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Abstract: The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging
concern in the interest of protecting public health. Stemming the environmental dissemination
of ARGs will require a better understanding of the sources and drivers of ARGs in the water
environment. In this study, we used direct measurement of sewage-associated molecular markers,
the class 1 integron gene, standard water quality parameters, and watershed characteristics to
evaluate the sources and drivers of ARGs in an urban watershed impacted by a gradient of human
activities. Quantitative polymerase chain reaction (qPCR) was used to quantify the abundance of
the sewage-associated HF183, the E. coli fecal indicator, class 1 integron gene (int1), and the ARGs
sulI, sulII, tetW, tetM, ampC, and blaSHV in stream water samples collected from the Proctor Creek
watershed in Atlanta, Georgia. Our findings show that ARGs were widely distributed, with detection
frequencies of 96% (sulI and sulII), 82% (tetW and tetM), and 49% (ampC and blaSHV). All the ARGs
were positively and significantly correlated (r > 0.5) with the HF183 and E. coli markers. Non-linear
machine learning models developed using generalized boosting show that more than 70% of the
variation in ARG loads in the watershed could be explained by fecal source loading, with other factors
such as class 1 integron, which is associated with acquired antibiotic resistance, and environmental
factors contributing < 30% to ARG variation. These results suggest that input from fecal sources is a
more critical driver of ARG dissemination than environmental stressors or horizontal gene transfer in
aquatic environments highly impacted by anthropogenic pollution. Finally, our results provide local
watershed managers and stakeholders with information to mitigate the burden of ARGs and fecal
bacteria in urban streams.

Keywords: antibiotic resistance; urban streams; waterborne pathogens; fecal indicator bacteria

1. Introduction

Antibiotic resistance genes (ARGs) and genetic determinants are increasingly being
recognized as contaminants in the aquatic environment [1–5]. The U.S. Environmental
Protection Agency (U.S. EPA), in its 5-year review of the 2012 recreational water quality
criteria, cites ARGs and antimicrobial resistant bacteria (ARB) as emerging concerns in
the interest of protecting public health [6]. The presence of ARGs and ARB in the aquatic
environment is gaining attention as a critical water quality and public health concern due
to research linking environmental and clinical resistance [3,7]. It has also been suggested
in recent studies that the rise in community-acquired ARB infections can be attributed to
the emergence and spread of ARGs and ARB in the environment [8–11]. The development
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of methods and tools to understand the contribution of the environment to the spread of
ARGs and ARB is a critical step to addressing the global antibiotic resistance menace [12,13]
and supports the One Health approach, which recognizes the connection between the
health of people, animals, and the environment.

Although some ARGs occur naturally in the environment, the rapid evolution and
spread of new ARGs have been attributed to human activities including the widespread
use or misuse of antibiotics for human and animal purposes [14–16]. In general, three
main factors are recognized for driving the spread of ARGs in the aquatic environment.
These include wastewater/sewage discharges from human or animal sources, selection
pressure exerted by antibiotics, metals, and other contaminants in the water environment,
and horizontal gene transfer between microorganisms in the environment. Much work has
been done to characterize ARG loads at the source level, however, questions remain about
the contributions of these sources/drivers to ARG loads in each system.

The role of the aquatic environment in the spread of ARGs and ARB cannot be overem-
phasized, as the water environment provides a pathway for contact with resistance deter-
minants and pathogens through recreational water use, the consumption of crop products
irrigated with contaminated water, and the consumption of meat products from animals
that have come into contact with contaminated surface waters [16–18]. Urban streams,
by nature of the impact of anthropogenic activities, are subject to multiple stressors that
can promote the emergence and spread of resistance determinants in the environment.
Traditionally, urban waters have been known to be impacted by nutrients, pharmaceu-
ticals, metals, and pathogens through multiple stressors such as wastewater discharges,
stormwater run-off from large areas of impervious cover, and old and/or failing sewage
infrastructure that often results in sewage overflows to the aquatic environment. The
combined effect of these anthropogenic sources has been known to increase the loading
of ARGs in urban streams, above what is naturally observed in the environment [5,15,19].
Accordingly, Sanderson et al. [1] opined that these polluted waters have become reservoirs
of ARGs and a conduit for the dissemination of antibiotic resistance genes and determinants
to new environments. The aquatic environment, moreover, provides an interface for the
exchange of ARGs between pathogens and environmental bacteria, which can lead to the
development of new resistance mechanisms [20].

Recent studies have shown that the direct measurement of sewage-associated microbial
molecular markers can be used to assess the sources and drivers of ARGs in the aquatic
environment. Ahmed et al. [21] demonstrated the efficacy of this approach using the
sewage-associated HF183 Bacteroidales marker and the crAssphage bacteriophage marker
to identify the sources of ARGs in storm drain outfalls off the Florida coast. Metadata
analysis by Karkman et al. [22] used the crAssphage marker to understand the connection
between fecal pollution and ARG patterns in sewage-polluted environments. The authors
observed that, in sewage-polluted environments, the presence of ARGs is largely explained
by fecal pollution, whilst the effect of factors such as selective pressure was only evident in
environments polluted by very high levels of antibiotics from manufacturing.

Although these studies provide insight into the dynamics of ARGs in the aquatic
environment, the narrow scope of these studies, in terms of the sources considered (storm
drain outfalls) or the indicators used, do not allow for a detailed analysis of sources and
drivers of ARG abundance and spread in the environment. This is particularly important
in urban watersheds such as the Proctor Creek watershed in Atlanta, GA, USA, which has
a long history of water quality impairment from multiple sources. Anthropogenic impacts
in this watershed stem from sanitary sewer overflows, industrial activities, and runoff
from highly developed urban centers and associated impervious areas [23–25]. A study
by the U.S. EPA showed that despite the progress made in the watershed, including the
decommissioning of combined sewer systems, the Proctor Creek watershed still suffers
from elevated concentrations of fecal contaminants and nutrients in streams [6]. The goal
of this study was to demonstrate a watershed-level approach to identifying the sources
and drivers of ARGs in the Proctor Creek watershed. In this study, we investigated the role
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of human fecal pollution, water quality parameters, and watershed characteristics in the
abundance and spread of ARGs in urban streams. Predictive models were developed to
quantify the influence of these factors on ARG concentrations in the aquatic environment.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Proctor Creek watershed located within the City
of Atlanta, GA, USA (Figure 1). The Proctor Creek watershed drains the west side of
the city of Atlanta, its headwaters starting near the city center and flowing northwest for
approximately 15 km into the Chattahoochee River (a major water body for recreation,
agricultural, and fishing purposes in the tri-states of Georgia, Florida, and Alabama). The
watershed drains an area of ~41 km2. The area around the headwaters is highly impervious,
with most of the streams either piped underground or channelized aboveground [6]. The
headwaters receive urban runoff from the downtown Atlanta metropolitan area and the rest
of the watershed is impacted by multiple types of point and nonpoint sources of pollution
including combined sewer overflow (CSO) facilities, railroads, a large freight yard along
the northern boundary of the watershed, landfills, automotive salvage yards, and illegal
trash dumps [6].
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2.2. Sample Collection

Grab surface water samples were collected in 1 L sterile Nalgene bottles on a bi-
weekly basis from 12 sampling locations distributed across the Proctor Creek watershed.
The sampling points consist of 6 sites that are located on the mainstem of the creek and
6 tributary sites (Figure 1). Samples were kept on ice during transport to the U.S. EPA’s
Office of Research and Development (ORD) laboratory in Athens, GA, USA and processed
within 6 h of sample collection following guidelines in the National Field Manual for the
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Collection of Water Quality Data [26]. Samples (n = 287) were collected over a 1-year period
from May 2016 to April 2017. During sampling, in situ water quality parameters, including
dissolved oxygen (DO), specific conductance (SPC), pH, and temperature, were measured
using a multiparameter probe (YSI, Yellow Springs, OH, USA).

2.3. Water Quality Analysis

Water samples were analyzed for culturable Escherichia coli (E. coli) using the Colilert-
defined substrate method (IDEXX Laboratories Inc., Westbrook, ME, USA). Samples were
diluted 10-fold and 100-fold in 100 mL volumes and run in duplicate to obtain average E. coli
concentrations in MPN/100 mL. Additionally, turbidity measurements were performed on
water samples in the laboratory using a Turbidimeter (LaMotte Company, Chestertown,
MD, USA).

Fifty-milliliter samples were filtered in quadruplicate on 0.45 µm polycarbonate filter
membranes (Millipore Sigma, Burlington, MA, USA) to concentrate microbial DNA for
molecular analysis. Filters with microbial residue were placed into 2 mL microcentrifuge
tubes and stored in a freezer at −80 ◦C until further processing. Two filters were subse-
quently extracted using the DNeasy PowerLyzer PowerSoil kit (Qiagen, Germantown, MD,
USA) and recommended protocol with some modifications (see supplemental material
for details). The extracted DNA was then stored at −80 ◦C until further analysis. The
two remaining filters were kept in storage as a backup. The extracted DNA was analyzed
for fecal indicator markers EPA EC 23S and HF183/BacR287, which will be referred to as
E. coli marker and HF183, respectively, going forward. Other genetic markers that were
analyzed include the 16S rRNA, which measures microbial community abundance; class
1 integron gene (int1), which is associated with acquired antibiotic resistance; and the
sulfonamide resistance genes (sulI, sulII), tetracycline resistance genes (tetW, tetM), and
beta-lactam resistance genes (ampC and blaSHV). Among all the ARGs monitored in the
aquatic environment in previous studies, the sulfonamide and tetracycline resistance genes
are the most abundant and widely distributed, followed by beta-lactam genes [27]. All the
quantitative polymerase chain reaction (qPCR) assays were run on a QuantStudio 3 instru-
ment. All qPCR assays in this study followed reaction conditions described in previous
studies unless stated otherwise (see supplemental material for reaction conditions). Taqman
qPCR assays were run for all markers except for the sulI, ampC, and blaSHV markers which
were run using SYBR Green chemistry. The Taqman Universal Master Mix (2X) was used in
Taqman assays whilst the PowerUp SYBR Green Master Mix (2X) was used for SYBR assays
in a final reaction volume of 20 µL. Marker quantification was performed using standard
curves that were generated during each qPCR run. The supplemental material provides
additional details on the qPCR procedures and the quality control protocols implemented.

2.4. Data Analysis

The qPCR and culturable E. coli data were log-transformed for statistical analysis.
Samples that were non-detectable for culturable E. coli were given a log-transformed value
of 0 (i.e., the detection limit of 1 MPN/100 mL). Molecular markers that were below the
lower limit of quantification (LLOQ), and thus undetected in this study, were imputed
using regression on order statistics (ROS), as described in Sowah et al. [28]. The LLOQ
for qPCR assays was determined as the lowest copy number of the qPCR standards that
was accurately measured in all assays [29–32]. qPCR data in gene copies (GC) per ml
were normalized with the copies of the 16S rRNA gene to yield the relative abundance
of genetic markers in samples. All data analysis was performed in the R program [33]
with significance determined at the 5% significance level. The relationships between ARGs
and fecal indicators, integrase gene, standard water quality parameters, and antecedent
rainfall were examined using the non-parametric Spearman correlation analysis. Principal
component analysis (PCA) was performed to create an index score variable that is an
optimally weighted combination of the six ARGs (sulI, sulII, tetM, tetW, ampC, and blaSHV)
measured in this study. The rationale for this approach was to reduce the number of
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response variables (ARGs) into one or two principal components that explain most of the
variability in the data and can be used as response variables in predictive modeling. The
prcomp function in the VEGAN package in R was used for PCA. The first two principal
components (referred to as PC1 and PC2) were used as the response variables in our
predictive models.

2.4.1. Generalized Boosted Models

We used a Generalized Boosted Model (GBM), a machine learning regression/classification
method based on constructing a chain of decision trees [34] to determine which indepen-
dent variables were most influential in predicting PC1 and PC2 scores. The independent
variables evaluated include int1, 16S rRNA, culturable E. coli, E. coli marker, HF183, SPC,
DO, pH, water temperature, turbidity, antecedent rainfall (24 h, 48 h, and 72 h), and site
location. We developed models for PC1 and PC2 separately using the gbm package (version
2.1.5, 11) in R. There is some randomness in the results of the GBM algorithm when fitting a
given dataset, so we developed bootstrapped estimates of model performance measures by
fitting 500 models for PC1 and PC2. In each of the 500 bootstrap iterations, the dataset was
randomly split: 80% of the dataset was randomly placed into a training set, and the remain-
ing 20% was put into a testing set. The gbm algorithm uses multiple hyperparameters that
influence the fitting process and final solution. Hyperparameter values were set as follows:
Error term = Gaussian, Maximum number of trees = 10,000, Shrinkage = 0.005, interaction
depth = 3, Bag fraction = 0.5, Train fraction = 1, Number of minimum observations per
node = 5, and cross-validation folds = 10. See the supplemental material for a discussion of
hyperparameter selection methods.

2.4.2. Partial Dependence Plots

The gbm package in R allows for the creation of Partial Dependence Plots (PDPs), which
graphically summarize the relationship between a single covariate and its influence on the
response variable. One option within the gbm package will allow for maximum flexibility
in the PDP, permitting it to increase or decrease amidst multiple inflection points over the
range of covariate values. The modeler can, however, constrain the covariate/response
relationship (via a parameter called “var.monotone”) to be monotonically increasing or
decreasing, resulting in easier-to-interpret PDPs, but possibly also affecting the model’s
predictive performance. To constrain model complexity (i.e., limit the number of significant
covariates), we modeled PC1 using two stages: first, we fit 500 models to PC1 using all
the predictors; second, we fit 500 additional simplified models using only those covariates
with >3% average influence from the initial stage. Next, we examined the stage-two PDPs
to see if their relationship could be adequately described/captured using a monotonically
increasing/decreasing function. Finally, a third set of 500 models was run using the
“var.monotone” parameter to constrain the covariate/response relationship for certain
covariates. We call this the “Refined” PC1 model, and we created aggregate PDPs for
each covariate in the Refined PC1 model by using the partial dependence points for each
of the 500 model runs from the Refined models. The 2.5th, 50th, and 97.5th percentiles
of the response values at each evaluated covariate value were taken from this array of
points. These PDPs show how much the PC1 score would change (adjustment value) on
the y-axis across a specific covariate’s range on the x-axis. The average PC1 adjustment
values (±2 standard errors) were used to evaluate significant differences between the
sampling sites.

3. Results
3.1. Concentration of 16S rRNA, ARGs, Fecal Markers, and int1

The concentration of 16S rRNA varied from 2.3 Log10 to 7.6 Log10 GC/mL with
an average of 6.0 Log10 GC/mL of water (Figure 2). The concentrations of ARGs, fecal
markers, and int1 markers are summarized in Figure 3A. The class 1 integron gene int1
was detected frequently (98%, n = 287) in the watershed. The concentration of int1 ranged
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from 1.3 to 5.6 Log10 GC/mL with an average concentration of 3.9 Log10 GC/mL. The
average concentrations of the E. coli and the HF183 markers were very similar with values
of 2.1 Log10 GC/mL and 2.2 Log10 GC/mL, respectively. E. coli was detected in 87%
(n = 287) of samples and concentrations varied from 0.71 to 4.0 Log10 GC/mL. The detection
frequency of HF183 was 63% (n = 287) with concentration between 0.5 and 5.0 Log10
GC/mL. Among the ARGs, the detection frequency varied from a high of 97% for sulI to
a low of 45% for blaSHV (Table 1). A comparison of the detection frequencies between
the different ARGs shows that the sulfonamide resistance genes sulI (97%) and sulII (95%)
were the most frequent, followed by the tetracycline resistance genes tetM (87%) and tetW
(78%), and lastly, the beta-lactam resistance genes ampC (53%) and blaSHV (45%). The
concentrations of ARGs also followed a similar trend as the detection frequencies. ARG
concentrations were as follows: sulI (1.1–5.4 Log10 GC/mL), sulII (1.1–5.9 Log10 GC/mL),
tetM (0.6–4.9 Log10 GC/mL), tetW (0.6–5.2 Log10 GC/mL), ampC (0.3–4.7 Log10 GC/mL),
and blaSHV (0.2–4.8 Log10 GC/mL).
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Figure 2. Abundance of 16S rRNA gene copies in surface water samples across the sampling points.
The boxplots show the 25th quartile, 75th quartile, and median lines. The diamond shape represents
the mean observations for each site, whilst outliers are represented by the solid points.
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Table 1. Detection frequencies (%) of ARGs, class 1 integron, and fecal markers.

Site sulI sulII tetM tetW ampC blaSHV int1 E. coli HF183

Burbank (BB) 96 92 100 100 92 56 96 96 96

Greensferry (GR) 100 96 100 100 100 96 100 96 100

North Ave. (NAVE) 100 100 100 100 84 84 100 100 100

Lindsay Street (LST) 100 100 100 96 40 36 100 76 80

North Ave. CSO (NAVECSO) 96 88 79 46 38 33 96 67 38

Grove Park (GP) 100 96 88 96 24 20 100 92 60

Hortense (HT) 100 100 84 76 40 44 100 92 64

Kerry Circle (KC) 100 100 84 72 72 44 100 100 68

Spring St. (SST) 100 100 80 76 36 32 100 88 56

James Jackson (JJ) 100 96 76 68 40 32 100 88 40

Lillian Cooper (LC) 71 71 79 50 36 21 86 71 0

Northwest (NW) 100 96 72 52 40 40 100 84 52

Mean 97 95 87 78 53 45 98 87 63

3.2. Culturable E. coli and Standard Water Quality Parameters

Details of the distribution of culturable E. coli and water quality parameters including
DO, SPC, pH, temperature, and turbidity are summarized in Figure S1 of the supple-
mental material. The data show that the culturable E. coli concentration varied from 0 to
4.6 Log10 MPN/100 mL with an average of 3.0 Log10 MPN/100 mL on the pooled data. The
average temperature, SPC, pH, DO, and turbidity were 18 ◦C, 270 µS/cm, 7.4, 7.9 mg/L,
and 8.1 NTU, respectively.

3.3. Relative Abundance of ARGs, Fecal Markers, pr and int1

We determined the relative abundances of the ARGs, fecal, and int1 markers by nor-
malizing the gene concentrations with the concentration of the 16S rRNA gene. This gives
us an idea of the abundance of ARGs, fecal, and int1 genes in relation to the total microbial
community abundance in the streams. The relative abundance of sulI (−2.7 Log10 GC/mL),
sulII (−2.9 Log10 GC/mL), tetM (−3.7 Log10 GC/mL), tetW (−3.5 Log10 GC/mL), ampC
(−4.4 Log10 GC/mL), and blaSHV (−4.6 Log10 GC/mL) are summarized in Figure 3B.

3.4. Correlation of ARGs, Fecal Markers, 16S rRNA, int1, and Water Quality Parameters

Figure 4 shows a correlation plot that depicts the relationships between ARGs, water
quality, and environmental parameters measured. Other watershed level characteristics
such as the antecedent rainfall prior to sample collection were also evaluated to determine
whether there is any association with ARG abundance in the watershed. The strength of
the correlation was considered “strong” when the correlation coefficient r > 0.7, “moderate”
when 0.4 ≤ r ≤ 0.7, and “weak” when r < 0.4. The same criteria were used to describe the
relationships in the negative direction. The relationships between the ARGs were positive
and moderate to strong, with r values ranging from 0.4 to 0.86. The relationships were
particularly strong within the ARG groups rather than between groups. For example, a
strong correlation (r = 0.86) was observed between tetM and tetW, sulI and sulII (r = 0.72),
and ampC and blaSHV (r = 0.74). The relationships between the different ARG groups,
tet and sul genes (r = 0.54 to 0.68), tet and beta-lactam genes (r = 0.59 to 0.7), and sul and
beta-lactam genes (r = 0.40 to 0.63), were positive and varied from moderate to strong.
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Figure 4. Spearman rank correlations among ARGs, fecal markers, int1 gene, 16S rRNA, standard
water quality parameters, and antecedent rainfall. The correlation r is represented by the area of
the pie.

The fecal markers E. coli and HF183 were also positively correlated with the ARGs, with
r ranging from 0.53 to 0.89. Both E. coli and HF183 markers were strongly correlated with the
tet genes, moderately correlated with the sul genes, and a moderate and a strong correlation
was observed with the beta-lactam genes. The correlation of ARGs with culturable E. coli
was strong for the tet genes and moderate for the sul genes and beta-lactam genes. The
int1 gene was strongly correlated with the sulI gene (r = 0.77) and moderately correlated
with sulII (r = 0.49). Weak correlations were, however, observed between int1 and tet
(r = 0.17 to 0.33) and beta-lactam genes (r = 0.14 to 0.17). Moreover, the 16S rRNA gene
was moderately correlated with ARGs, with r ranging from 0.4 to 0.5. The relationships
between ARGs and water quality parameters including DO, pH, turbidity, temperature,
and SPC were weak, whilst antecedent rainfall was generally weakly correlated with ARGs
except for tetM, which was moderately correlated (r = 0.40) with 24 h antecedent rainfall.

3.5. Predictive Modeling with Generalized Boosted Models

We developed predictive models with a generalized boosted machine learning algo-
rithm using the PC1 and PC2 scores as the response variables. The results of the PCA
(Figure S2 of Supplementary Materials) show that 82% of the variation in the ARGs could
be explained by the first two principal components, with PC1 contributing 70% to the total
variation in the data. The performance of the gbm package on training and test data is
provided in Table 2. For each of these models, the average R2 values for the testing data
were about 12% lower than the average R2 values for the training data, indicating some,
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but not severe, model overfitting. In addition, the Refined PC1 saw only a small decrease
(0.04 R2 units) in performance after removing less influential covariates and constraining
some of the remaining covariates. Table 3 shows the average influence of each predictor in
the PC1 model, the Refined PC1 model, and the PC2 model.

Table 2. Model performance for training and testing data for each of the modeled datasets, with
standard deviations in parentheses.

Model R2 Training R2 Testing

PC1 0.99 (0.01) 0.86 (0.03)
Refined PC1 0.95 (0.01) 0.85 (0.04)

PC2 0.99 (0.02) 0.49 (0.10)

Table 3. Average influence of the predictor variables for the PC1, Refined PC1, and PC2 models based
on 500 GBM runs for each. Standard deviations are in parentheses. The 7 predictors above the dotted
line were retained and included in the Refined PC1 model.

Parameter Ave Influence,
PC1 (%) Constraint Ave Influence,

Refined PC1 (%)
Ave Influence,

PC2 (%)

E. coli Marker 34.0 (3.8) + 36.8 (3.7) 7.9 (1.3)
HF183 27.4 (3.5) + 29.5 (3.5) 6.3 (0.8)

Site 11.0 (1.0) None 12.1 (1.2) 15.2 (1.0)
int1 6.9 (1.1) + 6.7 (1.1) 21.7 (2.0)

Culturable E. coli 5.1 (1.3) + 5.4 (1.6) 6.5 (1.0)
Water Temperature 3.2 (0.4) None 6.2 (0.8) 8.3 (0.9)

16S 3.0 (0.4) + 3.2 (0.6) 3.5 (0.5)

Season 2.2 (0.3) 3.5 (0.6)
Turbidity 1.7 (0.3) 4.4 (0.6)

Dissolved Oxygen 1.5 (0.2) 5.1 (1.0)
pH 1.1 (0.2) 2.8 (0.5)

Specific Conductance 1.0 (0.2) 4.7 (0.7)
48 h Rainfall 0.9 (0.2) 5.3 (1.3)
24 h Rainfall 0.6 (0.1) 3.3 (0.6)
72 h Rainfall 0.6 (0.1) 1.4 (0.4)

+ Response variable constrained to be monotonically increasing.

As stated earlier, the covariates with an average influence >3% in the PC1 model were
retained and used to develop the Refined PC1 model. The results from the initial model runs
for PC1 and PC2 shows that the E. coli marker, HF183, site, int1, culturable E. coli, and water
temperature were the most significant in explaining the variation in ARGs in the watershed,
contributing 88% and 66% of the average influence for PC1 and PC2, respectively. The
refined PC1 model shows that the E. coli marker and HF183 together explain a significant
proportion (66%) of the variability in ARGs. Site was the next influential, followed by the
int1 gene, water temperature, culturable E. coli, and 16S rRNA. We present PDPs showing
the average influence of the predictors on PC1 (analysis limited to PC1, which explained a
significant proportion of the variance in ARGs) in Figure 5. The PDPs for the E. coli marker
and the HF183 show that as the marker copies increase, the adjustment to PC1 scores
becomes less negative, meaning an increase in ARG concentration. Culturable E. coli, int1,
and 16S rRNA all had a positive influence on ARG abundance; water temperature showed
an interesting relationship (Figure 5f). PC1 scores were high at low temperatures, then
decreased at temperatures from 6.4 ◦C to ~20 ◦C, then increased again for temperatures
above ~20 ◦C. Figure 6 shows the average influence of the sampling sites on the PC1 scores
and ARGs abundance. The results show that GR had by far the most ARG abundance in
the watershed, followed by LST, NAVE and HT, and NAVECSO. The sites with the lowest
PC1 scores (and thus ARG abundance) were NW and LC, followed by JJ, KC, and SST.
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Figure 5. Partial dependence plots showing the response of PC1 scores to changes in predictor
variables E. coli marker (a), HF183 (b), culturable E. coli (c), int1 (d), 16S (e) and water temperature
(f) in the Refined PC1 model. Dotted line shows the 95% confidence band based on 500 runs of the
Refined PC1 model.
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4. Discussion

The contribution of urban watersheds to the emergence and spread of ARGs is now be-
ing fully recognized as part of the One Health approach to combatting antibiotic resistance.
Urban streams such as Proctor Creek can act as reservoirs for the emergence and spread
of ARGs in the environment. Our results show that ARGs occur frequently in streams in
the Proctor Creek watershed over the study period. The high prevalence and abundance
of sul genes in this study are comparable to findings from previous studies [21,27,35].
Ahmed et al. [21] reported elevated levels of sul genes in storm drain outfalls in Tampa, FL,
USA during dry and wet conditions and concluded that fecal pollution was the most likely
source of the ARGs. Sul genes were also found to be highly prevalent and abundant in the
Huangpu River watershed in China with average concentrations four and five orders of
magnitude higher than tet and beta-lactam genes, respectively [27]. The high prevalence of
sulI and sulII genes is not surprising given the widespread use of sulfonamide antibiotics,
the high abundance of these genes in wastewater, and their association with mobile genetic
elements [27,36].

At the watershed level, ARGs may originate from animal sources, sewage or wastewa-
ter discharges, selective pressure due to the presence of selective agents such as antibiotics
and metals, or may occur naturally in the environment. Although ARG burden from
sources such as wastewater treatment plants and animal feeding operations have been
well characterized, the contribution of these sources to ARG loads at the watershed level is
not well understood. In this study, we evaluated the association of fecal pollution, class
1 integron, water quality, and watershed parameters on ARGs distribution in the urban
aquatic environment. Currently, Proctor Creek is listed as impaired for fecal coliforms
on Georgia’s 303(d) list of impaired waters and the high prevalence of fecal indicators
observed in this study supports that designation. Along with the high prevalence of fecal
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indicators, the results also show a widespread distribution of ARGs across the watershed.
In general, moderate to strong positive correlations were observed between ARGs and the
HF183 and E. coli markers, which suggest a strong link between the levels of human fecal
pollution and ARG abundance and distribution at the watershed level. Ahmed et al. [21]
observed a similar association between ARG abundance in storm drain outfalls in Tampa,
FL and the levels of sewage-associated HF183 and crAssphage markers.

The int1 gene, on the contrary, showed a strong positive correlation with the sulI gene
and a moderate positive correlation with sulII, whilst the relationships with the other ARGs
were weak. The association of the int1 gene with the sulfonamide genes, particularly the
sulI gene, has been well described in previous studies and generally reflects the selective
pressure imposed by anthropogenic pollution [37,38]. The observed influence of the sewage-
associated HF183 and the integrase gene on the sulI gene suggests that human fecal pollution
and class 1 integrons, respectively, are important drivers of sulfonamide resistance genes in
Proctor Creek. Interestingly, a weak but positive correlation was observed between the int1
gene and the sewage-associated HF183 marker. The occurrence of class 1 integrons from
other sources in the environment in addition to human fecal inputs may have contributed
to the weak relationship observed between HF183 and int1 gene [2]. Additionally, the
abundance of the 16S rRNA gene showed moderate positive correlations with the sewage-
associated HF183 and ARGs, suggesting that increased microbial populations resulting
from human fecal inputs are an important driver of ARGs in the urban aquatic environment.

To identify the important drivers of ARGs in the Proctor Creek watershed, generalized
boosting models were developed to predict the average influence of water quality variables
and watershed characteristics on ARG concentrations in the watershed. Generalized
boosting models are powerful algorithms that make no distributional assumptions on the
model error terms, use stochastic methods to improve model performance, and are robust
to missing values and outliers [39]. Results from the refined boosted models show that the
abundance of ARGs in the watershed could be primarily explained by the concentrations of
E. coli marker, HF183, and the differences between site locations in the watershed. Similar
to the sewage-associated HF183 marker, the E. coli marker has been used in water quality
studies as an indicator of fecal pollution due to the high levels of E. coli in the feces of
humans and other warm-blooded animals [40]. The levels of HF183 and E. coli marker,
when considered together, are a strong indicator of the extent of fecal contamination; the
model results support the significant contribution of fecal pollution to the abundance of
multiple ARG classes in the urban aquatic environment.

The influence of site is also significant, as the location in the watershed reflects a
gradient of human impact from the highly urbanized areas surrounding the headwaters to
the low-density residential suburbs around the lower reaches of the watershed. In general,
there was a marked increase in ARGs in the highly urbanized areas of the watershed at GR,
LST, NAVE, HT, and NAVECSO compared to the lower reaches (NW, LC, JJ, KC, and SST).
The combined influence of the fecal indicators and site location on ARG variability in the
watershed suggests the significant contribution of sewage/wastewater to ARG loading in
the Proctor Creek watershed. Other parameters such as the class 1 integron gene, water
temperature, and the bacterial community also contributed to the variability in ARGs at the
watershed level, but their effect was insignificant compared to fecal pollution. Additionally,
water quality parameters such as turbidity, temperature, antecedent rainfall, and season
did not appear to influence ARG concentrations at the watershed level. These findings are
in line with a recent metadata study that found that the presence of resistance genes in the
environment can largely be explained by fecal pollution, except in environments polluted
by very high levels of antibiotics, where selection pressure dominates [22]. As mentioned
earlier, the Proctor Creek watershed has a long legacy of fecal pollution from CSOs and
sanitary sewer leaks that continues to impact water quality. Efforts have been made to
control fecal loading in the watershed by decommissioning a CSO at the GR location and
limiting the discharges from the NAVE CSO. However, our results suggest that the GR
location is still a hotspot for fecal pollution resulting in increased ARG loading into streams.
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Further studies are needed in the watershed to assess the sources of fecal pollution at the
GR location and to implement the necessary mitigation measures to reduce the impact of
fecal pollution on the dissemination of ARGs in streams. Additionally, future work should
focus on the contribution of fecal pollution to the spread of antibiotic-resistant bacteria and
pathogens in the streams to enable a thorough assessment of the risk to public health.

5. Conclusions

Understanding the contribution of different sources to the spread of ARGs in the
aquatic environment is an important first step in curtailing the dissemination of resistance
genes in the environment. In this study, we identified the influence of fecal pollution and
quantified the contribution of sewage-polluted environments to the abundance and spread
of ARGs in urban streams. Our results confirm that the abundance and distribution of
ARGs in the Proctor Creek watershed are largely explained by the levels of human fecal
pollution in this stream. Other factors, such as the levels of the class 1 integron gene,
microbial community abundance, and water temperature, played a lesser role in explaining
the variability of ARGs in this stream. The evidence from this study supports the theory that
in aquatic environments highly impacted by sewage pollution, the input from fecal sources
is a more critical ARG source/driver than other factors such as environmental parameters
(i.e., temperature or seasonal patterns) and watershed stressors. Finally, the results from
this study provide local watershed managers and stakeholders with the information needed
to reduce the burden of ARGs and fecal bacteria in urban streams. Future research should
examine the relationships between fecal pollution, ARB, and pathogens to identify specific
health risks associated with the presence of ARGs in the aquatic environment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10091804/s1. Table S1: Primers and Probes used
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component plot showing the loading of ARGs and the influence on first two principal components,
PC1 and PC2. The color gradient shows the quality of representation of the ARGs on the principal
components. References [41–57] are cited in the supplementary materials.
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