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Recognizing the emotional states of humans through EEG signals are of great
significance to the progress of human-computer interaction. The present study aimed
to perform automatic recognition of music-evoked emotions through region-specific
information and dynamic functional connectivity of EEG signals and a deep learning
neural network. EEG signals of 15 healthy volunteers were collected when different
emotions (high-valence-arousal vs. low-valence-arousal) were induced by a musical
experimental paradigm. Then a sequential backward selection algorithm combining with
deep neural network called Xception was proposed to evaluate the effect of different
channel combinations on emotion recognition. In addition, we also assessed whether
dynamic functional network of frontal cortex, constructed through different trial number,
may affect the performance of emotion cognition. Results showed that the binary
classification accuracy based on all 30 channels was 70.19%, the accuracy based on
all channels located in the frontal region was 71.05%, and the accuracy based on the
best channel combination in the frontal region was 76.84%. In addition, we found that
the classification performance increased as longer temporal functional network of frontal
cortex was constructed as input features. In sum, emotions induced by different musical
stimuli can be recognized by our proposed approach though region-specific EEG signals
and time-varying functional network of frontal cortex. Our findings could provide a new
perspective for the development of EEG-based emotional recognition systems and
advance our understanding of the neural mechanism underlying emotion processing.

Keywords: sequential backward feature selection, Xception architecture, emotion recognition, EEG channel
selection, dynamic functional connectivity

INTRODUCTION

Emotion is present in all aspects of human life and an important support for human
communication and exchange. Emotion can have a significant impact on decision making and
judgment (Gupta et al., 2019), and are very closely related to consciousness (Hasanzadeh et al.,
2021). Accurate perception of emotions is of great importance for social communication, while
incorrect recognition of emotion states may lead to interpersonal communication difficulty
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(Zinchenko et al., 2017). Besides, emotion recognition drives the
development of human-computer interaction (HCI) systems and
occupies an important position in the field of human interaction
(Li P. et al., 2019). Therefore, increasing attention has been paid
to automatic emotion recognition systems, which cannot only
improve the performance of HCI system, but also provides a basis
for further exploration of neural mechanism underlying emotion
processing and regulation.

Given the importance of emotion recognition, a growing
number of researchers are conducting in-depth exploration on
this field. Recognition of emotion are usually divided into two
categories: physiological signals and non-physiological signals,
depending on how signal is collected. Non-physiological signals
include expressions (Liu et al., 2017; Liliana, 2019), body postures
(Noroozi et al., 2021), voice signals (Wang et al., 2020), etc.,
while physiological signals include electroencephalogram (EEG)
(Namazi et al., 2020; Song et al., 2020), electrocardiogram
(ECG) (Al-Sheikh et al., 2019; Nguyen et al., 2019; Fang et al.,
2020; Sarkar and Etemad, 2021) and electromyography (EMG)
(Hossen et al., 2020; Kulke et al., 2020), etc. Among the various
physiological signals, EEG signals have attracted widespread
attention due to its high mobility and close relationship with
neural response (Li et al., 2017, 2020b). With the rapid
development of dry electrode technology, portable and low-
cost EEG devices are gradually gaining popularity among
researchers, and EEG-based emotion recognition has also been
increasingly explored in more and more studies (Gupta et al.,
2019; Taran and Bajaj, 2019).

How to induce emotions and classify different emotional states
have been challenges for many EEG-based emotion recognition
studies. The most common method of emotion induction is the
presentation of emotional materials. Ahirwal and Kose (2019)
conducted a study on emotion recognition and physiological
arousal by presenting video stimuli to the subjects. The effect
of different picture interference on the emotion recognition
was investigated by presenting picture stimuli in a previous
study (Wang et al., 2018). In addition, as the art of directly
expressing human emotions, music can also be used as stimulus
presentations. According to a previous study, music stimuli could
cause changes in the main counter-components of emotions
such as autonomic and endocrine responses, thus evoking real
emotions (Koelsch, 2014). In this context, music and music video
have been thought to be more profound compared with other
materials (Suhaimi et al., 2020).

In terms of emotion recognition, numerous EEG-based
studies have been performed in the past few decades to
achieve this goal. Among them, a variety of EEG features
and machine learning-based classification techniques have
been extensively investigated to illustrate the specificity of
brain activity associated with different emotional states and
to enhance the performance of emotion recognition (Mauss
and Robinson, 2009; Lin et al., 2010; Jenke et al., 2014; Bo
et al., 2018). However, a major limitation of these approaches
is that most existing studies have simply focused on EEG
characteristics extracted from single or whole-brain electrode
channels separately. This type of analyses failed to take
advantage of the region-specific neuronal information, or the

spatiotemporal-varying interactions at the network level (e.g.,
cluster, time-varying pattern) to allow a deeper understanding
of the brain-emotion relationship. As indicated in a previous
study, emotion processing and regulation is likely to involve
complex neural circuits in a time-varying manner rather than
any independent brain region (Mauss and Robinson, 2009;
Fang et al., 2020). Besides, various studies have reported that
the frontal cortex seems to play a more essential role in
emotion-related activity compared to other brain regions such
as temporal, parietal, and occipital (Sarno et al., 2016). Taken
these together, analysis approaches that examine time-varying
regional interaction of frontal cortex, as well as network-
level coupling among multiple brain sites may hold great
promise for understanding neural signatures associated with
different emotion states and improving the accuracy of automatic
emotion recognition.

In this study, we proposed a deep learning-based approach to
enhance the performance of an EEG-based emotion recognition
system. Specifically, we first evaluated whether using a subset
of EEG channels in frontal cortex could help improve
the classification performance, from which an optimal EEG
channel combination for emotion recognition was obtained.
Furthermore, we assessed how the dynamic functional network of
frontal cortex may affect the classification performance through
a trial-by-trial, time-varying manner. The contributions of the
present study include: (1) we proposed a method to convert
spatial information of multi-channel EEG signals to 2D image
matrix as inputs of deep learning neural network; (2) we provided
evidence supporting that frontal cortex, particularly part of the
frontal cortex, plays an essential role in emotion recognition,
through the combination of a deep learning-based technique and
a sequential feature selection algorithm, and (3) we explored how
time-varying functional connectivity within the frontal cortex
may affect the performance of emotion recognition.

MATERIALS AND METHODS

Subjects
A total of 15 volunteers (14 males and 1 female, age:
20.4 ± 2.16 years) were recruited for the EEG-based emotion
recognition under high valence-arousal (HVA) and low valence-
arousal (LVA) musical stimuli. None were musicians or have
working experience in music-related industries. All subjects
were right-handed, had no hearing impairment, no neurological
history. Within 48 h before the experiment, subjects were
informed to keep adequate sleep, and not to smoke, drink
alcohol or functional beverages. This study is approved
by the Institutional Review Board of Nanchang Hangkong
University. Informed consent was obtained from all participants
included in the study.

Data Acquisition
In this study, the EEG system (eego mylab, Ant Neuro,
Netherlands) was used to collect 32-channel EEG signals with
a sampling frequency of 500 Hz. The electrode positions
were placed according to the international 10–20 system
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(Figure 1). A presentation software (E-Prime 3.0, Psychology
Software Tools, American) was used to design and present the
experimental stimuli.

Experimental Protocol
Twelve music clips were selected by a music expert as stimuli,
of which six each were used to stimulate the production
of HVA and LVA emotions, respectively. Table 1 shows the
detailed information of each music clip, including performer,
name, and time duration of the clip. We also calculated the
averaged power spectrum of each type of music stimuli. As
shown in Figure 2A, the power distribution of all selected
music clips was mainly located at very low frequency. During
the experiment, each subject was presented with 12 trials,
wherein each trial contained three parts: a 5-s resting period,
a 20-s stimulation period, and a 5-s resting state. Participants
were requested to focus on a visual fixation to reduce eyes
movement during the stimulation period (Figure 2B; Bo et al.,
2018). At the end of each trial, the subjects were asked to
perform a self-assessment of emotional valence and arousal.
Non-invasive EEG signals are highly susceptible to external
signals that produce noise and artifacts. Common sources
of interference include 50 Hz AC, ocular and myoelectricity,
and other high-power devices. To reduce the influence of
interference sources, we adopted the following experimental
setup. First, the experimental environment was optimized to
ensure the reliability of the data. Specifically, the experiment
was conducted in a recording booth with suitable temperature,
humidity, and light, and a comfortable seat was provided for
the subjects. Second, cell phones and other wireless devices
were required to be off throughout the experiment, and verbal
communication between the subjects and the researcher was
prohibited during the experiment.

FIGURE 1 | The position of the electrodes according to the International
10–20 system. Note that M1 and M2 were used as reference electrodes.

TABLE 1 | Detailed information of all music clips.

Classification Performer Name of music clip Duration
(mm:ss)

LVA Richard Clayderman A comme amour (L for
love)

0:00–0:20

LVA Yiruma Kiss the rain 0:50–1:10

LVA Kevin Kern In the enchanted garden
(Sundial dreams)

0:10–0:30

LVA The Daydream Dreaming (Tears) 0:00–0:20

LVA Kevin Kern In the enchanted garden
(Through the arbor)

0:05–0:25

LVA Jin Shi Melody of the night
(Five)

0:13–0:33

HVA Hiphop My view (A little story) 0:18–0:38

HVA Fryderyk Franciszek
Chopin

Chopin’s revolutionary
etude in c minor

0:22–0:42

HVA Richard Clayderman Ballade pour Adeline
(Mariage d’amour)

1:42–2:02

HVA July My soul 0:25–0:45

HVA Wolfgang Amadeus
Mozart

Alla turca 1:33–1:53

HVA Richard Clayderman Lyphard melodie 1:07–1:27

Data Analysis
Majority of previous studies have focused purely on the effect
of independent channel EEG power on classification results,
which neglected the spatial relationships between channels (Tang
et al., 2019; Raghu et al., 2020). To address this problem, in
this study, we first proposed a sequential backward selection
algorithm, combined with Xception neural network, to perform
enhanced classification of binary emotion states as well as identify
the spatially optimal EEG channel combinations. In addition,
we analyzed the detailed difference of regional network between
two emotional states using coherence-based functional network
analysis. In particular, we explored how the dynamic alteration
of functional network may affect the classification performance
of two emotions.

Preprocessing of Electroencephalogram Data
The preprocessing of EEG data was performed using EEGLAB
(Delorme and Makeig, 2004) and customized MATLAB script.
First, the EEG signals were filtered with a notch filter (49–
51 Hz) and a bandpass filter (1–40 Hz) to remove powerline
interference and other noises. The common average reference
(CAR) method was used to re-reference the multi-channel EEG
data (Yao et al., 2019). We then used independent component
analysis (ICA) to remove the interference of electrooculography
(EOG). To ensure the completeness of data, no data exclusion
was done on segments with artifact (e.g., large spike). In fact, no
obvious large artifacts were identified through visual inspection
of the preprocessed EEG signals. Single trial EEG data were finally
corrected for baseline and segmented for further analysis.

Training of Neural Network Model
In recent years, various neural networks developed based on
deep learning have shown superior performance in neuroimaging
studies compared to traditional machine learning techniques. In
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FIGURE 2 | The experimental protocol. (A) Power spectrum of the music clips. (B) The experimental paradigm of music-evoked emotions.

this study, we used Xception network to extract image-based
features (Xu et al., 2019; Liu et al., 2021; Peng et al., 2021). The
Xception model is based on depth-separable convolution, and its
structure consists of 14 residual modules composed of 3 common
convolutional layers and 33 depth-separable convolutional ones.
The common convolution is contained in the preprocessing
module, as shown in Figure 3.

The classification process can be roughly divided into four
steps. First, the preprocessed EEG signal was sampled per second,
and the spatial coordinate information of each sampling point
was recorded. Next, the spatial information of the sampled EEG
data was converted into an RGB image using Equation (1).

Yij =
∑ ∑ (Xij −min(X)) ∗ 255

max(X)−min(X)
(1)

where X is the matrix containing the EEG spatial information,
Y is the corresponding pixels in the image. i and j represent the
jth sample point (1 ∼ 20) of ith channel (1∼32). The converted
images were then input to the Xception network for model
training. Finally, the classification result was obtained by the
SoftMax layer. In the model training and classification, fivefold
cross-validation was used to improve the generalization ability of
the model. Specifically, a total of 1,800 data samples extracted
for each emotion state (15-participant × 6-trial × 20-s) were
evenly divided into 5 parts, and the sample data were fed into the
Xception network sequentially using the fivefold cross-validation
method. For each type of emotion, 1,080 images were used as the
training set, 360 images were used as the validation set, and 360
images were used as the test set.

Optimization of Channel Combination
Human cortex can be roughly divided into frontal, parietal,
temporal and occipital cortexs according to the brain anatomy
(Talos et al., 2006). In particular, the frontal cortex has been
shown to be specifically related to emotion processing and
regulation (Koelsch, 2014). Thus, except using the EEG data
of entire 30 channels, we extracted a total of 8 channels
in the frontal region, including Fp1, Fpz, Fp2, F7, F3, Fz,
F4, F8, to assess whether using channels within the frontal
cortex only is sufficient to achieve satisfactory classification
performance. Moreover, we also sought to evaluate the
classification performance when using only a subset of the
channels in the frontal cortex.

Sequential feature selection algorithms are effective methods
to select a suitable subset of features for classification (Cicalese
et al., 2020). To further explore the optimal channels in the frontal
cortex for emotion recognition, we applied a sequential backward
selection algorithm through the following three steps.

Step 1: Among the eight channels in the frontal cortex, we
randomly selected seven channels for classification and obtained
their classification performance.

Step 2: The channel combination with the highest classification
accuracy after Step 1 were identified.

Step 3: Among the seven channels we identified in Step 2, we
randomly selected six channels and verified the classification
accuracy by repeating step 1. We repeated the step 1 and 2 by
iteratively selected less channels each time until the number of
selected channels reduced to two.
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FIGURE 3 | The analysis pipeline of the proposed Xception network-based emotion recognition.

Performance Evaluation
To quantitatively evaluate and compare the classification
performance of the network, four metrics, including accuracy,
sensitivity, specificity and F1 score, were adopted, as defined
below:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity(Recall) =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

F1− sorce =
2 · Recall · Precision
Recall+ Precision

, with Prescision =
TP

TP + FP
(5)

where TP, TN, FP, and FN were true positive, true negative, false
positive, and false negative results, respectively.

Effect of Dynamic Functional Connectivity on
Classification Performance
In addition to the investigation of spatial effect of EEG data,
we also sought to explore how the time-varying alterations
of functional network, constructed by channels in the frontal
cortex, may affect the emotion recognition. Here, we obtained
the functional connectivity (FC) between any two channels in the
frontal cortex by calculating the coherence of the two single-trial
time series EEG data. Coherence has been widely used to measure

the level of synchronization between two physiological time series
signals in previous studies (Hu et al., 2019; Li et al., 2020c; Zhang
et al., 2020; Liu et al., 2022), which is mathematically calculated as:

Cohxy(f ) =
|

1
n

∑n
k=1 Ax(f , k)Ay(f , k)ei(ϕx(f ,k)−ϕy(f ,k))

|√
1
n

∑n
k=1 A2

x(f , k))( 1
n

∑n
k=1 A2

y(f , k))
(6)

where n is the length of data, A and ϕ represent the amplitude
and phase of the signal, respectively. The numerator term is the
cross-spectral density between the two single-trial signals (x and
y) at frequency f. The denominator is the square root of the
product of the power spectrum of the two single-trial signals (x
and y) at frequency f.

To assess how the time-varying functional network of frontal
cortex may affect the classification performance, we first used the
2D coherence matrix obtained from the first trial EEG data to
train the classification model and examine the performance. Then
we iteratively concatenated the coherence matrix of next trial to
the previous trial and repeated the classification process until all
six trials were used.

RESULTS

Emotion Behavior Analysis
The statistical analyses of the subjective emotional rating scores
(valence and arousal) were performed using paired t-test, and
results are shown in Table 2. There were significant differences
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between the two emotion states in terms of valence (p < 0.0001)
and arousal level (p < 0.0001).

Classification Performance Using
Electroencephalogram Channels in
Frontal Cortex
Results of the classification of binary emotion states obtained
from whole-head EEG signals (30-channel) and frontal EEG
signals (8-channel) is summarized and shown in Table 3. Overall,
classification performance using the 8 channels in the frontal
region, including accuracy, sensitivity, specificity, and F1 score,
was slightly better than those using all 30 EEG channels, though
no statistical test was performed.

Classification Performance Using
Optimal Channel Combination in Frontal
Cortex
Accuracy of the sequential backward selection algorithm
using channels in frontal cortex is shown in Table 4. The
highest classification accuracy (76.84%) was achieved using
the channels including Fp1, Fpz, Fp2, F7, F8, followed
by the classification accuracy (75.87%) when the selected
channels were Fp1, Fpz, Fp2, F7, F3, and F8. Figure 4
shows the overall classification performance obtained from
different numbers of channels in the frontal cortex. It can
be observed that, the combination of 5 channels achieved the
best classification results, as evidenced the peaks at accuracy,
sensitivity, specificity and F1 score.

Overall, our findings suggested that, in terms of
classification performance, 8 channels in the frontal cortex
outperformed all the 30 channels, and the highest classification
accuracy was achieved when the Fp1, Fpz, Fp2, F7, and F8
channels were combined.

As an exploratory analysis, we also evaluated the classification
performance of two traditional machine learning classifiers,
including Support Vector Machine (SVM) and Random Forest
(RF). Based on the optimal 5-channel dataset, the mean accuracy,
sensitivity, specificity, and F1-sorce achieved by SVM are 58.33,
52.10, 61.85, and 57.37%, respectively. The mean accuracy,
sensitivity, specificity, and F1-sorce achieved by RF are 53.89,
52.06, 55.33, and 53.19%, respectively.

TABLE 2 | Statistical analyses of the emotional behavior.

Valence Arousal

LVA 2.75 ± 1.17 2.98 ± 1.08

HVA 6.93 ± 1.25 7.01 ± 1.21

p-value (paired t-test) <0.0001 <0.0001

TABLE 3 | Classification performance using whole-head EEG signal (30 channels)
and frontal EEG signal (8 channels).

Channels Accuracy (%) Sensitivity (%) Specificity (%) F1 (%)

30 Channels 71.16 ± 3.67 70.84 ± 5.87 70.54 ± 2.39 71.29 ± 3.98

8 Channels 71.59 ± 2.49 71.19 ± 2.48 72.11 ± 3.26 73.82 ± 3.01

Effect of Dynamic Functional
Connectivity on Classification
Performance
We assessed how the dynamic FC of frontal cortex could affect the
classification of HVA and LVA emotions by conducting a trial-
by-trial classification. As shown in Figure 5, for both channel
combinations, classification performance including accuracy and
F1 score increased as more trials were added. Specifically, when
number of trials exceeded 3, the classification accuracy and
F1 score obtained from the 5-channel combination showed a
relatively stable pattern.

Figure 6 shows the averaged FC network of frontal cortex
for both emotion states. Overall, the coherence-based functional
network induced by LVA emotion demonstrated more active
(higher coherence) FC among some channels compared to the
functional network induced by the HVA emotion, particularly
among the channels within the prefrontal cortex including Fp1,
Fpz and Fp2. Statistical analysis of the averaged coherence values
(Fisher’s r to z) between the two emotion states indicated that
mean FC (0.29± 0.04) induced by LVA emotion was significantly
stronger than the mean FC (0.28 ± 0.04) induced by HVA
(p = 0.017, paired t-test).

DISCUSSION

Emotion processing and regulation plays a vital role in our daily
life. Proper emotion perception serves the inherent biological
function to contextualize external information, communicate
with others, and help individuals cope with everyday challenges
and stress. Despite the progress of emotion recognition achieved
by previous studies, there remains important challenges in
optimizing the study protocol of an EEG-based emotion
recognition system in terms of channel configuration and
presentation duration. To address the above problems, this study
used the Xception neural network, combined with the spatial
feature information of the EEG, to systematically evaluate the
effects of musical stimuli at different valence-arousal level (high
valence-arousal vs. low valence-arousal) on human emotions.
The findings showed that the frontal cortex may serve as a
key region for emotion recognition. An appropriate selection of
EEG channels and experimental paradigm could improve the
classification performance of emotion recognition system.

Electroencephalogram Channels in the
Frontal Cortex Improve Emotion
Recognition
Human emotions can be conceptualized in two dimensions and
classified based on their valence-arousal scale. Valence refers
to happiness that generally ranges from negative to positive,
while arousal indicates the activation level that ranges from low
to high (Kim and Andre, 2008). Several studies have linked
human emotion processing to manifestations of brain activity,
particularly communication or coupling among distinct cortices
of the brain. It has been shown in several EEG-based studies
that EEG signals can be used to robustly detect and classify
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TABLE 4 | Classification accuracy of the sequential backward selection algorithm using channels in frontal cortex.

Channels Remove
F7

Remove
F8

Remove
Fp2

Remove
Fpz

Remove
Fp1

Remove
F3

Remove
F4

Remove
Fz

Fp1_Fpz_Fp2_F7_F3_F4_F8_Fz 72.81% 69.56% 72.36% 70.95% 71.82% 73.26% 73.26% 74.47%

Fp1_Fpz_Fp2_F7_F3_F4_F8 68.27% 67.94% 70.67% 69.52% 70.51% 75.59% 75.87%

Fp1_Fpz_Fp2_F7_F3_F8 70.79% 72.82% 73.28% 72.83% 74.61% 76.84%

Fp1_Fpz_Fp2_F7_F8 70.32% 70.37% 70.75% 69.66% 72.91%

Fpz_Fp2_F7_F8 66.92% 68.26% 69.11% 70.38%

Fp2_F7_F8 64.45% 67.56% 69.35%

emotion states at different valence and arousal levels. In terms
of emotion-related brain region, emotion processing is highly
correlated with neural activity in the frontal cortex compared
to other regions of the brain such as temporal, parietal, and
occipital (Lin et al., 2014; Zhang et al., 2021). In particular, the
left frontal area is more responsible for the processing of high
valence-arousal emotions such as joy, interest, and happiness,
while the right frontal region may be involved in the processing
of low valence-arousal emotions such as fear, disgust, and sadness
(Schmidt and Trainor, 2001). A recent study also confirmed that
activity of the left frontal cortex is related to positive emotions,
while negative emotions are more closely related to the right
frontal cortex (Takehara et al., 2020). Following the similar idea,
in this study we sought to assess the effect of EEG signals collected
from the frontal region on classification of emotion states at
low and high levels of valence and arousal. We showed that
classification accuracy obtained from EEG channels in frontal
cortex outperformed the accuracy based on the whole-head
EEG channels, which is consistent with the findings reported in
previous studies (Schmidt and Trainor, 2001; Lin et al., 2014;
Takehara et al., 2020).

FIGURE 4 | The classification performance (accuracy, sensitivity, specificity,
and F1-score) obtained from different channel combinations.

In addition, we also took a further step into the frontal cortex
by assessing the optimal channels combination for emotion
recognition though a sequential backward selection algorithm.
Our findings indicates that emotion processing may be closely
linked to specific brain regions within the frontal cortex,
particularly the lateral (F7, F8) and anterior regions (Fp1, Fpz,
Fp2) of the frontal cortex. According to a previous study, the
lateralized EEG asymmetry between the left-right hemisphere can
well characterize the changes of emotional states (Allen et al.,
2004), which may partially support the findings in our study.
Specifically, several studies have showed that the theta power of
lateral channels such as FT7-FT8 and F7-F8 was associated with
the valence and arousal scale (Aftanas et al., 2001, 2004). Since
theta waves is observed during sleep and are specifically relevant
to the arousal level, the identified F7 and F8 channels in our
optimal channels set may mainly reflect the neural fluctuation
related to arousal level in classification of emotion states. In
addition, according to previous studies, Fp1 and Fp2 are found to
be effective in discerning emotional states with high confidence
(Yoon and Chung, 2011), wherein the left frontal (Fp1) is
associated with negative emotion and the right frontal (Fp2) is
associated with positive emotion (Bos, 2007; Ang et al., 2017).
We found that channels in anterior part of the frontal cortex
are beneficial to the emotion recognition, which is consistent
with the literature. However, it should be noted that channels
in the anterior part of frontal cortex, such as Fp1 and Fp2,
could be substantially affected by ocular movement artifact. The
effectiveness of using these channels to study emotion states
remains to be tested by further studies. Despite that, a practical
suggestion based on our finding is that acquiring EEG signals
from regional electrodes, especially from the frontal regions,
may help improve the performance of the emotion classification
model as well as advance the development of low-cost EEG device
with reliable performance.

Dynamic Functional Network of Frontal
Cortex Affects Emotion Recognition
A majority of EEG-based studies of emotion recognition have
mainly adopted analyses at the single-electrode level. However,
as previously mentioned, emotion processing is a complex
process that involves active interactions among different brain
regions. We argue that EEG-based classification and recognition
of different emotion states may be more valuable if EEG
measurements could be analyzed at a network-based level rather
than being based simply on analyses at the independent electrode
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FIGURE 5 | The classification performance [accuracy (A) and F1 score (B)] obtained from functional networks constructed by different numbers of trials.

FIGURE 6 | The averaged functional network of frontal cortex for both HVA (A) and LVA (B) states.

level. By using the coherence-based functional network as input
features, we showed that the frontal network could achieve
better classification performance compared to the performance
using EEG temporal series in the frontal cortex, with both
accuracy and F1 score exceeded 76%. This finding supports the
premise that emotional states might be characterized by unique
patterns of EEG-based functional connectivity, which is also
in line with conclusions of previous studies (Lee and Hsieh,
2014). Moreover, classification using dynamic trial-by-trial FC
networks suggested that performance of emotion recognition
was positively correlated with the number of trials. Also,
the enhancement of classification performance became quite
stable when the trial number exceeds 3. This indicates that
the functional network induced by an emotion state may be
adaptive in a time-varying manner, and such adaptation would
remain stable even more emotional stimuli is administrated.

Our finding here, together with the findings from the spatially
optimized EEG channel combination (see section “Classification
Performance Using Electroencephalogram Channels in Frontal
Cortex”), provides a new perspective for optimizing study design
when conducting neuroimaging-based emotion processing and
regulation studies.

We found the functional network induced by LVA emotion
demonstrated more active (higher coherence) FC than the one
induced by the HVA emotion. Previous studies have shown that
different functional connectivity patterns may be induced by
different emotional states. Several studies reported that coherence
of the brain network induced by low arousal stimuli was
greater compared to that induced by high arousal emotional
stimuli (Holczberger et al., 2012), possibly due to a more stable
brain synchronization at low arousal state. The results of our
study agreed with the findings in these studies; HVA emotion
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demonstrated a lower frontal network compared to the LVA
emotion. Similar evidence was reported when participants were
watching stressful vs. enjoyable film sequences (Schellberg et al.,
1990). However, previous studies also proposed that high arousal
emotion showed a greater strength of brain network than the low
arousal (Miskovic and Schmidt, 2010; Cao et al., 2020). These
divergent findings might be due to differences in the essence of
connectivity measures, or the emotional stimuli used in these
studies. Further exploratory studies are needed to resolve such
inconsistencies.

Limitations
This study holds several limitations that provide us with future
research directions. First, mental fatigue and the degree of
investment in research tasks may affect the reproducibility of
EEG measurements (Shenoy et al., 2006; Ahn et al., 2016).
Besides, the two types of music clips adopted to induce LVA
and HVA emotions differed to each other in magnitude of the
power spectrum (Figure 2A), which might potentially cause
distinct brain response. As indicated in previous studies, however,
different types of stimuli (e.g., music, picture viewing, facial
expression) may lead to different brain response. Also, in this
study we only investigated emotion at two distinct levels (i.e.,
low valence-arousal and high valence-arousal), which did not
cover more emotion states (e.g., high valence and low arousal, low
valence and high arousal). Therefore, comprehensive research
may be needed in the future to systematically evaluate the optimal
protocol and effectiveness of EEG-based emotional recognition
studies. Moreover, although we used coherence as a FC measure
to study the dynamic functional network induced by emotion,
other multivariate methods such as phase lag index (PLI) (Li R.
et al., 2019; Li et al., 2020a) and partial directed coherence
(PDC) (Astolfi et al., 2007) are commonly used to establish
the brain functional network. Further studies of whether such
measures can be used as indices for emotion recognition will
be needed. Finally, in this study we specifically focused on
the role of frontal cortex in emotion recognition. However,
other brain regions, such as central or parietal areas, may also
serve as key hubs for emotion processing (Heller et al., 1997;
Suhaimi et al., 2020). In this context, it has been showed that
increased theta power in parietal area is linked to high arousal
(Aftanas et al., 2002). Previous studies also suggested that brain-
emotion relationship could be characterized by complex network
interactions with more fine-grained spatiotemporal resolution
(Nguyen et al., 2019; Fang et al., 2020). In sum, the optimal
measurement protocol for EEG-based emotion studies remains
to be determined in future studies.

CONCLUSION

This study presented an EEG-based emotion recognition system
to classify emotion states at high valence-arousal and low
valence-arousal, respectively. Through a sequential backward
selection algorithm and a deep learning neural network, we
showed that region-specific neuronal activity in the frontal
cortex, as measured by a subset EEG channels, could improve
the performance of the emotion recognition system. In addition,
we also showed that the dynamic functional network within
the frontal cortex may affect the classification performance of
emotion states in a time-varying manner. Our findings could
provide a new perspective for the development of EEG-based
emotional recognition systems.
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