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We present an efficient and scalable partitioning method for mapping large-scale neural

network models with locally dense and globally sparse connectivity onto reconfigurable

neuromorphic hardware. Scalability in computational efficiency, i.e., amount of time

spent in actual computation, remains a huge challenge in very large networks. Most

partitioning algorithms also struggle to address the scalability in network workloads

in finding a globally optimal partition and efficiently mapping onto hardware. As

communication is regarded as the most energy and time-consuming part of such

distributed processing, the partitioning framework is optimized for compute-balanced,

memory-efficient parallel processing targeting low-latency execution and dense synaptic

storage, with minimal routing across various compute cores. We demonstrate highly

scalable and efficient partitioning for connectivity-aware and hierarchical address-event

routing resource-optimized mapping, significantly reducing the total communication

volume recursively when compared to random balanced assignment. We showcase

our results working on synthetic networks with varying degrees of sparsity factor and

fan-out, small-world networks, feed-forward networks, and a hemibrain connectome

reconstruction of the fruit-fly brain. The combination of our method and practical results

suggest a promising path toward extending to very large-scale networks and scalable

hardware-aware partitioning.

Keywords: distributed processing, neuro-inspired computing, brain-scale networks, hierarchical connectivity,

network compiler for neuromorphic systems, compute-balanced partitioning, hardware-aware partitioning

1. INTRODUCTION

There has been a growing interest in the scientific community to attain a comprehensive
understanding of the brain (Markram et al., 2011; Kandel et al., 2013) using actual in-vivo brain
recordings or simulation models using spiking neural networks (SNNs). However, simulating
such large brain-size networks (Ananthanarayanan and Modha, 2007) with massive size and
complexity of neurons and interconnections between them is extremely challenging to realize using
the computational capability of today’s digital multiprocessors. Thus, extreme-scale distributed
computing is being explored as an alternative route to the physical limitations in traditional
computing methods.
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Computing systems with high-bandwidth interconnects
between individual compute elements are crucial for such
enormously distributed processing, and to demonstrate
performance efficiency at brain scale. Such processing
architectures are also energy-efficient edge ML acceleration
tasks such as audio, image, and video processing. Data
movement through a Network-On-Chip (NoC) becomes the
most challenging part in the synchronization and event exchange
of many-core spiking processors. This communication becomes
the limiting factor in the processing, while the computation
scales linearly with the number of cores (Musoles et al., 2019).
To minimize the inter-core communication, we require both
hardware optimization as well as an efficient compiler to
generate an optimal network partitioning and mapping to the
available computational resources. Distributed computing for
spiking networks is the most efficient when performed with a
combination of load-balancing, with which computation at the
lowest latency is realized for any given network; and inter-core
connectivity minimization, which ensures the most optimum
reduction in traffic volume over the network.

We use an extended version of the hierarchical address-event
routing (HiAER) architecture (Park et al., 2017) for scalable
communication of neural and synaptic spike events between
different cores. HiAER implements a tree-based interconnect
architecture of fractal structure in the connectivity hierarchy,
where the communication bandwidth at each node is relatively
constant at each level in the hierarchy due to decreasing fan-
out at increasing levels. The notation Li corresponds to the
i’th level of communication hierarchy. The lowest level (L0) in
this hierarchy represents the intra-core communication, which is
just governed by a synaptic routing table (postsynaptic neuron
destinations stored in the local memory allocated to the same
core), which incurs no routing cost. As we organize these
cores within the larger system, we can create further hierarchy,
i.e., L1 (communication within a cluster of cores) and L2
(communication between clusters). For example, in order to
arrange 32 cores onto two layers of hierarchy, we can arrange
them into eight L2 clusters of four L1 cores, 16 L2 clusters
of two L1 cores, or any other arrangement of two factors
with a product of 32. This type of organization allows us to
easily map our cores and routing nodes to hardware, where
there are specific routing requirements and network connectivity
while obviating the need for all-to-all connections through an
extremely high bandwidth interconnect. We can extend our
hierarchically structured communication network further by
adding additional levels of hierarchy.

Peak efficiency in near-memory or in-memory compute
architectures requires all compute cores to get efficiently utilized,
assuming a network structure that is locally dense and globally
sparse. The previously discussed HiAER protocol for routing
of neural spike events allows network connectivity that scales
to networks of virtually unlimited size, due to decreasing
connectivity density with an increasing distance that permits
near-constant bandwidth requirements in event routing across
the spatial hierarchy. An ideal neuromorphic computing system
attains both the computational efficiency of intra-core dense
local connectivity with near-memory compute cores, and the

functional flexibility of HiAER sparse long-range connectivity.
An open problem in the practical realization of this system
is to efficiently map a given network with arbitrary topology
onto the implemented hierarchy of cores with rigid dimensions.
This requires automated means to partition the network in such
a way to maximally align its connectivity with maximal fill
density of the connectivity matrices within cores, and minimal
communication of neural events across cores.

The optimal partitioning method to align large, arbitrarily
structured networks onto a scalable HiAER topology must satisfy
several conditions. First, the partitioning scheme should be fast
and scalable to different levels of the HiAER communication
scheme. A network should be able to be partitioned over K
cores. Neurons in these cores will use different levels of off-core
communication depending on the location of the destination
core in the communication hierarchy. We assume that each
neuron has equal processing time in the cores. The total size of
the network can be written as n0 ∗ K, with n0 being the number
of neurons in each of the K cores. Depending on hardware
constraints and space that the user provides, the partitioning
method should be able to partition over different possible values
of n0,K, and Li. Figure 1 shows different potential configurations
of the network around K cores. The partitioning method should
be able to find an optimal partition and core configuration for
each case shown.

Additionally, the network of N neurons distributed across K
cores must produce balanced partitions where each core contains
roughly N/K neurons. Cores with too many neurons will be
bottlenecks in network performance due to longer processing
time, while cores with too few neurons will be underutilized.
Distributing the neurons in a balanced fashion allows for
balanced processing time among the cores and maximizes the
overall network speed.

Finally, the partitioning method should result in savings in
both memory and communication across cores. This means that
the neurons should be arranged in a way such that cross-core
communication is minimized, which involves both grouping
neurons with similar incoming connections inside the same
core, as well as minimizing cross-core communication. These
savings must be applicable to partitions that are at single or
multiple levels of hierarchy. In most partitioning methods,
minimum edge-cut is used as the metric for judging the quality
of the partition and can be defined as the number of edges
whose incident vertices belong to different partitions. However,
minimum edge-cut does not suffice to describe the network
communication when using AER or mask bits due to the
fact that multiple connections can be encoded in the same
communication packet. For our evaluation, we do not use the
minimum edge-cut in order to evaluate the quality of the
partition, and instead, we use our own set of routing rules defined
for the HiAER network routing.

For a given input network, it is difficult to partition based
on the activity of each neuron in the network. Depending on
the neuron model, inputs, and synaptic strengths, networks
of the same underlying structure can behave unpredictably.
Because of this, algorithms like SNEAP (Li et al., 2020) use
spike traces from simulations of the network in order to better
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FIGURE 1 | Different potential tree-based HiAER network configurations for 8

cores with varying Li and a fixed core count K.

partition based on the network activity. In this work, we chose
to develop a partitioning strategy that only depends on the
connectivity of the input graph. For this reason, it makes
sense that a partitioning method for reconfigurable hardware
should be performed on a purely topological basis. Various
types of SNN toplogies exist, including liquid state machines
(Maass, 2011), deep spiking networks (Sengupta et al., 2019),
and large-scale brain models (Potjans and Diesmann, 2012). This
is due to the fact that it is not feasible to simulate large-scale

models for activity data every time the model needs to be
partitioned. Splitting an input network into a balanced set of
partitions is known as the NP-hard balanced graph partitioning
problem. Several balanced graph partitioning approximation
methods exist, including METIS (Karypis and Kumar, 1999),
a multilevel partitioning scheme, which is commonly used for
its speed, flexibility, and performance. Solutions like Spinner
(Martella et al., 2017), which runs on Giraph (a large-scale graph
analytics platform) easily scale to massive graphs and a large
number of compute cores. Streaming graph algorithms such as
FENNEL (Tsourakakis et al., 2014) also offer very fast balanced
partitioning solutions, where vertices are partitioned one-by-one,
minimizing the computation required. These algorithms run
on both weighted and unweighted undirected graphs, and have
typically been used to partition very large graphs of social
media networks or in very large-scale integration (VLSI) circuit
partitioning (Alpert et al., 1996).

There are some previous works on SNN mapping methods
to neuromorphic platforms. Some of these methods include
PACMAN (Galluppi et al., 2012), SCO (Lee et al., 2019),
and SpiNeMap (Balaji et al., 2020). PACMAN, which is
the partitioning and configuration framework for SpiNNaker
(Painkras et al., 2013), partitions on a population level, and
then sequentially maps the result to a huge number of ARM
processors emulating SNN cores. This works well for the
torus interconnect in SpiNNaker but clearly doesn’t suit our
hierarchical tree-based interconnects. The hierarchical tree-
based interconnects are more scalable due to the fact that new
branches can be added to the tree that maintains constant
local bandwidth, in contrast to linear network-on-chip where
congestion can arise from a large number of connections (Park
et al., 2017). SCO minimizes the hardware resources for network
execution but doesn’t have any performance gains in reducing
global communication traffic. SpiNeMap reduces the power
consumption and latency for crossbar-based neuromorphic
cores where the communication fabric is a single shared time-
multiplexed interconnect. Previously, METIS has been used to
partition spiking networks in Barchi et al. (2018b) and Li et al.
(2020). However, in the former, the cortical microcircuit network
used for analysis is quite small, scaled down to only roughly
4,000 neurons and seven hundred thousand synapses. In the
latter, spike trace information is used as weights during the
METIS partitioning, the mapping strategy used does not take
into account a HiAER network structure, and the networks used
are relatively small. Additionally, there is no experimentation
on different toplogies of spiking neural networks. Other works,
such as Barchi et al. (2018a), use several other graph partitioning
methods such as spectral analysis, and simulated annealing in
order to partition their input SNN, but do not extend its methods
to different layers of network hierarchy. These previous works
are not fully optimized for a HiAER network structure and to
our knowledge, there is no existing work that has optimized the
partitioning and mapping algorithm to be implemented using a
HiAER framework. As HiAER offers the maximum flexibility in
network connectivity as well as provides the highest scalability,
our hardware-aware partitioning algorithm has the potential to
scale to networks at the scale of the human brain.
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2. METHODS

In this section, we describe the hierarchical routing methods in
which we use to evaluate the quality of the partitioning algorithm,
as well as the hierarchical partitioning algorithm that we use
for the optimal mapping of neurons to cores, and of cores to
locations in the network hierarchy.

2.1. Routing and Network Evaluation
Our communication is based on Address-Event Routing (AER)
from a presynaptic neuron in an origin core to a postsynaptic
neuron in a destination core (Mahowald, 1994; Boahen, 1999).
In the AER protocol, neurons communicate asynchronously
whenever they spike, with weights stored locally at each
postsynaptic destination. Each spike is represented by a
destination address and an event time. When the destination
core(s) receive this event, it is subsequently processed and the
correct weights are accessed to update the postsynaptic neuron(s)
in the core or to propagate further messages off-core. This
configuration allows for minimum traffic because only a single
connection is required per neuron to each of its destination cores,
regardless of the postsynaptic fan-out at each destination core.
From the router’s perspective, communicating with one neuron
in the destination core is equivalent to communicating with
all neurons in the destination core. This is a key factor in our
partitioning evaluation methods.

Figure 2 shows the system organization with cores
communicating through L1 and L2 interconnects. The
communication similarly extends into additional levels of
hierarchy. Due to potentially different physical modes of
communication at different levels of the system, we assume that
communication cost increases with the level of hierarchy. Our
hierarchical partitioning method is flexible in that we can choose
the number of cores and choose the placement of the cores in the
different levels of the communication hierarchy.

We define two alternate methods of communication for
our evaluation. The first method, which we call multicast
communication uses mask bits at each level of hierarchy in
order to determine which destination cores to communicate
with. The cores in the same level of hierarchy have a shared
address in order to reduce the routing complexity and cost. This
means that a presynaptic neuron in a source core connected
to multiple destination cores requires only a single message,
provided that those cores are all connected. Figure 2 shows a
single message used to communicate with every core in the
single-level multicast. Communicating to core(s) in a different
L1 requires an intermediate connection over L2 to the same core
index. In Figure 2, this is shown in the multilevel multicast.
From here, an additional intermediate connection at each
destination L1 will route to the correct destination cores (this
connection is not required if all destination cores can be reached
with the L2 message). We call these intermediate connections
“relay” connections. This approach scales up to the highest level
of communication. With i levels of hierarchy, the worst-case
communication will require i relay connections. The advantage
of this approach is that it constrains the communication within
and between levels to drastically improve the speed of message

processing. Additionally, using the mask bits allows for a
reduction in the overall number of messages over the network.

The second method, which we call unicast is where cores have
the ability to connect to any other core in the network. Each
unique crossing of a hierarchy requires its own unique message,
unlike the multicast case where a single message was needed.
For multilevel communication, relay connections are still needed
to route to the correct destination core. This is shown in the
multilevel Figure 2 example, where crossing the L2 hierarchy is
only done once for each cluster, with a relay message to core [1,1],
and additional relays to cores [3] and [6] in the local cluster. The
message to [2,5] is not considered a relay connection, as there is
no further local fan-out. In unicast communication, significantly
more relay connections may be needed in order to correctly fan-
out to all destination cores. While unicast messaging doesn’t
constrain communication the router must be able to handle a
high volume of these messages within a reasonable time, which
might be difficult. Additionally, each message packet needs to
dedicate space to contain the correct destination core address.

We evaluate the quality of the partitions using both
communication methods to calculate the number of messages
in each level of hierarchy in order to find the total cost for the
partition. Since this system organization and routing is unique,
we compare all experiments to balanced random assignment,
where ≈ N/K neurons are chosen at random and assigned to
each core, and quantify the quality of the partitioning by how
many messages the algorithm can beat the balanced random
assignment at each level of hierarchy.

2.2. Hierarchical Partitioning
The partitioning method introduced here is based on METIS
(Karypis and Kumar, 1999), although in principle it can work
with any balanced graph partitioning algorithm. METIS is a
multi-level graph partitioning scheme that uses either multilevel
recursive bisection or multilevel k-way partitioning algorithms.
METIS works in three stages. The coarsening stage transforms
the initial graph G0 into sequentially smaller graphs Gk. In
the next step, Gk is then quickly partitioned. Finally, the
refinement stage projects the partition back to each level, with
greedy refinement at each step. We chose METIS specifically
due to its ease of use, speed, and performance. We restrict
our use of METIS to k-way partitioning in order to compute
a k-way partitioning such that the edge-cut of the graph is
minimized (even though this is not our metric for analysis).
The overall communication volume is minimized by running
METIS on the network connectivity graph. This is a generic
step that can reduce the number of edges for targeted graph
partitions, and produces our baseline partition. This requires
no simulation of the network and is purely based on the
unweighted and undirected connectivity of the input. Beyond
this reduction, our hierarchical METIS partitioning method
obtains further reduction of communication volume, which suits
our optimization goal for the HiAER routing scheme.

Figure 3 shows the procedure for hierarchical partitioning.
We first feed the un-directed input network and the number
of partitions required to the METIS algorithm. This gives
balanced partitions and class labels for each of the n neurons
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FIGURE 2 | Unicast vs. Multicast communication. The red arrows describe communication within a cluster (L1 communication) and the green arrows describe

communication between the clusters (L2 communication). In the unicast example, each postsynaptic destination core address is explicitly defined in the

communication packet (e.g., [1,1] and [2,5]), and each crossing of hierarchy requires an explicit message. In the multicast example, only the destination mask is

defined in the communication packet. In both multi-level cases, “relay” connections are needed in order to route to the destination core, which routes to the correct

core at the local level of hierarchy. In the unicast case, a single relay connection is needed over L2 to core [1,1] and two relay connections are required in this local L1
to route to cores [3] and [6]. In the multicast case, a single relay connection is needed over L2 and additionally over each L1.

FIGURE 3 | Hierarchical network partitioning algorithm and baseline flat partitioning algorithm.

Frontiers in Neuroscience | www.frontiersin.org 5 January 2022 | Volume 15 | Article 797654

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Mysore et al. HIerarchical Network Connectivity and Partitioning

in the network. Each neuron is assigned to its class label,
which designates the core it belongs to. We compute the “flat”
partitioning by randomly mapping cores to locations in the
hierarchy of partitions. We can evaluate our network with
this baseline, which would be the optimal partitioning for a
router with a single layer of hierarchy. However, randomly
mapping cores to locations with multiple levels of hierarchy is
not optimal, and can lead to a significant burden on the router.
Instead, we define an algorithm for hierarchical partitioning onto
the multiple layers of hierarchy. We compute the number of
unique connections for each neuron in a core to a postsynaptic
destination outside of the core. This is then compiled in
an adjacency matrix Aij which dictates the number of these
connections from core i to core j. This adjacency matrix holds
the directed cross-core communication of the entire network. In
order to create an undirected adjacency matrix, we create a new
adjacency matrix Bij where each element is the sum of Aij and
Aji. This is a symmetric matrix that highlights the total cost of
communication between each core.

We then iterate through each level of the hierarchy. We run a
weighted version of METIS on this adjacency matrix, where the
weight is the cost of communication between 2 cores as computed
earlier. We select the number of elements we want to partition
at the top-most level of the i′th level of hierarchy and compute
the assignments. For each partition, we take the h nodes that
were assigned to that partition, and group their entries into a
separate adjacency matrix, removing all connections to cores that
do not have the same assignment. This weighted matrix is then
partitioned with METIS as before into i − 1 levels of hierarchy,
and this process is repeated until the lowest level of hierarchy has
been reached.

The initial flat partitioning algorithm allows for neurons to
be mapped to cores in the network. The motivation for the
hierarchical partition is that the flat partitioning itself is not
enough aware of the network structure, and thus will have poor
results for minimizing traffic across cores. The hierarchical step
allows for cores to be mapped to slots in the hierarchies, which
allows for the best possible arrangement of cores in the network.
The top-down approach for partitioning ensures us that we
are minimizing traffic from the highest level down, due to our
assumption that the higher levels of communication are the
most costly. Throughout the paper, we will refer to hierarchical
partitioning using AxBxC notation, where the cores are first
partitioned into groups of size A, then of size B, and finally of
size C. In this paper, we constrain the partitioning of the network
to up to three levels, even though the methods we present could
potentially partition the network on a network architecture with
a deeper hierarchical structure.

2.3. Synthetic Network Generation
We create various synthetic networks in order to test the
partitioning algorithm. These networks consist of cores with local
densely connected neurons inside each core and can be generated
for different levels of hierarchy. We first generate 1,000 neurons
in each of the K cores that we want to create. To connect these
networks, we draw from a probability distribution where u is the
normalizing constant, λ indicates the spread factor, and ni gives

the number of possible postsynaptic destinations at the i’th level
of hierarchy. This is shown in Figure 4:

u (n0 + n2λ + n2λ
2
+ n3λ

3 . . . ) = 1 (1)

u λini = p(ni) (2)

At the lowest level of hierarchy, n0 = 1,000, which indicates local
connections. Then, we designate how many neurons are at each
level of hierarchy before solving and normalizing in order to
create a probability distribution for each neuron in the core. The
total probability of connecting to any neurons in a certain level
of hierarchy is given by the normalizing factor multiplied by the
spread factor at that level of hierarchy and by the total number of
neurons at that level of hierarchy.

The spread factor λ indicates the overall spread of the network.
With λ ≪ 1, the PDF of each core will strongly favor local
connections with very few connections to neurons at higher
levels of hierarchy. At the opposite end, a λ = 1 indicates a
completely randomly connected graph, where each neuron is
equally as likely to connect to any other neuron in the network.
Partitioning on a randomly connected graph should not be
expected to give significant improvements in message reduction.
On the other hand, the partitioning should be able to exploit
the topology of networks with smaller lambda, and significantly
reduce communication. These synthetic networks are useful
to create because the ground truth for the ideal partitioning
is known, which enables us to check the performance of the
partitioning method.

3. RESULTS

The hierarchical partitioning algorithm was tested with a wide
variety of networks in order to show invariance to input
topological structure. All partitioning results displayed are the
mean of 5 trials with the METIS algorithm on the same graph.
The standard deviations obtained were typically very small
(≪1%) and thus have been not been listed. The experiments were
done on a computer with an Intel I7-8700 processor and 64 GB
DDR4 SDRAM.

3.1. Partitioning on Synthetic Networks
We generate and produce results for various synthetic networks.
In each synthetic network, there are 1,000 neurons in each node.
We vary the average fan-out for each neuron to 64, 128, and
256 postsynaptic destinations. The postsynaptic destinations are
randomly sampled from a unique probability density function
for the neurons in the presynaptic core. Once the connections
are completed, the network neuron indexes are randomized and
sent to the partitioning algorithm for partitioning and evaluation.
We consider synthetic networks created with 2 and 3 levels of
hierarchy. For the network with 2 levels of hierarchy, we generate
a network with 4 L2-groups of 8 L1-nodes each, which has a
total size of 32,000 neurons and n maximum average of about
8,192,000 synapses. For the network with 3 levels of hierarchy,
we generate a network with 2 L3-groups, each containing 4
L2-groups, which further each contain 8 L1-cores each, and a
network with 8 L3-groups, each containing 4 L2-groups with 8
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FIGURE 4 | Synthetic network connectivity and probability distribution of cores when λ = 0.01. (A) Hierarchical Routing structure within the cores obtained from the

Synthetic Network Partitioning. The probability of connection decreases as the level of hierarchy increases. (B) Probability distribution of 2 cores in a 64,000 neuron

Synthetic network, organized into 2×8×4. Each core contains 1,000 neurons, with core 0 containing the first 1,000 neurons of the network and core 63 containing

the last 1,000 neurons of the network.

L1-cores each. These networks have a size of 64,000 and 256,000
neurons and a maximum average of 16,384,000 and 65,536,000
synapses, respectively. This is an extended and revised version of
a preliminary conference report that was presented (Mysore et al.,
2021), which was constrained to 2 layer partitioning only focused
on multicast communication.

Figure 5 shows the performance of the hierarchical
partitioning on the 3 layer partitioning. At each level of
sparsity except λ = 1, the hierarchical partitioning method
beats the flat baseline partitioning. Partitioning into a bigger L3
seems to incur a faster dropoff in messages as the spread factor
increases. As expected, at a spread factor of 1, the partitioning
methods converge to random, and there is no improvement
over random partitioning of the network. At a low spread factor,
the algorithm is able to almost perfectly partition the network,
reducing almost all the L3 communication and significantly
reducing the L2 and L1 communication.

Figure 5 also shows the number of messages generated by the
multicast and unicast routing schemes. In the 2×4×8 partition,
there is a significant reduction of messages in the L1 and L2
messaging, but the L3 stays the same. This is because the L3
boundary is always crossed, and since there is only 1 other
destination, the evaluation methods are equivalent. This can
be observed in the 8×4×8 partition, where the L3 messages
are significantly higher in unicast than multicast since there
are 7 additional destinations. We see that multicast messaging
allows for a greater reduction in overall messages, although
the hierarchical partitioning significantly reduces the number of
messages in both evaluation methods.

3.2. Small-World Networks
While the synthetic networks offer an excellent baseline to
evaluate the efficacy of the partitioning method, it is essential
to test on other networks that are not generated with biases
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FIGURE 5 | Traffic reduction plots for different hierarchy structures and comparison of cost under two different evaluation methods, for flat core placement (A) and

hierarchical (B) core placement. The number of messages generated by multicast (C) and (D) unicast messaging in each layer are also shown.

toward an expected hierarchical structure. To this extent, we
generate various small-world networks for the evaluation of the
partitioning algorithm. Small-world networks are a common
topological basis for modeling anatomical connections in the
brain and thus are common networks to model spiking neural
network connectivity (Bassett and Bullmore, 2007). Starting with
n nodes, each node in the ring is connected to k of its nearest
neighbors. Each edge is then replaced with a probability p with
a new edge which is uniformly sampled from the collection of
neurons. Based on the parameters, the rewiring algorithm creates
a network that is neither regular nor random. For our analysis,
we vary n and k in order to show the efficacy of the partitioning
on various small-world graphs. We show the performance
of the hierarchical partitioning algorithm with various
configurations in order to show that it is beneficial with any
network hierarchy.

Figure 6 shows the results from small-world networks with
a fan-out of 10. Three networks are tested with up to 1 million
neurons. In most cases, the hierarchical partitioning method
beats the flat partitioning method. As the number of neurons
increases, both the flat and hierarchical partitioning methods
seem to converge to the same values. Additionally, as the number

of neurons increases, the performance of the increases at each
level and for each partitioning layout. While both unicast and
multicast provide a reduction in message volume, multicast
communication has significantly less message traffic. Table 1
shows similar results for a small-world network with a fan-out
of 256. The results are significantly less impressive, primarily
because when an edge is rewired, it chooses a random destination
in the network. A fan-out of 256 is enough to incur significant
randomness to the graph and reduce the partitioning quality.
Nevertheless, there is still an observable reduction in unicast
communication, primarily at the level 1 hierarchy. This is due
to the fact that the hierarchical partitioning algorithm is able to
significantly reduce the number of relay connections.

3.3. Deep Feedforward Network
Deep feedforward networks are commonly used today for various
machine learning tasks. These networks typically consist of
stacked perceptron layers that feed into each other until they
reach an output layer, where a probabilistic decision is made.
The topology is also commonly used for various deep spiking
neural networks such as in Wu et al. (2020). The hierarchical
partitioning algorithm is run on a sample deep feedforward
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FIGURE 6 | Traffic reduction plots for small-world networks with different hierarchy structures and comparison of cost under multicast (A) and unicast (B) evaluation

methods.

TABLE 1 | Small-world network hierarchical partitioning results (fan-out = 256).

Synthetic network Hierarchy level Percent message reduction (Multicast) Percent message reduction (Unicast)

N = 104 N = 105 N = 106 N = 104 N = 105 N = 106

4×8
Level 1

Level 2

6.58

0.02

5.38

0.75

3.82

0.92

42.30

4.95

27.64

4.56

21.61

3.50

2×4×8

Level 1

Level 2

Level 3

16.23

2.87

0.92

13.55

1.56

0.33

7.19

1.94

1.21

44.22

11.19

0.99

39.44

10.12

0.26

32.14

6.53

0.26

8×4×8

Level 1

Level 2

Level 3

14.73

2.83

0.90

12.88

1.49

0.25

7.35

2.20

1.28

44.20

14.40

0.96

39.43

12.25

6.54

32.13

0.31

1.25

network. The network contains 8 fully connected layers, each
with 2,048 neurons, and a single output layer of 1,000 neurons.
These networks contain no feedback connections. Figure 7

shows the results of the deep feedforward network when with
different partitioning.

One interesting observation is in the L1 messages. In the
unicast example, the hierarchical partitioning method barely
performs better than flat partitioning in each case. However,
the multicast offers a significant reduction in L1 communication
volume. This is because hierarchical partitioning can significantly

reduce the number of relay connections needed when it places
cores since the communication is masked, while the unicast
cannot take advantage of this.

3.4. Fly Hemibrain Connectome
Synthetic Networks are excellent for validating the partitioning
method but are not representative of the structures found in a
real brain. In order to capture the effectiveness of the hierarchical
partitioning method on real neuronal networks, we use the
fly hemibrain connectome (Xu et al., 2020). The connectome
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FIGURE 7 | Partitioning results for the deep feedforward network. The network is partitioned in three different ways and communication cost reduction is

demonstrated using (A) multicast and (B) unicast.

reconstruction dataset contains about twenty-thousand neurons
as well as over three million synapses, obtained through a
combination of Electron microscopy, segmentation pipeline,
and novel synapse prediction methods. The dataset contains
thousands of cell types spanning over several regions in the
brain. This representation depicts a realistic biological network
topology for partitioning. The connectivity of the dataset was
extracted and converted into a graph format. Figure 8 shows
the partitioning results for the fly hemibrain. The network
is partitioned into 4×8, 2×4×8, and 8×4×8 structures. The
4×8 and 2×4×8 hierarchical partition provides significantly
better results than flat and random partitioning at all levels
of communication. The 8×4×8 partition is able to provide a
significant reduction in L1 and L2 messages but does not reduce
the L3 communication as much using multicast. This could be
because with only twenty-thousand neurons, split across 256
cores, the partitioning is too wide and it is not possible to reduce
the amount of communication in this level of hierarchy.

3.5. Partitioning Time
The time complexity for the partitioning is often an important
parameter when implementing real-time workload. Figure 9

shows the performance of the hierarchical partitioning algorithm.
The majority of the time is taken by the baseline METIS
algorithm. The hierarchical partitioning of the cores takes on the
order of 0.1 s since the METIS partitioning is only done on a
K × K adjacency matrix. Partitioning into fewer cores results in
a significant improvement in speed. Other balanced partitioning
algorithms such as parMETIS (Karypis et al., 1997) and FENNEL
(Tsourakakis et al., 2014) can be used as alternatives to speed
up partitioning, but either require more compute nodes or can
potentially worsen the quality of the partitioning.

4. DISCUSSION

The goal of this work was to create and evaluate a flexible
method of hierarchical partitioning for use in large-scale
neuromorphic systems.We designed and developed an algorithm
for performing this partitioning on various networks including
synthetically generated networks, small-world networks, deep
feedforward networks, and the fly hemibrain. In all cases,
we observed a significant improvement of the hierarchical
partitioning method over randomly balanced neuron placement
and even flat METIS partitioning. The method is very
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FIGURE 8 | Partitioning results for the fly hemibrain network. The network is partitioned in three different ways, and communication cost reduction is demonstrated

using (A) multicast and (B) unicast.

flexible and scales to any number of layers of hierarchy,
allowing fast reconfigurability and improved performance for
neuromorphic systems.

The hierarchical partitioning algorithm mainly takes
advantage of the structure of an input network. In many cases,
graphs that have a large number of random connections will not
result in a reduction in message traffic. This was observed both
in the synthetic networks at high spread factor and in the small-
world graphs with large fan-out. However, as demonstrated in
the fly hemibrain connectome, real networks can be partitioned
and simulated with significant benefits. Further analysis must
be done in order to validate the advantages of this partitioning
method on data from more complex organisms, such as mice
and humans.

We also evaluated the cost/benefit of unicast and multicast
communication protocols over the network. While unicast
message reduction often benefits significantly more from
hierarchical partitioning than from multicast, overall multicast
communication allows for a drastic reduction in the overall
number of messages and total network traffic. Multicast
communication also benefits from requiring a fixed mask

in each message, while unicast communication requires
the full destination address. With the optimal placement
generated from the hierarchical partitioning algorithm, multicast
communication typically can take better advantage of the
structure to reduce the number of relay messages.

Many neuromorphic systems such as Loihi (Davies et al.,
2018) and TrueNorth (Akopyan et al., 2015) use a mesh NoC
on a single chip. These topologies are popular because of their
low complexity and planar 2D layout properties. It is easier to
generate the most optimal placement of the neurons and cores
in this type of mesh. However, large planar systems may suffer
from excessive hop counts when communicating end-to-end.
The hierarchical structure we discussed has the advantage of
improving bandwidth for long-distance connections. For each
level of hierarchy, the communication sparsity and address-space
both increase in each level, multiplying to a constant bandwidth
at each level of hierarchy. Assuming constant average fan-in, fan-
out, and event-rate for each neuron, the hierarchical connectivity
that we presented will scale linearly with the number of neurons
in the network. If additional cores are needed for larger networks,
the partitioning method has proven to be able to find an optimal
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FIGURE 9 | Timing for the hierarchical partitioning of each network. The

synthetic network used contains 256,000 neurons and 65,536,000 synapses,

and the small-world network contains 1 million neurons and a fan-out of 256.

arrangement for a particular hierarchical structure of cores.
However, this structure may be significantly worse than the
most optimal hierarchical structure for the network. Finding
the optimal hierarchical structure may require prior information
about the spiking network connectivity.

One area of further study is the idea of an optimal hierarchical
structure for the input network. If N neurons can be placed

inside of a single core, then placing all N neurons in a single
core eliminates network traffic but takes longer simulation time.
On the other hand, distributing the neurons over all available
cores will improve the speed of simulation to the extent that the
router can handle all of the messages. In order to further validate
the partitioning method, we plan to test this on reconfigurable
neuromorphic digital hardware such as a field-programmable
gate array (FPGA) such as in Pedroni et al. (2020), and analyze
the total speedup and communication volume over the router,
as well as try to identify quantitative guidelines to determine
the optimal partition. Additionally, further evaluation can be
done on more complex network topologies, such as spiking
Convolutional Neural Networks (Lee et al., 2018), and larger real
biological networks. This opens the door to fast and efficient
neural simulations with neuromorphic hardware on a very
large scale.
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