex network 

of positive and negative feedback mechanisms.

Synthesis and localization of glycerolipids, PI, and its phosphorylated 

derivates, sterols, and sphingolipids

The predominant lipid class in mammalian cells are glycerophospholipids (GPLs) that are 

the main building blocks of cell membranes. All derive from a glycerol backbone whose 1- 

and −2- hydroxy groups are esterified with one fatty acid and whose 3-hydroxy function is 

esterified with phosphate or a phosphoryl alcohol moiety constituting the lipid polar head 

group.

The most abundant subspecies are phosphatidylcholine (PC), phosphatidylethanolamine, PI, 

phosphatidylserine, and phosphatidic acid (PA). The hydrophobic portion of these species is 

a diacylglycerol (DAG) with saturated or cis-unsaturated fatty acyl chains with different 

lengths. PA esterified with an inositol results in PI. The synthesis of GPL subspecies occurs 

in the endoplasmic reticulum (ER) from PA, which is activated via unique pathways. The 

combinatorial phosphorylation of the 3-, 4-, and or 5 hydroxy groups of the inositol ring of 

PI gives seven singular PI phosphates (Fig. 1B). Phosphorylated PI molecules, also termed 

PIPs, mark cellular membranes and recruit cytosolic proteins [10]. PIPs have a particular 

important role in controlling membrane traffic and often act in concert with small GTPases 

from the ADP-ribosylation factor (Arf) and Ras-related in brain (Rab) family and this 

interplay is essential for Golgi function [11,12].

Ceramide is synthesized de novo in the ER and is composed of sphingosine and a fatty acid. 

The synthesis begins with the condensation of palmitate and serine to form 3-keto-

dihydrosphingosine by serine palmitoyl transferase. 3-keto-dihydrosingosine is then reduced 

to dihydroxy sphingosine which is subsequently acetylated to produce dihydroceramide. The 

final reaction to produce ceramide is catalyzed by dihydroceramide desaturase. Ceramide is 

then transferred to the TGN by a nonvesicular process mediated by the ceramide transfer 

protein (CERT). In the Golgi, ceramides are converted to sphingomyelin (SM), 

glucosylceramide (GlcCer) and then to more complex SL such as GM3, or to ceramide-1-
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phosphate. GlcCer, the precursor of most glycosphingolipids (GSLs), is transported by 

vesicular and nonvesicular routes to generate different classes of GSLs [13]. Within this 

framework, it is essential to mention that the lipid transfer protein four-phosphate adaptor 

protein 2 (FAPP2) transfers cis-Golgi–localized cytosolic GlcCer via its glycolipid transfer 

protein domain to the luminal face of the TGN [14,15]. Importantly, inhibition of ceramide 

synthesis significantly affects secretory cargo trafficking underscoring the essential role of 

this lipid in Golgi secretory function [16].

Synthesis of SL such as SM occurs at the luminal leafiet of the TGN membranes by SM 

synthase 1 (SMS1) and SMS2 converting PC and ceramide to DAG and SM (Fig. 3A) 

[17,18]. Sterols such as cholesterol are synthesized in the ER via an elaborate multistep 

process in which the 3-hydroxy-mehtylglutary1-CoA reductase mediates the rate-limiting 

step catalyzing the conversion of HMG-CoA to mevalonic acid. Sterols are based on a rigid 

four ring structure that is hydrophobic and structurally distinct from GPLs and SL. 

Cholesterol contains a hydroxyl group, a steroid, and a hydrocarbon chain which allow the 

interaction with phospholipids. This interaction reduces the fiexibility of the acyl chains of 

phospholipids [19,20]. Sterols preferentially associate with saturated PC and SM to generate 

lateral cohesive contacts with saturated acyl chains to form condensed complexes (Fig. 2B). 

SL form hydrogen bonds with each other and with the sterol [21]. These interactions allow 

SL to cluster with sterol into liquid-ordered membrane domains [22]. These domains are 

reported to function as platforms for protein transport and signaling and are suggested to 

play a specific role in events leading to transport carrier biogenesis [23].

Protein and lipid-based cargo sorting at the TGN

The TGN plays a major role in sorting and polarized trafficking of biosynthetic cargo such 

as transmembrane cargo or proteins attached to membranes, for example by 

glycosylphosphatidylinositol anchors [1,6]. Several transmembrane proteins have been 

shown to be sorted by adaptor proteins such as AP1 that recognize sorting signals in their 

cytosolic domains to recruit clathrin and accessory proteins to the TGN membrane (Fig. 2A) 

[24]. These motifs have been identified for proteins directed to the endosomal system and 

for some basolateral-directed cargoes [25–27]. Sorting and trafficking of soluble lysosomal 

hydrolases occurs by the cation-independent mannose phosphate receptor that recognizes 

soluble lysosomal pro-enzymes modified with mannose 6-phosphate to elicit their packaging 

into clathrin-coated vesicles that mediate TGN-to-endosome trafficking [28]. Sorting and 

generation of vesicles that mediate secretion and the mechanisms that coordinate cargo 

selection, carrier budding, and fission are poorly understood [29,30]. Simons and colleagues 

have shown that there is a lipid-based system for cargo sorting and vesicular biogenesis at 

the TGN independent of coat and adaptor protein-mediated sorting processes [31]. These 

sorting domains or lipid rafts are small dynamic assemblies within the TGN membrane 

based on the association between SL and sterols and responsible for the targeting of a subset 

of cargo molecules that have a particular affinity for liquid-ordered domains [1,22,32,33]. 

The hypothesis is that these domains cluster membrane cargo proteins to segregate them for 

transport to apical or basolateral cell surfaces in polarized epithelial cells [33,34]. Transport 

vesicles are then generated by line tensions at the phase boundaries of the lipid rafts (domain 

induced budding) [35,36]. These vesicles are rich in SL and cholesterol indicating that lipid 
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sorting occurs at the TGN membrane [34]. The precise mechanisms how these protein lipid 

assemblies form and regulate TGN sorting of various cargo proteins, however, are still a 

matter of debate.

The Sphingomyelin-SPCA1-Cab45 network

Recent studies have uncovered a Ca2+-dependent sorting process that is mediated by the 

TGN-resident Ca2+ ATPase secretory pathway ATPase1 (SPCA1). SPCA1 pumps Ca2+ into 

the lumen of the TGN in an ATP-dependent manner [37–39]. The Golgi complex can be 

considered as a Ca2+ store as it can accumulate, store, and release Ca2+ and actively 

participates in Ca2+ signaling [40,41]. However, the concentration of Ca2+ in the Golgi 

apparatus is heterogeneous, and it was suggested that there is a Ca2+ gradient across the 

secretory pathway from the ER to the TGN [39]. At steady state, the ER has the highest 

Ca2+ concentration (400 μM), whereas the cis-Golgi contains 250 μM and the TGN around 

100 μM of Ca2+. TGN Ca2+ uptake relies solely on SPCA1 [42]. Using purified proteins, it 

was shown that the SPCA1 phosphorylation domain, crucial for pump activation, interacts 

with F-actin in a cofilin-dependent manner [43]. Furthermore, mutation of four amino acids 

in SPCA1 representing the cofilin binding site affected Ca2+ import into the TGN and 

secretory cargo sorting [43]. What is the role of Ca2+ in sorting of secretory proteins at the 

TGN? The luminal Golgi protein Cab45 that binds incoming Ca2+ via its EF-hand domains 

is a central sorting regulator downstream of SPCA1. Upon TGN Ca2+ infiux it oligomerizes 

and concentrates bound proteins (clients) from the bulk milieu prior to its export from the 

TGN [44,45]. The identification of TGN derived SM-rich vesicles uncovered an exciting 

link between synthesis of SL and Cab45-dependent sorting [46,47]. Purification and analysis 

of these vesicles by a proteomics approach identified Cab45 as one of the most abundant 

native cargoes of this pathway. Further investigation showed that Cab45 and its client 

proteins are sorted into SM-rich vesicles.

Interestingly, SPCA1, SMS1, and SL populate the same regions of the TGN. SPCA1 Ca2+ 

pumping activity is promoted by maintenance of a physiologic level of SM in the TGN 

membranes. In line with this finding, a systematic survey of SPCA1 activity in reconstituted 

proteoliposomes of differing lipid composition showed that SPCA1 activity is highest in 

vesicles containing SM [48]. Local hotspots of SPCA1 activity, linked to synthesis and local 

enrichment of SM within the TGN membrane, will define TGN sorting domains and cargo 

exit sites. At present, the mechanism by which the SM-rich membrane facilitates SPCA1-

mediated calcium pumping is unknown and it may be that SM acts as an agonist by binding 

to a site(s) on SPCA1 to activate Ca2+ pumping, as shown for the paddle domain of plasma 

membrane voltage-gated K+ channels which is critical to voltage sensing [49–52]. These 

results propose that chemical and physical coupling of SM synthesis, DAG production, Ca2+ 

infiux, and capture of secretory cargo by Cab45 promotes engulfment of oligomeric Cab45-

client complexes by the TGN membrane, leading to vesicle budding. SPCA1 activity and 

cargo sorting are coupled to F-actin dynamics via cofilin on the cytosolic face of the TGN 

[43,53]. Although it is clear that Ca2+ is feeding this process, its source is still unknown. An 

intriguing possibility would be the idea of membrane contact sites acting as a platform for 

local Ca2+ signaling between the ER and the TGN. Indeed, it is well established that 

membrane contact sites facilitate Ca2+ transfer from the ER to mitochondria. Here, cytosolic 

von Blume and Hausser Page 4

FEBS Lett. Author manuscript; available in PMC 2021 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



glucose-regulated protein 75 connects voltage-dependent anion channel on the outer 

mitochondrial membrane to the inositol trisphosphate receptor (IP3R) in the ER facilitating 

Ca2+ infiux into the mitochondria [54]. Contact sites between ER- and trans-Golgi cisternae 

have been visualized by 3D reconstruction of fast freezing and HVEM tomography [55]. 

Also, these structures seem to be very dynamic and sensitive to Ca2+ depletion [56], further 

supporting the idea that ER-TGN contact sites form close to SPCA1 to promote local TGN 

Ca2+ infiux. What is the role of the dynamic SPCA1-cofilin-F-actin complex? Interestingly 

protein kinase RNA-like ER kinase, independent of its function in unfolded protein 

response, regulates ER Ca2+ infiux by coordination of ER-PM contact sites through cortical 

F-actin remodeling by Filamin A [57]. In this respect, it would be an interesting hypothesis 

that ER-TGN contact sites could mediate binding of cofilin to SPCA1. SPCA1 connected 

cofilin could depolymerize F-actin in close proximity to allow tethering of ER and TGN for 

the generation of a Ca2+ signaling microdomain. Notably, many proteins involved in Ca2+ 

signaling have been found to be present in SL and cholesterol-rich domains or lipid rafts 

[58], suggesting that these domains have a significant role in modulating Ca2+ signaling. 

Given the existing link between SL and Cab45-dependent sorting, one could speculate that 

the formation of lipid rafts in the TGN membrane is required for SPCA1 activation. In 

support of this idea is the finding that SPCA1 accumulates in cholesterol-rich membrane 

domains, and its activity seems to be dependent on cholesterol as well [59]. The 

investigation of these hypotheses, however, is challenging as both ER-TGN contact sites and 

lipid rafts are small and dynamic and difficult to visualize by fluorescence microscopy in 

living cells [60]. Also, matching their association with either Ca2+ influx or cargo trafficking 

is very demanding. To overcome these caveats high-resolution live cell microscopy 

techniques in combination with newly developed fluorescent probes have to be applied. For 

instance, the laboratory of Akihiko Nakano has established a three color, 4D high speed, and 

high-resolution microscopy technique that will allow visualizing these dynamic processes in 

future [61].

The central role of phosphatidylinositol (4) phosphate in coupling sorting 

and trafficking of secretory cargo

The main phosphoinositide in the Golgi complex is PI4P, which is generated from PI by the 

activity of two PI4-kinases (PI4Ks) localized to the Golgi complex in mammalian cells (type 

III PI4Kβ and type II PI4Kα; [62,63]). While PI4KIIIβ is recruited through binding to the 

small GTPase Arf1 and the myristoylated Ca2+ sensor NCS-1 to TGN membranes [64–67], 

PI4KIIα requires cholesterol-dependent palmitoylation for interaction with and activation at 

TGN membranes [68]. The precise distribution of PI4KIIIβ and PI4KIIα within the Golgi 

complex and thus their specific contribution to the TGN PI4P pool is still not fully 

understood. From biochemical and localization data, the existence of distinct Golgi pools of 

PI4P, which might be involved in individual trafficking pathways at different levels, has been 

suggested [63]. Irrespective of their exact localization, there is plenty of evidence that both 

kinases, PI4KIIIβ and PI4KIIα, significantly contribute to Golgi PI4P levels and are 

required for efficient secretory cargo transport [62,67,69–71]. Microscopic detection of PI4P 

using either protein domains or antibodies that can be labeled with fiuorescent probes 

revealed that PI4P is specifically enriched at the TGN [63,72]. At this site, it serves as a 
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platform for the association of cytosolic adaptor proteins and components (e.g., arfaptins, 

GOLPH3, and AP1/clathrin) that aid in deforming the membrane to promote carrier budding 

and fission [62,73–76]. Moreover, PI4P drives nonvesicular ceramide and sterol transfer 

from the ER to the TGN thereby controlling SL synthesis [14,18,73,77,78]. PI4P and SL 

metabolism at the TGN are intimately linked and coordinated through several positive and 

negative feedback loops. The key mediators in this process are the PI4P effector proteins and 

lipid transfer proteins CERT [18] and oxysterol-binding protein (OSBP) [79]. Binding of 

CERT and OSBP to the TGN is mediated through their PH domain which targets PI4P at 

ER-TGN contact sites where both organelles come into close vicinity (Fig. 3B) [64,72,80]. 

Likewise, a FFAT motif in both proteins is responsible for binding to the integral membrane 

protein VAMP-associated protein A/B (VAP-A/B) in the ER [81–83]. While CERT transfers 

ceramide from the ER to the TGN for the production of DAG and SM through the activity of 

SMS1 [17,18], OSBP tethers the ER and TGN membranes at these contact sites for 

nonvesicular exchange of cholesterol and PI4P and facilitates CERT-mediated ceramide 

transfer [64,84,85]. Thus, by removing PI4P, OSBP negatively feeds back on its TGN 

localization and consequently ER-TGN membrane tethering and lipid transfer. Disrupting 

the binding of CERT and OSBP to VAP-A/B, depleting VAP-A/B isoforms or CERT and 

OSBP substantially impaired the processing and secretion of secretory cargo demonstrating 

the importance of lipid transfer at ER-Golgi contact sites for secretory cargo trafficking 

[82,86]. In the ER, OSBP-transported PI4P is immediately consumed by the 

phosphatidylinositol phosphatase Sac1, an integral ER membrane protein [70,87]. This 

process is proposed to provide the energy for OSBP-mediated cholesterol transport from the 

ER to the TGN [64]. A recent study by the group of Antonella de Matteis provides further 

evidence that the PI4P-and Arf1 binding protein FAPP1 positions Sac1 at ER-TGN contact 

sites thereby locally restricting PI4P consumption and consequently secretion. In this 

respect, FAPP1 acts also as a PI4P sensor [88]. At ER-TGN contact sites Sac1 forms a 

complex with OSBP and VAP-A/B [86]. To maintain the PI4P gradient on Golgi membranes 

with PI4P being high at the TGN and low at cis/medial Golgi membranes Sac1 also traffics 

between the ER and the early/cis-Golgi membranes through COPI-and COPII-dependent 

vesicular transport; however, the authors reported Sac1 to be absent from TGN membranes 

[89–91]. These at first glimpse conflicting data could be explained by the highly dynamic 

nature of ER-TGN contact sites which are supposed to continuously form and dissolve 

making their visualization challenging [92]. However, through high-resolution electron 

microscopy combined with a newly developed FLIM-FRET imaging approach, de Matteis 

and her group revealed the presence of Sac1 at these sites in their native state [93]. Depletion 

of Sac1 results on one hand in accumulation of PI4P in ER membranes [94], and on the 

other hand to the loss of the graded distribution of PI4P between Golgi compartments [90] 

confirming both modes of action for Sac1. The net effect of Sac1 depletion is an overall 

grossly disturbed Golgi morphology and a missorting of Golgi-resident glycosylation 

enzymes [90] demonstrating the importance of a tightly organized distribution of PI4P at 

TGN membranes for proper sorting and vesicle budding.
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The DAG-PKD network and its functional relevance for transport carrier 

fission

The lipid metabolite DAG has a central role in maintaining Golgi structure and vesicle 

budding and fission [95]. DAG levels are determined by different metabolic pathways which 

regulate its production or consumption. The main production pathway for DAG at the Golgi 

complex is catalyzed by SMS1 which transfers phosphocholine from PC to ceramide to 

generate DAG and SM (Fig. 3) [96]. Additionally, DAG is also generated by PA phosphatase 

(PAP), which dephosphorylates PA [97,98]. Further studies provided evidence that the 

family of PI-specific phospholipase C (PI-PLC) enzymes, which generate DAG and IP3 

through the hydrolysis of PI(4,5)P2, are present at Golgi membranes. Within the PI-PLC 

family, three members, PLCβ3, PLCγ1, and PLCε, have been reported to localize to the 

TGN and to participate in membrane trafficking [99–102]. PLCβ3 is activated by binding of 

Gβ/γ proteins to its PH domain [103] whereas PLCε activation can also occur through Rho 

GTPases [104]. Notably, the hydrolysis of PI4P has been demonstrated for all mammalian 

PI-PLC isoforms in vitro [105]. Indeed, a recent report provides evidence that PI4P is the 

major source of biologically relevant DAG production [106]. However, so far the regulation 

of these pathways and their contribution to the production of DAG at the Golgi complex 

under physiological conditions is not fully understood. An attractive hypothesis is that the 

arrival of cargo proteins activates DAG synthesis pathways [107]. Indeed, cargo arrival at the 

Golgi initiates a signaling circuit necessary for the Golgi-to-plasma membrane transport 

[108] and activates PLCγ1 to locally increase DAG levels [101]. Additionally, extracellular 

signaling from G protein-coupled receptors (GPCRs) has been shown to activate PLCε at 

Golgi membranes. As a result, PI4P is hydrolyzed to generate DAG and inositolbisphosphate 

[100,102]. However, how extracellular signaling and cargo arrival are synchronized to 

induce DAG synthesis and thus the assembly of the fission machinery in a timely manner is 

still a mystery.

Diacylglycerol consumption is predominantly mediated by the cytidine diphosphate (CDP)-

choline pathway for PC biosynthesis and this contributes significantly to the budding and 

fission of vesicles [109,110]. In this respect, it is important to mention that the lipid transfer 

protein Nir2 exchanges PC for PI at the ER-TGN interface thereby critically participating in 

PI4P synthesis and DAG levels at the TGN [82,109]. Aside from this, the consumption of 

DAG is also regulated by DAG kinase, which phosphorylates DAG to generate PA, or by 

SMS1, which converts DAG and SM back to PC and ceramide. The contribution of these 

pathways to the secretory function of the Golgi complex is, however, not sufficiently 

understood. At the TGN, DAG fulfills several functions. First, DAG can facilitate the 

negative curvature needed for membrane fission [111]. Second, it serves as a signaling 

scaffold to assemble the fission machinery. Here, DAG is essential for recruitment of protein 

kinase D (PKD) to the TGN but also for the activation of the kinase at this compartment 

[16]. The three PKD isoforms PKD1, 2, and 3 comprise a family of serine/threonine kinases 

those activity is required for the fission of exocytic carriers at the TGN named CARTS 

(carriers of the TGN to the cell surface) [112–117]. Notably, Arf1 co-operates with DAG in 

TGN localization of PKD [118]. Inhibition of PKD activity (by siRNA-mediated depletion, 

pharmacological inhibition or expression of a dominant-negative PKD mutant) results in the 
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formation of tubular structures which contain cargo protein but are not able to detach from 

TGN membranes [102,113].

At the TGN, PKD phosphorylates and activates PI4KIIIβ [119] thereby contributing to PI4P 

production and consequently, recruitment of CERT and OSBP [18,120]. The 

phosphorylation of PI4KIIIβ also induces its complex formation with 14-3-3γ proteins 

[121], PAK1, Arf1, and BARS [77]. BARS itself binds to and activates a trans-Golgi 

lysophosphatidic acid (LPA) acyltransferase type δ that converts LPA into PA [122]. While it 

is clear that this reaction is essential for the fission of basolateral carriers the fate of PA is 

less well understood. PA could be dephosphorylated to generate DAG, which would amplify 

the recruitment and activation of PKD. Indeed, inhibition of PAP activity by propranolol 

impairs PKD localization [16] and membrane bud formation [98]. In further support of this 

idea is the finding that the catalytic activity of PLA2, which cleaves phospholipids to 

generate free fatty acids and LPA, is required for PKD localization to the TGN [123]. It is, 

however, also conceivable that the DAG generated is used for the production of PC through 

the CDP-choline pathway to terminate the assembly of the fission-inducing complex. 

Although the molecular mechanisms are still unclear, there is sufficient evidence that 

continual phospholipid remodeling by various enzymes is critical to regulation of the 

availability of curvature-altering lipids such as LPA, PA, and DAG. The net effect of PKD 

recruitment to and activation at TGN membranes is thus to promote these local changes in 

the lipid composition which facilitate the negative membrane curvature but also lead to the 

assembly of the fission machinery.

Strikingly, PKD also directly phosphorylates CERT and OSBP thereby mediating their 

release from PI4P and Golgi membranes allowing for further rounds of lipid transfer 

[124,125]. This negative feedback loop is thus supposed to maintain DAG, SM, and 

cholesterol levels at the TGN and provides a direct link between SL synthesis, exocytic 

cargo sorting, and carrier formation. Indeed, the regulated production and especially the 

organization of SM is essential for Golgi cisternae morphology, the biogenesis of transport 

carriers at the Golgi membranes, and proper cargo glycosylation [23,126,127]. A recent 

publication by Capasso and co-workers demonstrates how these feedbacks act to buffer 

acute fluctuations in SL production thereby maintaining SM levels for proper carrier 

formation. Under conditions of low SL flow, CERT transports ceramide efficiently from the 

ER to the TGN to produce SM and DAG. High-SL flow through increased ceramide transfer 

enhances SM production. This triggers PKD-mediated OSBP phosphorylation (potentially 

through in parallel enhanced DAG levels) and in turn PI4P turnover at the ER through Sac1 

[128]. As a net result of PI4P consumption, CERT-mediated ceramide transfer and SM 

production are dampened.

The spatiotemporal connection of secretory cargo sorting and vesicle fission is further 

supported by the finding that local SM synthesis promotes Ca2+ influx into the TGN lumen. 

This process couples SM metabolism with Cab45-dependent cargo sorting [46]. Notably, 

several Cab45 clients are associated with CARTS whose formation is dependent on the 

DAG/PKD network [116,129]. PKD in turn is also involved in SM synthesis through the 

regulation of CERT localization to the TGN [124]. Moreover, the formation of CARTS is 

dependent on VAP-A/B controlled lipid transfer through CERT and OSBP at ER-Golgi 
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contact sites [86]. This complex system of negative and positive feedback loops ensures the 

position and timely assembly of SM and cholesterol-rich membrane domains with the fission 

machinery (Fig. 3B). In this respect, the ER-Golgi contact sites might represent ‘hotspots’ of 

secretory cargo sorting and membrane fission.

Coupling the cell environment to lipid metabolism and Golgi secretory 

function

It is well known that growth factors stimulate the delivery of proteins and lipids to the 

plasma membrane but how signals generated at the plasma membrane initiate sorting and 

fission of cargo at the TGN is still not fully understood. The first hint for integration of 

growth factor signaling and Golgi secretory function was provided by the observation that 

cycling of Sac1 between the ER and the Golgi complex is growth factor dependent. This 

allows the cell to properly adapt its secretory function to external cues [130]. Specifically, 

Sac1 oligomerizes and accumulates in the Golgi in quiescent cells resulting in a sharp 

decrease of PI4P and constitutive secretion. After growth factor stimulation, p38 MAPK 

activity is required for the dissociation of Sac1 complexes, which triggers retrograde traffic 

and redistribution of Sac1 to the ER. This in turn shifts the balance toward PI4K-mediated 

production of PI4P thus accelerating constitutive secretion [130]. This mechanism of 

nutrient sensing and transmitting raises the challenging question whether localization of 

Sac1 to ER-TGN contact sites or, more importantly, their dynamic formation and tethering 

through OSBP is sensitive toward growth factor stimulation as well. Indeed, ER-

mitochondria contact sites respond to nutrients such as glucose thereby controlling 

mitochondria function [131]. We recently uncovered a signaling pathway that connects 

GPCR signaling at the plasma membrane with PLCε-mediated DAG production, PKD 

activation and vesicle fission at the TGN [102]. Notably, the localization of the ER-Golgi 

tethering protein OSBP is regulated by PKD-mediated phosphorylation [124,125] 

underpinning a potential regulation of ER-Golgi contact sites through extracellular cues. 

This also is in favor of the idea of ER-Golgi contacts being not only physical conduits for 

lipid exchange between organelles but rather serving as regulatory interfaces to integrate 

lipid synthesis pathways with secretory cargo sorting and trafficking. High-resolution live 

cell imaging of the ER contact sites in their native state will be needed to resolve these 

important questions.

Cells sense the mechanical properties of the extracellular matrix (ECM) through their 

integrin receptors. To properly adapt to the extracellular conditions such as stiffness and 

ECM topography cells respond by changing their actomyosin cytoskeleton contractility and 

inducing signaling pathways. While it is intuitively clear that mechanical cues and the 

secretory pathway must be linked to ensure proper cell function, it is still not fully 

understood how cells transduce mechanical forces to coordinate Golgi secretory function. 

Some recent studies shed more light on this question: Singh and co-workers showed that 

Golgi complex integrity and Arf1 activity are dependent on integrin-mediated adhesion 

[132]. Specifically, the authors report on an integrin-activated Arf1–dynein–microtubule 

pathway that controls adhesion-dependent Golgi organization. Mechanistically, the ArfGEF 

BIG1/2 was proposed to be required for Arf1 activation; however, the molecular mechanism 
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of how integrins signal to BIG1/2 at TGN membranes remains unclear. Strikingly, proper 

cell surface protein glycosylation relied on adhesion-dependent Golgi organization in an 

Arf1-dependent manner thereby connecting mechanical cues with Golgi function. 

Considering the important role of Arf1 in secretory cargo trafficking through the recruitment 

of effector proteins such as golgins, PKD, and FAPP2 [67,73,118,133], loss of adhesion-

mediated regulation of the Golgi and, particularly, the TGN is expected to affect Golgi-

dependent secretory cargo sorting and trafficking. Romani and co-workers went one-step 

further and established the Golgi complex itself as a mechanosensor organelle [134]. They 

show that the Golgi complex responds to intracellular and extracellular mechanical forces 

such as actomyosin contractility and matrix stiffness, respectively, through alterations in 

DAG levels. The molecular pathway connecting these mechanical forces with lipid 

metabolism is composed of the PAP lipin-1 that converts PA into DAG [135]. Inhibition of 

lipin-1 by placing cells in a soft matrix sharply decreased DAG levels proving that lipin-1 

activity is sensitive toward actomyosin contractility. As a result, Arf1 levels at Golgi 

membranes dropped [134]. This suggest that local changes in PA and DAG could impinge 

on Arf1 function. Indeed, lipin-1 has been described previously to be upstream of Arf1 

activation potentially through regulating the localization of the ArfGEF GBF1 to Golgi 

membranes [136]. In vitro, PA synergistically potentiated the phosphoinositide-dependent 

activation of ArfGAP proteins such as the Arf1GAP AGAP1 [137]. Thus, it is likely that the 

PA regulation of an ArfGAP is a common mechanism for the inactivation of Arf small 

GTPases. Irrespective of the mechanism of how ARF1 activity is controlled by PA and 

DAG, the loss in ARF1 activity negatively affected the trafficking of transcription factors 

sterol regulatory element binding protein family 1 and 2 (SREBP1 and 2) between the ER 

and the Golgi. SREBP1 and 2 are activated by protease-mediated cleavage in the Golgi to 

promote the lipogenesis of cholesterol, fatty acids, PC, and triglycerides [138]. As a 

consequence, matrix stiffness and actomyosin contractility directly control cellular lipid 

metabolism through the Golgi complex [139].

Although stiffness-dependent effects of lipin-1 on the secretory pathway at the level of the 

TGN were not investigated, a role for this pathway in DAG dependent membrane budding 

and secretion becomes apparent. Along these lines, Wakana and co-workers found just 

recently that SREBP-cleavage-activating protein (SCAP), a cholesterol sensing protein in 

the ER that escorts SREBPs for their export from the ER to the Golgi [138], is required for 

the biogenesis of CARTS at ER-Golgi contact sites [140]. While low cholesterol levels in 

the ER trigger the export of SCAP/SREBPs to the Golgi complex, high-cholesterol levels 

retain SCAP in the ER through interaction with the integral ER membrane protein Insig 

(Insulin-induced gene protein) [141,142]. ER-retained SCAP subsequently builds a complex 

with Sac1 and the VAP/OSBP complex at ER-Golgi contact sites to promote lipid transfer 

and the formation of SM and cholesterol-rich membrane domains [140].

Extracellular matrix stiffness was also found to destabilize microtubules, releasing GEF-H1, 

which was required for the invasion of breast cancer cells through 3D matrices [143]. We 

have recently shown that GEF-H1 is upstream of PKD-controlled vesicle fission at the TGN 

[102]. Given that PKD localization and activity is dependent on the amount of DAG in TGN 

membranes, it is intriguing to speculate that the cytoskeleton, either through Rho-mediated 

activation of Golgi-localized PKD, or lipin-1-mediated DAG production senses the ECM 
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density to coordinate Golgi secretory function with the increased demand for factors such as 

proteases or cytokines required for ECM remodeling during 3D migration.

Conclusions and perspectives

In past years the list of lipids, lipid-modifying enzymes and lipid effector proteins involved 

in secretory cargo sorting and trafficking at the TGN has been quickly growing (Table 1). 

The fact that these lipids and proteins are engaged in a complex system of negative and 

positive feedback loops likely ensures the synchronization of secretory cargo sorting with 

initiation of vesicle fission. The components of the sorting and fission machinery assemble 

at ER-Golgi contact sites which may present specialized zones for secretory cargo 

trafficking to the plasma membrane. Golgi PI4P has a central role in coupling secretory 

cargo sorting and trafficking as it, through its effector proteins, orchestrates the spatial and 

temporal assembly of the key lipids SM and DAG required for activation of the sorting and 

fission machinery.

There are, however, still many open questions pertaining to the investigation of these key 

components and membrane domains that remain to be investigated. Do different local pools 

of PI4P, generated either by PI4KIIIβ or PI4KIIα, exist in TGN membranes? If so, does 

each pool have different effectors and how is this regulated? Does cholesterol contribute to 

Cab45-based protein sorting? How is signaling to and from the Golgi complex coordinated 

to synchronize extracellular demands with lipid-dependent intracellular cargo sorting and 

trafficking? Are ER-Golgi contact sites representing ‘hotspots’ of secretory cargo sorting 

and vesicle fission and do extracellular cues control their dynamics through the 

cytoskeleton? The identification of proteins which can be used as markers for fission 

hotspots at the TGN would be a prerequisite to address these questions. A potential 

candidate could be Rab6, which is required for the formation of various transport 

intermediates at the TGN and decorates post-Golgi carriers [2,144]. On the technical side, 

the visualization of the spatiotemporal distribution of various lipid species by high-

resolution imaging in living cells using novel specific probes [145,146] in combination with 

multicolor microscopic analyses of cargo sorting and trafficking [61] will help to resolve 

some of these important questions. Additionally, the field of mathematical modeling is 

increasingly exploited to address different aspects of lipid function at the TGN. These 

models will aid in providing predictions for reactions difficult to measure experimentally, for 

example lipid metabolic flow and transfer rates [111,126,147,148]. Here, the development of 

new methods that combine full-lipidome quantification with simultaneous monitoring of the 

time-dependent turnover of lipid species such as shotgun ultra high-resolution mass 

spectrometry [149] will be of special importance.

Finally, although research has extended our knowledge on how lipids control secretory cargo 

sorting and trafficking at the molecular level, the significance of these findings in vivo is 

largely unclear. Generation of knock-out mice to study the relevance of lipid metabolism on 

Golgi secretory function might be helpful to address this question; however, as most of these 

enzymes have multiple intracellular locations and functions beyond Golgi lipid homeostasis, 

the interpretation of phenotypes with respect to Golgi function will be challenging.
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Abbreviations

Arf ADP-ribosylation factor

CDP cytidine diphosphate

CERT ceramide transfer protein

DAG diacylglycerol

ECM extracellular matrix

ER endoplasmic reticulum

FAPP2 four-phosphate adaptor protein 2

GlcCer glucosylceramide

GPCR G protein-coupled receptor

GPL glycerophospholipid

IP3R inositol trisphosphate receptor

LPA lysophosphatidic acid

OSBP oxysterol-binding protein

PA phosphatidic acid

PAP PA phosphatase

PC phosphatidylcholine

PI phosphatidylinositol

PI4K PI4-kinases

PIPs phosphoinositides

PI-PLC phosphatidylinositol-specific phospholipase C

PKD protein kinase D

Rab Ras-related in brain

SCAP SREBP-cleavage-activating protein

SL sphingolipid
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SM sphingomyelin

SMS1 SM synthase 1

SPCA1 secretory pathway ATPase1

SREBP sterol regulatory element binding protein family

TGN trans-Golgi network

VAP-A/B VAMP-associated protein A/B
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Fig. 1. 
Vesicular biogenesis and transport at the TGN. (A) Graphical overview of the vesicular and 

tubular network of the TGN including cargo sorting and export domains and examples of 

final destinations of cargoes (basolateral membrane, endolysosomal system, apical 

membrane, secretory storage granules, ER). (B) Simplified depiction of the lipid content and 

topological distribution of lipids in the membrane.
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Fig. 2. 
Examples for protein–lipid and lipid–lipid interactions required for the formation of a 

vesicle at the TGN. (A) Clathrin-coated vesicles: AP1 is recruited by PI4P and Arf1-GTP on 

the TGN surface to initiate vesicle budding. (B) Noncoated vesicles: Sterol and SL domains 

constitute sorting domains for vesicular formation. (C) PKD integrates a cysteine-rich zinc 

finger domain to interact with DAG. Arf1-GTP recognizes a second C1 domain in PKD.
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Fig. 3. 
Regulation of lipid transfer at ER/TGN contact sites through positive and negative 

feedbacks. (A) Oxysterol-binding protein interacts via its PH domain with PI4P and Arf1-

GTP and through its FFAT motif with ER-resident VAP receptors. As such, OSBP bridges 

the ER and TGN membranes and facilitates the recruitment of CERT by PI4P and VAP. 

CERT delivers ceramide to the TGN. (B) Overview of lipid-dependent coupling of cargo 

sorting with vesicle biogenesis and fission and its regulation through positive and negative 

feedbacks at ER-TGN contact sites.
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