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Topography and behavioral 
relevance of the global signal in the 
human brain
Jingwei Li   1, Taylor Bolt2, Danilo Bzdok   3,4,5, Jason S. Nomi6, B. T. Thomas Yeo   1, 
R. Nathan Spreng   7,8 & Lucina Q. Uddin 6,9

The global signal in resting-state functional MRI data is considered to be dominated by physiological 
noise and artifacts, yet a growing literature suggests that it also carries information about widespread 
neural activity. The biological relevance of the global signal remains poorly understood. Applying 
principal component analysis to a large neuroimaging dataset, we found that individual variation 
in global signal topography recapitulates well-established patterns of large-scale functional brain 
networks. Using canonical correlation analysis, we delineated relationships between individual 
differences in global signal topography and a battery of phenotypes. The first canonical variate of the 
global signal, resembling the frontoparietal control network, was significantly related to an axis of 
positive and negative life outcomes and psychological function. These results suggest that the global 
signal contains a rich source of information related to trait-level cognition and behavior. This work has 
significant implications for the contentious debate over artifact removal practices in neuroimaging.

In the imaging neurosciences, the global signal (GS) is defined as the timeseries of signal intensity averaged across 
all voxels in the brain, gray matter, or cortical gray matter. It is well known that non-neuronal sources including 
physiological noise caused by respiratory and cardiac events1,2 and participant motion3 contribute to the GS. As a 
consequence, GS regression became a pervasively adopted step in processing of resting-state fMRI data to atten-
uate these and other sources of noise4,5. However, in addition to containing artifactual information from various 
sources, the GS also contains information about ongoing neural activity6. Combined fMRI-electrophysiological 
studies in macaque monkeys permit analysis of spatiotemporal covariation between neural signal fluctuations 
measured with implanted electrodes and concurrent hemodynamic signals measured with fMRI. In one study, 
spontaneous fluctuations in local field potentials exhibited widespread positive correlations with fMRI blood 
oxygen level dependent (BOLD) changes over the entire macaque cortex7. More recently, neural origins of the 
global signal were indicated by inactivation of a neuromodulatory region of the basal forebrain, the nucleus basa-
lis of Meynert. The nucleus basalis gives rise to the principal cholinergic as well as GABAergic projections to the 
cortex. Reversible pharmacological inactivation of the nucleus basalis in macaques resulted in regionally specific 
suppression of the global signal ipsilateral to the injection, further demonstrating a direct neuronal source of the 
global signal8.

Total estimates of baseline neuronal processing also come from magnetic resonance spectroscopy studies 
using 13C radiotracers, which permit simultaneous measures of energy demand (CMRO2) in neurons and glia as 
well as neuronal activity as reflected by presynaptic release of the neurotransmitters glutamate and GABA9. Such 
work in rodents suggests that around 80% of neuronal energy in the cerebral cortex supports global neuronal 
activity at rest10. In light of these findings, Hyder and colleagues suggest that neither total baseline neuronal activ-
ity nor fluctuations in baseline neuronal activity can be neglected as merely representing non-neuronal factors9. 
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This contention is in line with positron emission tomography fluorodeoxyglucose studies in humans demon-
strating that global signal amplitude is linked to changes in baseline glucose metabolism11. Additional evidence 
for neuronal contributions to the GS comes from EEG studies. The amplitude of the GS has been shown to relate 
to vigilance12 and arousal13,14. Taken together, the electrophysiological, metabolic, and neuroimaging evidence 
clearly demonstrate that at least some neural information is carried in the GS.

A previous study demonstrated that GS correlations with each brain voxel follow a specific topography, with 
significant weights in the occipital lobe3. This spatial pattern is thought to reflect respiratory patterns, and has 
been exploited as a feature for artifact removal15. Other work has noted that GS correlations with each brain voxel 
are stronger in some functional brain networks than others, and they fluctuate in magnitude over time, as well as 
vary between individuals16. GS variability is higher in schizophrenia, and correlated with behavioral symptoms17. 
Differences in GS topographical representation have been documented between schizophrenia patients and con-
trols18. Overall, while these previous findings hint at possible relationships between the GS and individual brain 
functional network architectures16–18, none of these studies have provided evidence of spatial structure in the 
inter-subject variability of global signal topography in healthy individuals.

A critical open question to address concerns how GS topography is related to human cognition and behavior. 
Here we systematically explored individual variation in GS topography and its relationship with individual differ-
ences on a range of cognitive and behavioral measures using canonical correlation analysis (CCA). We anticipated 
the existence of robust relationships between GS topography and phenotypic information, indicating functional 
relevance of this signal that is often discarded as noise.

Results
Descriptive Analyses: The GS manifests in a topographically specific manner.  Capitalizing on the 
extensive neuroimaging and phenotypic de-identified data repository, the Human Connectome Project (HCP), 
we first assessed whether the GS has a distinctive spatial topography. Here, GS was operationalized by averaging 
the timeseries (t = 4800 time points from 4 scans for the majority of participants) across all surface-based cortical 
vertices for each participant. A GS beta map was then computed by regressing the GS at each vertex of each run 
of each subject (Fig. 1). The GS beta maps were then averaged across runs and across subjects yielding a mean GS 

Figure 1.  Illustration of global signal beta map calculation. For each subject and each run, the global signal 
(X) was computed as the averaged timeseries across all cortical vertices. The global signal was then regressed 
from the timeseries of each vertex (Y), resulting in the GS beta map of a given run (β). Averaging across all runs 
within a given subject, we obtained the GS beta map of that subject. The GS beta maps for each subject were 
then used in subsequent PCA and CCA analyses (B).

https://doi.org/10.1038/s41598-019-50750-8


3Scientific Reports |         (2019) 9:14286  | https://doi.org/10.1038/s41598-019-50750-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

beta map (Fig. 2A). The average whole-cortex GS beta map exhibited similar patterns to previous studies3,18, with 
strong mapping in the medial posterior occipital lobes, posterior insula, and central sulcus.

Examination of the mean global signal beta map may obscure potential independent patterns of GS expres-
sion that exist across subjects. For this reason, we also examined the standard deviation of the GS beta maps 
across subjects, with highest variance observed in retrosplenial and visual cortex (Fig. 2B). Next, we submitted all 
subjects’ GS beta maps to principal component analysis (PCA). The first three principal components, ranked by 
maximal variance explained, exhibited patterns of weights that resemble canonical functional networks: fronto-
parietal control network19,20, default21 and dorsal attention networks22, and sensorimotor and visual networks23 
(Fig. 2C; Supplementary Fig. 1).

Testing for brain-behavior correspondence of the GS: Canonical correlation analysis.  To exam-
ine potential relationships between whole-brain GS patterns and subject-level behavioral and cognitive measures, 
we conducted a CCA between the 100 principal components derived from the GS topography data describing 
regional GS contributions for each subject, and 100 principal components derived from the HCP behavioral data. 
Non-parametric permutation analysis for null-hypothesis testing revealed a single statistically significant popula-
tion correspondence between GS topography and behavioral profiles (r = 0.667, p < 0.001; Fig. 3). The pattern of 
canonical modes for the GS closely followed spatial patterns that recapitulate the frontoparietal control network 
(positive weights) and sensorimotor and visual networks (negative weights). In assessing the similarity between 
the first principal component (Fig. 2C) and the first canonical variate (Fig. 3B), a vertex-to-vertex correlation 
showed high convergence in topography (r = 0.81, p < 0.001). The pattern of canonical component weights for 
the cognitive and behavioral subject measures followed a general positive/negative gradient of life outcomes and 
psychological function, similar to that observed in a previous CCA of interregional resting-state functional con-
nectivity and behavior in the HCP dataset24.

Robustness Analysis: Global signal topography and participant motion.  Removal of the GS using 
linear regression has been proposed as the preferred method to attenuate participant motion related confounds 
in resting-state fMRI data3,5. Further, motion has been found to relate to individual differences in behavioral 
indices, suggesting that the propensity to move in the scanner (e.g. low task compliance), is a trait25. To confirm 
that the relationship between the GS and behavior we observed was not due to participant motion, we ran two 
more analyses: (1) computing the across-subject correlation between global signal beta estimates and mean head 
motion measures (DVARS, Framewise Displacement, FD) at each vertex, and (2) computing the across-subject 

Figure 2.  Global signal topography. (A) Brain regions dominating the global signal, computed as the mean 
global signal beta map across all subjects per vertex. Brain regions with strong global signal include the visual 
cortex, posterior insula, central sulcus and cingulate sulcus. (B) Brain regions with high individual variation 
(standard deviation) of global signal topography include retrosplenial and visual cortex. (C) Global signal 
principal components computed across subjects. The patterns resemble the canonical brain networks regularly 
observed from decompositions of resting-state fMRI data.
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correlation between canonical variate scores and mean head motion measures. As illustrated in Fig. 4, the brain 
topography associated with head motion is distinct from that observed to be associated with the positive/negative 
axis of behavior reported here (Fig. 3). In addition, no associations were observed between head motion (DVARS 
and FD) and the GS (r = −0.0002 and r = −0.0367, respectively) or behavior (r = −0.0001 and r = 0.0095, respec-
tively). These supplementary analyses corroborate that meaningful associations between the GS and behavior are 
not likely to be mediated by head motion.
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Figure 3.  Individual differences in behavior associated with the global signal. (A) CCA weights of each vertex 
on the first canonical variate pair. Strong positive weights are observed in the frontoparietal and salience 
networks, and strong negative weights are observed in the motor cortex. (B) Top 20% positive (blue) and 
negative (red) behavioral variable CCA weights displayed in a word cloud. The size of the text in the word cloud 
is proportional to the absolute value of that variable’s CCA weight.

Figure 4.  Correlation of Global Signal Estimates with Head Motion. (A) Per-vertex correlation between global 
signal beta estimates and average head motion (FD and DVARS) across subjects. (B) Scatter plots between 
global signal (blue) and behavioral (red) CCA scores and average head motion (FD and DVARS). Estimated 
Pearson correlation coefficients (r) are displayed in the legend beside each label.
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Discussion
Resting-state fMRI has been widely embraced as a method to examine intrinsic functional brain networks26. 
Yet, researchers have acknowledged the challenges of separating neuronal and artifactual contributions in 
resting-state fMRI data27. The global signal (GS), or average signal intensity across the brain, is often removed 
from the timeseries via signal deconfounding to attenuate physiological and motion-related sources of noise3,5. 
However, the use of global normalization in fMRI data has long been debated28. Despite efforts towards consensus 
building with regards to the pre-processing step of removing the GS from fMRI timeseries via linear regression 
(GS regression)29, none has yet been attained30,31.

Studies measuring electrophysiology and brain metabolism provide ample indication for some neuronal com-
ponent in the GS7–9. In addition, fMRI work demonstrates that any regressors unrelated to true data noise, for 
example, also remove variance with network structure32. As such, implementing data processing procedures to 
remove the GS from a given fMRI timeseries may inadvertently discard relevant structured neural signal, par-
ticularly if the dimensionality of the data is low33. To date, there have been few systematic investigations into the 
relevance of the GS for studies attempting to link brain connectivity and individual differences in behavioral 
phenotypes34.

The present investigation examines individual differences in the spatial topography of the GS, followed 
by a CCA of these brain-wide GS patterns with the rich repertoire of behavioral data provided by the Human 
Connectome Project. First, we found that the subject-wise overall GS was related to cortical grey matter in a 
topographically-specific manner. The first principal component of the global signal, explaining ~6% of the var-
iance, was reminiscent of the canonical frontoparietal control network19,20 (positive weights) and sensorimotor 
and visual network (negative weights). The second component, explaining ~2% of the variance, represented the 
canonical anticorrelation between the default and dorsal attention networks (See Supplementary Fig. 1 for the 
first ten components of the GS).

Next, we conducted CCA using the principal components of the GS on the one hand, and phenotypic data 
on the other. This GS-behavior decomposition estimated using CCA aligns with a positive/negative axis of life 
experience and psychological indices. Greater frontoparietal control network weighting within the GS was signif-
icantly related to elevated scores on picture vocabulary, temporal discounting, life satisfaction and other measures 
on the positive axis, and lower aggressive antisocial behavior on the negative axis (Fig. 3). In fact, this positive/
negative axis of behavior is remarkably similar to that previously observed, with a critical difference that we used 
the subject-wise GS beta maps rather than inter-regional connectivity matrices of resting-state fMRI data in the 
CCA24. There appear to be many similarities between the current results and those of Smith and colleagues in the 
brain regions associated with this positive-negative axis of behavior. Key differences to note are brain functional 
connections robustly involving the cingulum and anterior temporal lobes24. In contrast, we found the strongest 
behavioral associations with lateral prefrontal cortical areas, anterior inferior parietal lobule, and other regions 
which comprise the frontoparietal control network19. The current results lead to the surprising observation that 
significant brain-behavior relationships can be derived from GS beta maps alone.

A possible explanation for our findings could be the underlying relationship between GS beta maps and func-
tional connectivity. A vertex’s value in the GS beta map represents how similar that vertex’s timeseries is to the 
averaged timeseries from the whole brain. Mathematically, this GS beta value relates to the mean functional 
connectivity between the given vertex and all vertices, including itself. Given the results from Smith and col-
leagues, one might predict that the mean functional connectivity of each vertex is associated with the behavioral 
measures. However, it is still meaningful to show that individual differences in GS topography contain sufficient 
neural information to be associated with individual variation in behaviors. This suggests meaningful differences 
in functional MRI sources of variance (GS topography versus connectivity) that are associated with behavior.

The present study extends beyond the work of Smith and colleagues in multiple ways. First, we show similar 
brain-behavior associations with positive/negative axes as that reported by Smith and colleagues, although we 
have exclusively focused on the global signal aggregates that are commonly treated as a nuisance source. So, while 
that study examined what is commonly considered to be BOLD signal of interest, our analyses centered on what is 
often removed from the BOLD signal before performing any target analyses. We have determined how the global 
signal is differentially weighted across cortex (eg. global signal topography), with distinct magnitudes and vari-
ance. Most previous work that incorporates the global signal in the analysis uses one value per brain scan, which 
ignores the topographic specificity of this aggregate statistic. It is important to note that this regional weighting 
may impact the residual signal of interest when GS regression is applied.

The current findings contribute to two substantive research areas in contemporary network neurosci-
ence, one theoretical and one methodological. First, our results speak to the theoretical systems neuroscience 
question of what aspects of neural activity are critically implicated in individual differences in cognition and 
behavior. Intrinsic functional connectivity MRI is a well validated approach to delineate and characterize 
functional-anatomic brain networks35,36. This method is also capable of revealing important dynamic aspects of 
neural processing that play an active role in cognition37,38. Intrinsic functional connectivity is thought to index 
stable individual features39, and has been associated with individual differences in a number of behavioral and 
cognitive domains as well as overall intelligence40,41. Such work has emphasized how interregional synchrony of 
brain activity involved in cognitive operations is associated with individual differences in performance of these 
cognitive operations42. The current work provides a novel complement to prior observations, suggesting that the 
GS topography alone carries structured information related to large scale brain networks and accounts for varia-
bility in behavior across individuals.

Methodologically, the current findings are relevant for the question of what effect specific pre-processing strat-
egies have on the outcome of a given functional connectomics analysis. The practice of GS regression has come 
under scrutiny for a number of reasons. Even as early as PET and fMRI work from 1998, the validity of adjusting 
for effects of GS changes was called into question, as it may meaningfully alter results and thus interpretation of 

https://doi.org/10.1038/s41598-019-50750-8


6Scientific Reports |         (2019) 9:14286  | https://doi.org/10.1038/s41598-019-50750-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

studies28. In resting-state fMRI analyses, the practice of GS regression can have additional unintended conse-
quences. After GS regression, correlation values are mathematically centered on zero, which can produce spurious 
negative correlation values43. Researchers have noted that differences in caffeine intake can affect the GS such that 
caffeine leads to widespread decreases in connectivity and global signal amplitude, suggesting a neuronal source 
for GS that varies across individuals and time44. Another concern has been highlighted with simulated fMRI 
data, in which GS regression has been shown to artificially introduce correlations between brain regions and 
distort group differences in inter-regional correlations33. A study of autism spectrum disorder demonstrated that 
GS regression leads to a reversal in the direction of group correlation differences relative to other preprocessing 
approaches, with a higher incidence of both long-range and local connectivity differences that favor the ASD 
group45. Although GS regression has been shown to mitigate the effects of several sources of noise on estimates 
of functional connectivity3,5,46, the findings highlighted above suggest that functional connectivity values derived 
after GS regression has been performed may need to be interpreted with great caution.

One reason that deconfounding via GS regression persists despite these concerns is that the procedure min-
imizes the relationship between functional connectivity and motion47. Head motion is clearly related to some 
aspects of the GS, as we again demonstrate in the current work (Fig. 4). Data denoising and the process of dealing 
with motion artifacts is particularly challenging when working with large samples of “legacy” data of varying 
quality35. The practice of treating the GS as unwanted variation of no scientific value unfortunately remains in 
effect.

A recent protocol for mitigating head motion artifact in functional connectivity MRI suggests that GS regres-
sion is “singular in its ability to remove widespread artifact5”. Meanwhile, GS regression has been shown to 
strengthen the association of functional connectivity data with multiple behavioral phenotypes across cognition, 
personality and emotion34, possibly because the gain of having cleaner data outweighs the loss of neural infor-
mation in the GS for some phenotypes. Therefore, the current findings demonstrating a relationship between 
GS topography and behavioral phenotypes are not contradictory to the strengthened associations reported by Li 
and colleagues. Depending on different research questions29, researchers should take great care in the choice of 
removing the GS during data preprocessing.

Some leaders in the area of fMRI data analysis have suggested that “…the field has reached a consensus that, 
as a pre-processing step, the global signal should not be removed48”. Many agree that it will be critical to continue 
to probe and better understand sources that contribute to the GS in future work6,30. There is growing evidence 
that prospective data acquisition procedures such as multi-echo fMRI can provide a means to effectively remove 
motion artifacts in fMRI data49–51. The current results do not speak to the question of whether or not GS regres-
sion should be utilized as a data processing strategy. Instead, we illustrate what tradeoffs can be anticipated when 
this step is included. Our results highlight the fact that a specific signal cannot always be unambiguously catego-
rized as a confounder or not52. The nature of artifactual influences in the domain of imaging neuroscience may 
take a different form as a consequence of data richness, with hundreds of phenotypic variables often recorded for 
each individual. Our findings suggest that the neuroimaging community may have to carefully reconsider current 
deconfounding practices. Ultimately, the GS in human neuroimaging appears to be both signal and noise.

Methods
Dataset.  Our population neuroscience study utilized the Human Connectome Project (HCP) S1200 release53. 
Participants (N = 1094) were healthy young adults (ages 22–37) drawn from a population of twins and siblings. 
All imaging data were acquired on a customized Siemens 3 T Skyra at Washington University in St. Louis using 
a multi-band sequence. The structural images were 0.7 mm isotropic. The resting-state fMRI data were 2 mm 
isotropic with TR = 0.72 s. Two sessions of rs-fMRI data were collected on consecutive days for each subject, and 
each session consisted of one or two runs. The length of each rs-fMRI scan was 14.4 min (1200 frames). Details 
of the data collection can be found elsewhere53,54. Informed consent was obtained from all subjects. Details about 
behavioral measures can be found in HCP S1200 Data Dictionary and55. All methods were carried out in accord-
ance with relevant guidelines and the University of Miami Institutional Review Board approved the study.

Preprocessing of resting-state fMRI data.  Preprocessing details of HCP data can be found elsewhere 
(HCP S1200 manual)53,54,56. ICA-FIX57,58 was applied for denoising. The surface (fs_LR) data were aligned with 
MSM-All59.

Motion censoring was performed to remove subjects and runs with high motion. The to-be-censored frames 
(outliers) were identified by three stages. First, volumes with FD > 0.2 mm or DVARS > 75 were marked as outli-
ers. Second, one frame before and two frames after these volumes were also flagged as outliers. Finally, remaining 
segments of data that lasted fewer than five contiguous volumes were censored. All censored frames marked in 
these three steps were discarded when computing global signal beta maps. BOLD runs with more than half of the 
frames flagged as censored were removed, resulting in 1030 subjects after motion censoring. Note that the FD 
threshold we picked is more conservative than that used in previous literature11,46,60,61. The DVARS was selected 
to achieve a similar number of censored frames as flagged by the FD threshold. In addition, two subjects did not 
have adequate family structure information (as used in the permutation testing procedure described below), 
leaving 1028 subjects for the final CCA.

Delineation of global signal beta maps.  The procedure to generate global signal beta maps is shown in 
Fig. 1. For each subject and each run, the global signal was calculated by averaging the timeseries across all cor-
tical vertices in grey matter. Then for each run, the global signal and a vector of ones were regressed together (i.e. 
with bias term/intercept) from the fMRI signal for each vertex in the fs_LR space using ordinary least squares. 
To exclude the effects of high motion, censored frames were ignored when univariate linear regression was per-
formed to regress the overall GS against each voxel’s BOLD activity fluctuations34,62. The ensuing regression (beta) 
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coefficient corresponds to the differences in the global signal for each vertex. This constituted the global signal 
beta map for each scan. Since global signal beta maps were computed from multiple scans for each subject, we 
averaged the maps from multiple scans for each subject. The averaged beta map captures the overall relationship 
between the global signal and the BOLD signal at each vertex of the examined subject. The average global signal 
beta map for each subject was used for further analyses.

It is worth noting that there are multiple ways of computing the GS in the literature. While we computed 
the GS using just the cortex34,63, one can also compute the GS using the whole brain, or all gray matter voxels51. 
However, all definitions of GS lead to very similar results. For example, in the current data, the average correlation 
between GS computed from all gray matter locations (i.e., grayordinates) and the GS computed from just the cor-
tical surface was 0.95. Thus, it is unlikely that alternate definitions of the GS would significantly alter our results.

Canonical correlation analysis.  To interrogate the relationship between the GS and behavior, we con-
ducted a CCA. CCA is a natural choice of method because this machine-learning algorithm computes linear 
combinations of the original variables for each of two multivariate datasets that, together, maximize the linear 
correspondence between both variable sets. Each ensuing canonical mode, reflecting a pair of canonical vari-
ates, is indicated by a linear weighting of behavioral measures and a linear weighting of cortical vertices that are 
maximally correlated with each other. The strength of association (r) between the two variable sets was tested for 
robustness and statistical significance using a statistical null-hypothesis testing permutation framework24.

Behavioral data exclusion and pre-processing.  Several behavioral measures contain large amounts of 
missing observations, have heavily skewed distributions, and/or may represent potential confounds. To ensure 
these variables did not adversely affect our analysis, we followed a similar data-exclusion and pre-processing 
procedure as that described in24:

	 1.	 Nine measures were defined as confounds, and regressed out from the data (including each of the nine 
measures squared). These measures included acquisition Reconstruction Software Version, Head Motion 
(Mean DVARS and Mean FD), Weight, Height, Blood Pressure - Systolic, Blood Pressure - Diastolic, Hemoglo-
bin A1c, Cube-Root of Total Brain Volume and Intracranial Volume.

	 2.	 Behavioral measures were excluded from the CCA if they did not meet the following criteria: number of 
missing observations exceeds 500, the measure contained extreme outliers (defined as 100 standard devi-
ations above the median), the standard deviation of the measure was greater than zero, or the size of the 
largest equal-values-group exceeds 95% of the observations.

	 3.	 Behavioral measures that were redundant or not of interest for the current analysis included (for variable 
descriptions see https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Pub-
lic-+Updated+for+the+1200+Subject+Release): Age, Gender, Race, Ethnicity, Employment, Income, 
In School?, Missouri Born?, BMI, BMI Category, BMI Category Heaviest, Blood Drawn?, Hematocrit 1, 
Hematocrit 2, TestRetest Interval, Thyroid Hormone, all Hypothyroid and Menstrual measures, PMAT24_SI, 
PMAT_RTCR, all DDisc measures (excluding the AUC measures), all SCPT measures (excluding SCPT_
SEN and SCPT_SPEC), IWRD_TOT, IWRD_RTC, ER40_CRT, Mars_Errs, all Endurance, GaitSpeed, 
Dexterity, and Strength measures, and Eye Color Vision.

In total, 143 behavioral measures were excluded (including confounds). Following removal of these variables, 
all categorical variables were dummy-coded, and all variables were then z-score normalized. This resulted in a 
battery of 177 standardized behavioral measures for the CCA analysis. See Supplementary Fig. 2 for analyses 
without behavioral data exclusion.

Data reduction.  To avoid overfitting in the CCA analysis, and to contend with the high dimensionality of 
the datasets, we conducted a principal component analysis (PCA) individually on the pre-processed behavio-
ral measures and on the global signal beta maps (z-score normalized), analogous to previous work24. Since we 
obtained a global signal beta map for each subject, we treated every subject as an observation and each vertex as 
a feature dimension in PCA. For example, the first principal component of global signal beta maps captured the 
most inter-subject variance in the global signal spatial topography. 100 principal components were derived from 
each of the behavioral and global signal beta maps. As in24, the covariance matrix of the behavioral measures 
was projected onto the nearest positive-definite covariance matrix, which avoided any imputation of missing 
observations.

A CCA was then conducted on the 100 behavioral and 100 global signal principal component scores. CCA 
estimates canonical variate pairs, or linear combinations of the behavioral with its links to a linear combination 
of global signal principal components, that are maximally correlated. Canonical variate pairs are organized in 
terms of decreasing magnitude, meaning the first canonical variate pair explains the largest amount of variation 
in the data, followed by the mode with second-largest explained variance, and so forth. The maximal number of 
canonical components (N = 100) was estimated. The CCA output of interest was the overall strength of the corre-
lation between each canonical variate pair; the pattern of canonical weights for the original behavioral measures, 
on the one hand, and cortical vertices on their canonical variate, on the other hand. The canonical weights for 
each measure and cortical vertex were computed as the correlation between the canonical variate scores and the 
original behavioral measures and GS beta values across subjects.

Statistical significance testing of canonical variate correlations (r).  To test for the statistical signif-
icance of the correlation strength (r) for all discovered brain-behavior associations (e.g. canonical variate pairs), 
we carried out the null permutation testing framework used in24. This flexible testing scheme aimed at rejecting 

https://doi.org/10.1038/s41598-019-50750-8
https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release
https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release


8Scientific Reports |         (2019) 9:14286  | https://doi.org/10.1038/s41598-019-50750-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

the null hypothesis that the obtained pairs of canonical variates are likely due to random noise linking our brain 
and behavior data. The permutation test proceeded as follows: (1) subjects (i.e. rows) behavioral principal compo-
nent scores were randomly re-ordered, respecting family structure64, to intentionally break the dependence struc-
ture between the two variable sets, (2) the CCA analysis was re-run between the original GS principal component 
scores and the re-ordered behavioral principal component scores, and (3) the first canonical variate pair’s corre-
lation coefficient (the maximum possible correlation coefficient) was placed into a null distribution of correlation 
coefficient values supposing a lack of brain-behavior association, (4) this process was repeated 10,000 times, and 
(5) the original canonical variate pairs were declared statistically significant if their associated correlation coef-
ficients exceeded the 99.9% percentile (i.e., p < 0.001 of the null distribution defined above). As noted in Results, 
only the first canonical variate pair was statistically significant (p < 0.001).

Data Availability
The MRI and behavioral datasets used in this study are available to the public from the Human Connectome Pro-
ject (S1200 release; https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-da-
ta-release).

Code Availability
All code used to analyze data and create figures for the current study are available with no restrictions. Custom-
ized Matlab code can be accessed here: https://github.com/tsb46/Global-Signal-CCA-Analysis.
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