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ABSTRACT 

 It is of critical importance to estimate changing transmission rates and their dependence 

on population mobility. A common approach to this problem involves fitting daily transmission 

rates using a Susceptive Exposed Infected Recovered (SEIR) model (regularizing them to avoid 

overfitting), and then computing the relationship between the estimated transmission rate and 

mobility. Unfortunately, there are often several, very different transmission rate trajectories that 

can fit the reported cases well, meaning that the choice of regularization determines the final 

solution (and thus the mobility-transmission rate relationship) selected by the SEIR model. 

Moreover, the classical approaches to regularization—penalizing the derivative of the 

transmission rate trajectory—do not correspond to realistic properties of pandemic spread. 

Consequently, models fit using derivative-based regularization are often biased toward 

underestimating the current transmission rate and future deaths. In this work, we propose 

mobility-driven regularization of the SEIR transmission rate trajectory. This method rectifies the 

artificial regularization problem, produces more accurate and unbiased forecasts of future deaths, 

and estimates a highly interpretable relationship between mobility and the transmission rate. 

Mobility data for this analysis was collected by Safegraph (San Francisco, CA) from major US 

cities between March and August 2020. 

Keywords: SEIR model, reproduction number, transmission rate, regularization, cell phone 

mobility, COVID-19 

Abbreviations: Susceptible Exposed Infected Recovered (SEIR). 

 

INTRODUCTION 

As the COVID-19 pandemic has demonstrated, it is difficult to assess to what degree and 

under what conditions states/countries may reopen their economies without dramatically 

increasing the rate of pandemic transmission. Answering this question requires a better 

understanding of the relationship between population mobility (economic activity) and the 

transmission rate. The transmission rate, r(t), is defined as the expected number of people a 

single infected individual transmits the virus to on a single day. Population mobility, m(t), is 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T



 

 

defined as the number of unique visits to points of interest in a county, as measured by cell-

phone traffic. [1] 

The most natural way to estimate the r(t)-to-m(t) relationship should consist of two principal 

steps: 1) estimating r(t) from an SEIR model fit to death data [2] [3]; 2) comparing the estimated 

r(t) to the observed m(t). This appears to be the approach taken by several notable pandemic 

models [4] [5]. Unfortunately, the significant noise in the data often results in several model 

solutions that fit the same data well, but imply starkly different r(t)-to-m(t) relationships (Figure 

1). Moreover, these solutions are highly dependent on the (arbitrary) choice of r(t) regularization, 

which is necessary to avoid model overfitting. 

This makes it impossible to discover an accurate, stable mobility-transmission rate 

relationship by first estimating the transmission rate and then attempting to align it with mobility. 

Instead, it is necessary to determine whether there exists a transmission rate trajectory that both 

fits the data and aligns with the observed mobility trend. In this work, we propose a model that 

estimates r(t) as a function of m(t), which effectively regularizes r(t) using mobility data instead 

of artificial, derivative-based constraints. Consequently, the model produces a more accurate, 

unbiased, and stable solution, even in the presence of the significant variance observed in death 

data. 

METHODS 

Data 

Aggregated and anonymized mobility data was obtained from Safegraph through an 

academic partnership program. We elected to fit the model to county-level death data, 

specifically for the 25 US counties with the highest death counts. Each county’s model was fit to 

death data beginning on the date of the first death in the county and continuing through the end 

of May 2020; on average, this period was 91 days. While the model can easily be trained on case 

data (official counts of new infections), we believe death data is more reliable, as the number of 

reported cases depends strongly on the speed and availability of testing. Moreover, because the 

state of the pandemic and degree of social distancing varies widely within each state, we 

determined that state-level data is unsuitable for estimating the m(t)-to-r(t) relationship through 

an SEIR model, which assumes a uniform transmission rate. For example, in California, 

economic reopenings occurred soonest in rural regions of the state that were relatively unscathed 
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by the COVID-19 virus. As a result, these initial reopenings appeared to have little impact on the 

transmission rate, though cases in California eventually surged in June 2020, a few weeks after 

reopenings began in major cities. A state-level model would have interpreted rural reopenings as 

evidence of a weak m(t)-to-r(t) relationship and thus would have vastly underestimated the 

impact of metropolitan reopenings. In fact, we find that it is often impossible for a state-level 

model to elucidate any strong, stable m(t)-to-r(t) relationship. 

SEIR model specification 

 Below, we provide the specifications for the SEIR model used in the subsequent sections. 

In addition to the typical SEIR variables, this model includes the following features: 1) 

asymptomatic infections [6] and infectious incubation periods [7] both of which are assumed to 

be 56% percent [8] as infectious as symptomatic infectious; 2) a hospitalization period, which is 

modeled as an exponential distribution with a mean of 8 days [9]; and 3) a critical care period, 

which is also modeled as an exponential distribution with a mean of 8 days [9]. Since the model 

described in the next section is fit to death data, the most important trajectory within this model 

is Exposed ( ), Infected (     , Hospitalized ( ), Critical Care ( ), Death ( ) (see Table 1 for 

all model notations). Note that the use of death data does not impact the SEIR model’s 

fundamental assumption that infections drive infections. Deaths are simply used as a delayed 

signal for past infections. The model assumes deaths occur after infections according to an 

exponential distribution with a mean of approximately 12 days. Furthermore, incubation periods 

are assumed to follow an exponential distribution with a mean of 6 days. Thus, on average, 

mobility on day t is related to deaths on day t+18. The only difference between this approach and 

a more typical infection-based fitting approach is that model error is calculated with respect to 

forecasted and observed deaths, rather than forecasted and observed infections. We made the 

decision to use deaths based on the observation that COVID infections depended heavily on 

testing rates and capacities, which makes infections counts far less reliable. Moreover, there was 

no clear way to correct for this source of bias. Therefore, we chose to fit to death data because 

we believed that this was the most consistent and widely available metric for measuring the 

extent of the epidemic. The University of Washington’s IHME has written in greater depth about 

the relative merit of death data. [10] 

  (     
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Mobility-based transmission rate estimation 

One would expect that the relationship between r(t) and m(t) could change over time as 

social distancing policies are implemented and relaxed. For instance, even if the same number of 

people visit the grocery store as did before the pandemic, they are less likely to become infected 

due to masks, shorter dwell times, lower store capacity, etc. Our model accounts for this by 

modeling an r(t)-to-m(t) relationship that is permitted to evolve over time. Let    be the initial 

transmission rate and  (   be the r(t)-to-m(t) factor, determining how r(t) scales with mobility 

over time. Our model assumes that the percent change in r(t) is equal to the product of  (   and 

the percent change in m(t) : 

 (    (    

 (    
  (  

 (    (    

 (    
     

Changes in  (   are quite gradual, as social distancing behavior is unlikely to change from 

day to day (i.e. not the number of people coming in contact with each other, but how people 

behave when they do come in contact). Therefore, it is sufficient to estimate  (   on a weekly 

basis. This dramatically reduces the computation time to fit the model and serves as a natural 

regularizer. 

Loss function, regularization, and robustness to outliers 

In addition to fitting  (   on a weekly basis, we regularize it by penalizing its first derivative. 

This encourages the model to find as consistent a m(t)-to-r(t) relationship as possible. This is 

more realistic than the corresponding assumption used by most r(t) estimation models since, 

while we expect to observe dramatic changes in r(t), we do not expect to observe dramatic 
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changes in the relationship between m(t) and r(t). Together, these penalties produce the 

following minimization problem. Let D(t) be the number of observed deaths on day t and SEIR(t, 

 (    ) be the number of model-forecasted deaths on day t, where  (   is the initial r(t). Then, 

we find the optimal model parameters by minimizing the following model error E: 

  ∑(    (   (       (    

 

  ∑( (    (    )
 

 

 

where   is the regularization factor. Without any regularization, the model still produces 

plausible, stable m(t)-to-r(t) relationships for 68% of the counties we processed. However, there 

are a few counties for which the model terminates at a local minimum corresponding to a highly 

unstable m(t)-to-r(t) relationship or even diverges. Our numerical experiments found that any 

      consistently prevents the model from diverging. Therefore, to avoid inserting additional 

bias into the model through stronger regularization, we elected to set   to its minimum effective 

value of 0.4. The addition of   does not provide a theoretical guarantee that the resulting solution 

is a global minimum. However, it does insert significant convexity into the objective function, 

which was sufficient to ensure the optimizer avoided local minima for the 2,250 models fit 

during our experiments. We also achieved faster and more stable results by setting a prior on the 

initial reproduction number   . Most estimates [11] have placed the standard reproduction 

number between 2.5 and 3, so we set a normal prior with a mean of 2.8 and a standard deviation 

of 1. Enforcing this prior is equivalent to adding a third term to the objective function: 

  ∑(    (   (       (    

 

  ∑( (    (    )
 

 

 (   (         

where    is the average length of the infectious period (which is necessary to convert between 

the transmission rate and the reproduction number). In the following experiments, the models are 

fit by minimizing this error function with Scipy’s L-BFGS numerical minimization algorithm. 

When forecasting future deaths, our models calculated future transmission rates using the most 

recent estimate for  (   and the most recent 7-day moving average of m(t). 

RESULTS 

When fit to US COVID-19 death data from March through May and used to forecast deaths 

over the next 5 weeks, the mobility model overestimated deaths by 5.0% among the 25 counties 
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with the highest death totals. This compared favorably with our highest-accuracy non-mobility 

model (where r(t) was permitted to vary as needed to fit the death data with regularization of the 

first derivative), which underestimated deaths by 32.5% over the same period. Figure 2 compares 

the non-mobility model and our mobility model relative errors for each county, where relative 

error is defined as the difference between forecasted and observed deaths, divided by the total 

number of deaths in the county. As one can see, while the non-mobility model systematically 

underestimated future deaths, the mobility model appeared to be nearly unbiased; its average 

error was close to zero. 

Figure 3 compares forecasted trajectories from the mobility and non-mobility models for six 

US counties with large numbers of cases and deaths. 

The fitted results of our mobility model also appear to be quite stable, meaning that the 

model only infrequently revised its estimate of the relationship between m(t) and r(t). Among the 

25 counties with the highest death totals, the mean change in  (   for models fit daily between 

June 1 and June 22 was 1.83%. Figure 4 demonstrates the stability of the LA county fitted results 

over that period, including forecasts for the following month. 

During and immediately following lockdowns in the 25 counties with the most deaths, 

estimates of the mobility-transmission factor clustered closely around 0.89, meaning that an 1% 

decrease in mobility was associated with a 0.89% decrease in the transmission rate (Figure 5). As 

expected, social distancing procedures appeared to decrease the sensitivity of the transmission 

rate to mobility to a median value of 0.67 in week 3 post-shutdown. However, the mobility-

transmission factor appeared to increase in subsequent weeks as social distancing was relaxed; it 

was estimated as 0.72 in week 5, 0.76 in week 7, and 0.78 in week 9 post-shutdown. The 

dispersion in mobility-transmission factors also increased during this period, suggesting that 

some counties were more effective than others in reopening portions of their economies without 

dramatically increasing r(t). Several counties, primarily in Massachusetts, appeared to decrease 

r(t) even as m(t) increased. This could be due to improved contact tracing, isolation, and 

adherence to social distancing and mask recommendations. 

DISCUSSION 

 We have proposed a model that uses mobility data to forecast future deaths and estimate 

the relationship between mobility and the transmission rate. The model finds a stable association 
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between m(t) and r(t) that is conserved across several major counties, and it outperforms non-

mobility models when forecasting future deaths. Moreover, the fitted trends in  (   suggest that 

public health interventions (e.g. contact tracing, social distancing, mask wearing) initially 

reduced the sensitivity of the transmission rate to changes in mobility in some counties, but  (   

rebounded as social distancing was relaxed. The median, most recent estimate for the mobility 

transmission factor of  (        suggests that transmission rates remain sensitive to increases 

in mobility. While the model’s forecasts are limited to the approximately 25 counties with 

sufficient daily death data, it provides an improved framework for understanding the relationship 

between mobility and the transmission rate, as well as estimates of this relationship for many of 

the US counties with the largest outbreaks. 
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Table 1: Explaining model notations 

Variable Description 

 (   Susceptible individuals in the population. Initialized to 90% of population. 

 (   Individuals exposed to the virus. Initialized to 0.  

 (   Individuals with ongoing, detected infections. Initialized to 10.  

  (   Individuals with ongoing, undetected infections. Initialized to 0.  

 (   Patients currently hospitalized. Initialized to 0.  

 (   Patients currently in critical care. Initialized to 0. 

 (   Recovered individuals. Initialized to 0. 

 (   Virus-related deaths. Initialized to 0. 

 (   Transmission rate. Initialization set by model.  

  Population size.  

  Relative infectivity of undetected and pre-symptomatic infections. Set to 0.54. 

  Rate of exposed period. Set to 0.2.  

   Proportion of cases undetected. Estimated to be 0.88 [8]. 

   Rate of undetected infection period. Set to 0.12 [12].  

   Rate of detected infection period. Set to 0.11 [12]. 

   Proportion of detected infections hospitalized. Set to 0.3 [13]. 

   Rate of hospitalization period. Set to 0.125 [9]. 

   Proportion of hospitalized patients admitted to critical care. Set to 0.3 [14]. 

   Rate of critical care period. Set to 0.125 [9]. 

  Death rate among critical care patients. Set to 0.55 [15]. 
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Figure 1: Alternate transmission rate trajectories in Montgomery County, Maryland: Derivative-

Smoothed Trajectory (A) and Mobility-Based Trajectory (B). Transmission rate is plotted on the 

y-axis, and the number of days since the first case in the county is plotted on the x-axis. Both 

trajectories closely fit the observed death data, but show very different trends. The first consists 

of a slow, sustained decrease in the transmission rate, while the second consists of a sharp initial 

decrease (corresponding to the lockdown) followed by a slow rise (corresponding to reopening). 

A model that penalizes either the first or second r(t) derivative would prefer the first result to the 

second. The mobility-based model, described in subsequent sections, produces the second 

trajectory. While the second solution reflects the likely scenario that r(t) increased in the summer 

of 2020 as the US economy reopened, the first r(t) suggests that the economic reopening did not 

influence the transmission rate. 

Figure 2: Relative error comparison for mobility and non-mobility models. 

Figure 3: Forecasted deaths for six counties using the mobility model (solid line) and non-

mobility model (dashed line). Models were trained on March through May 2020 COVID-19 data 

(fully shaded curve) and tested on the following 5 weeks (lightly shaded curve). 

Figure 4: Forecasted death trajectories for models fit daily between June 1 and June 22 for Los 

Angeles County. 

Figure 5: Mobility-transmission factor estimates by week after initial shutdowns. 
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