
Frontiers in Immunology | www.frontiersin.

Edited by:
Chih-Hao Chang,

Jackson Laboratory, United States

Reviewed by:
Akio Ohta,

Foundation for Biomedical Research
and Innovation, Japan

Heiichiro Udono,
Okayama University, Japan

*Correspondence:
Hongli Du

hldu@scut.edu.cn

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 30 December 2021
Accepted: 31 January 2022

Published: 24 February 2022

Citation:
Wei J, Hu M and Du H (2022)

Improving Cancer Immunotherapy:
Exploring and Targeting Metabolism in

Hypoxia Microenvironment.
Front. Immunol. 13:845923.

doi: 10.3389/fimmu.2022.845923

REVIEW
published: 24 February 2022

doi: 10.3389/fimmu.2022.845923
Improving Cancer Immunotherapy:
Exploring and Targeting Metabolism
in Hypoxia Microenvironment
Jinfen Wei , Meiling Hu and Hongli Du*

School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China

Although immunotherapy has achieved good results in various cancer types, a large
proportion of patients are limited from the benefits. Hypoxia and metabolic
reprogramming are the common and critical factors that impact immunotherapy
response. Here, we present current research on the metabolism reprogramming
induced by hypoxia on antitumor immunity and discuss the recent progression among
preclinical and clinical trials exploring the therapeutic effects combining targeting hypoxia
and metabolism with immunotherapy. By evaluating the little clinical translation of the
combined therapy, we provide insight into “understanding and regulating cellular
metabolic plasticity under the current tumor microenvironment (TME),” which is
essential to explore the strategy for boosting immune responses by targeting the
metabolism of tumor cells leading to harsh TMEs. Therefore, we highlight the potential
value of advanced single-cell technology in revealing the metabolic heterogeneity and
corresponding phenotype of each cell subtype in the current hypoxic lesion from the
clinical patients, which can uncover potential metabolic targets and therapeutic windows
to enhance immunotherapy.
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INTRODUCTION

Since the Food and Drug Administration (FDA)-approved immune checkpoint blockade (ICB) in
2011, immunotherapy has achieved unprecedented advances in clinical treatment among various
cancer types (1). However, a large proportion of patients still do not get a clinical benefit (1, 2).
There are mainly two categories underlying resistance to immunotherapy, including host
heterogeneous factors (such as age, gender, personal diet, drug use, lifestyle) (3, 4) and the host
internal factors containing tumor cell genome and composition characteristics of the tumor
microenvironment (TME) (such as the cytokine, metabolic, and cellular interaction) (5). The
TME is an extensively discussed component, as TME is composed of cancer cells, stromal cells, and
extracellular matrix (ECM), as well as soluble molecules in ECM (6). Antitumor function of
immune cells is influenced by characteristics of the TME, such as crosstalk with stromal cells (7),
concentrations of inflammatory factors and chemokines (8), degree of hypoxia (9), accumulation of
harmful metabolites, and nutrient levels (10). Therefore, to improve the antitumor immunity, it is
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necessary to understand the complex biological characteristics of
TME and the corresponding cell state of each subtype.

Among the characteristics of TME, hypoxia is a prevalent
resistance factor to immunotherapy, which contributes immune
escape (11) and is often accompanied by metabolism
reprogramming and acidic metabolite efflux of cells within
hypoxia TME (12). Thus, in addition to insufficient oxygen, the
effects induced by hypoxia also cooperatively contribute to
dysfunction of antitumor immunity (13). Therein, metabolism
activity not only provides energy for survival of immune cells but
also is critical for antitumor functions of immune cells through a
variety of mechanisms (14). Over the past years, studies on
metabolism of immune cells have been revealed and well-
reviewed (15). For example, many studies highlighted the
upregulation of glycolysis (16) as well as mitochondrial
metabolism (17) as the hallmark of T-cell activation. Besides,
proliferating immune cells, including activated T cells, rely on
glutamine (18), serine (19), tryptophan (20), cysteine (21), and
other amino acid metabolism to support protein and nucleotide
synthesis. However, the increased uptake and activatedmetabolism
of glucose and glutamine in tumor cells cause the scarcity of these
nutrients in the TME, resulting in the loss of metabolic activity of
effector T cells and promoting exhaustion phenotype (15).
Immunosuppressive cells including regulatory T cells (Tregs),
M2-like tumor-associated macrophages (TAMs), and myeloid-
derived suppressor cells (MDSCs) could use fatty acid oxidation
(FAO) to provide cell energy and further maintain immune
suppression on effector T cells under hypoxia and nutrition-
deprived condition (22). Ultimately, these metabolic changes in
immune effector cells and immunosuppressive cells can impede
the efficacy of antitumor immune responses. It seems like
regulating hypoxia-induced metabolism of tumor cells and
immunosuppressive cells could improve the antitumor immune
response and inhibit tumor growth. Therefore, it is urgent that
exploring cellular metabolic plasticity in each cell type under
current TME, regulating critical metabolic pathways that
exacerbate TME or damage the immunity of effector cells,
is the primary task of improving immune response and
immunotherapy (23).

Recently, technological advances such as single-cell RNA
sequencing (scRNA-seq), flow cytometry-based methods, can
clearly distinguish individual cells in the TME (24), which could
reveal the metabolic heterogeneity of various types of cells in the
current TME and further help discover potential metabolic
checkpoints for tumor immunotherapy (25). In this light, this
review focuses on discussing the critical impacts of metabolism
reprogramming and acidosis TME on immune function under
hypoxia conditions, discussing the emerging strategy of targeting
the critical metabolic pathway and hypoxia to enhance
immunotherapy, highlighting novel discoveries delineating the
heterogeneity of cells within TME based on single-cell
approaches and prospecting the view that reveals the
immunometabolism heterogeneity from the perspective of
clinical patients by “understanding and regulating cellular
metabolic plasticity under the TME” via advanced single-
cell technology.
Frontiers in Immunology | www.frontiersin.org 2
ANTITUMOR IMMUNITY
DYSFUNCTION CAUSED BY
METABOLIC REPROGRAMMING IN
HYPOXIA TUMOR MICROENVIRONMENT

Although tumors are heterogeneous, most solid cancers exhibit
hypoxia conditions compared to normal tissues (26). In addition to
the effect on tumor cells, it has been revealed that hypoxia influences
the immune function through disrupting or altering metabolism in
immune cells infiltrated in TME due to hypoxia-inducible factor-1
(HIF-1)dependent or -independent effects. In this section, we
describe the metabolic landscape of the TME that play roles to
destroy antitumor immunity and describe targeting effects of specific
metabolism and hypoxia that restore the immunity (Figure 1).

Metabolism Alteration Dampens
the Function of Immune Effector
Cells in Hypoxia Condition
Immune effector cell infiltration is a key indicator of effective
anti-immune response. Preclinical research shows that the
effector T-cell infiltration is negatively related to hypoxia level
in prostate cancer, and they found that using hypoxia-activated
prodrug TH-302 could guide invasion of T cell to TME (27).
Besides, the accumulating evidence suggests that a high
proportion of T cells are exhausted and localized in the TME
across various cancer types, resulting in immune dysfunction in
cancer patients (28, 29). As hypoxia is the main characteristic of
TME, elucidating whether hypoxia regulates T-cell exhaustion
and which signal response to hypoxia is vital to develop novel
strategies to activate the immune response. Interestingly, two
recent pieces of research indicate that mitochondrial dysfunction
and dynamics induced by continuous hypoxia stress lead to the
appearance of exhaustion phenotype and upregulation of
exhaustion-related genes in CD8+ T cells in vitro (30, 31).
Relieving hypoxia in TME by reducing oxygen consumption of
engineered tumor cells or regulating hypoxia response factor by
overexpression of peroxisome proliferator-activated receptor
gamma coactivator 1 alpha (PGC-1a) in T cells results in a
significantly reduced subset of T-cell exhaustion in the
melanoma mouse model (31). Inhibiting the signal that result
in hypoxia TME and mitochondrial dynamics in T cells recovers
the mitochondrial metabolism of T cells, prevents T-cell
exhaustion, and further decreases tumorigenesis in
nasopharyngeal carcinoma mouse model (30). Similarly, a
terminally exhausted phenotype of T cells is generated under
hypoxia conditions in vitro (32). As cells that adapt to hypoxia
tend to upregulate and stabilize HIF, it was found that expression
of genes related to T-cell exhaustion is highly associated with
HIF1A expression in glioma patients, indicating that HIF1A may
also signal the responding hypoxia to regulate T-cell exhaustion
status (33). Growing tumor increases the oxygen demand and
causes a harsh hypoxia TME; however, oxygen is also crucial for
the T cells to survive, implying that oxidative metabolism of
tumor cells may be a potential target to improve antitumor
immunity (34). Relieving symptoms of tumor hypoxia by
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FIGURE 1 | The hypoxia microenvironment. The hypoxia tumor microenvironment (TME) suppresses antitumor immunity on effector CD8+ T cells and natural killer
(NK) cells through enhancing metabolic stress in a variety of mechanisms. Hypoxia, acidity, and nutrient deprivation are the main characteristics of the TME. Cancer
cells upregulate glycolysis, oxidative phosphorylation (OXPHOS) to support rapid proliferation, resulting in an oxygen-reduced, glucose-deprived, and lactate-enriched
microenvironment. This glucose-deprived TME restricts glycolysis and OXPHOS in tumor-infiltrating lymphocytes such as CD8+ T cells and NK cells. Hypoxia also
damages the mitochondrial function by reducing PGC1a expression of CD8+ T cells, leading to the exhausted phenotypes and reduce the release of cytotoxic factors
including IFN-g. By contrast, regulatory T cells (Treg) increase fatty acid synthesis and glycolysis, while myeloid-derived suppressor cells (MDSCs) and tumor-associated
macrophages (TAMs) enhance fatty acid oxidation to provide energy. Obviously, these immunosuppression cells would survive by adjusting their metabolisms and further
enhance immunosuppressive phenotype. Reciprocally, tumor cells promote macrophage polarization to an M2-like phenotype. TREM+TAMs expand in hypoxia TME,
leading to CD8+ T cell apoptosis. SPP+TAMs expand in hypoxia TME and promote epithelial–mesenchymal transition (EMT) of cancer cells and also recruit Tregs to
TME. Furthermore, other myeloid cells, monocytes and dendritic cells, prefer glycolysis in the TME. IFN-g, interferon-gamma; PD-L1, programmed cell death receptor
ligand 1; IL-1b, interleukin-1beta; TNFa, tumor necrosis factor alpha; ARG1, arginase 1; NRF1, nuclear factor erythroid-derived 2-related factor 1; TREM, triggering
receptor expressed on myeloid cell; PGC1a, peroxisome proliferator-activated receptor gamma coactivator 1 alpha; CCL28, chemokine CC-chemokine ligand 28;
IDO1, indoleamine 2,3-dioxygenase 1; IL-23, interleukin-23.
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metformin treatment brings an antitumor effect through
inhibiting cyclic AMP pathway on gd T cells (35). Peroxisome
proliferator-activated receptor alpha (PPAR-a) agonist could
enhance fatty acid catabolism of T cells under hypoxia and
low-glucose TME, thus improving the immune response (36).
Besides, hyperoxic breathing is another way used to enhance T-
cell infiltration and improve lung tumor survival in mice (37).

Natural killer (NK) cell is reported to secrete fewer cytokines
including interferon-gamma (IFN-g) in the hypoxia TME (38).
Consistently, compared with the control group, HIF1A-deficient
NK cells display more oxidative phosphorylation (OXPHOS) but
less glycolysis, along with significantly producing IFN-g, when
exposed to prolonged hypoxia (39), indicating that NK cells
might use the full potential of OXPHOS for their antitumor
function. Given this critical dependence on OXPHOS for the
cytotoxic effect of T/NK cells, reducing the oxygen consumption
of tumor cells or downregulating hypoxia-dependent
downstream metabolic pathways of immune cells will increase
oxygen utilization and OXPHOS in T/NK cells. Of note, the in
vivo study about the effect of hypoxia on T/NK cell’s function is
scarce, and further study is needed to assess whether metabolism
dysfunction is the pivotal factor to dysfunction of these cytotoxic
lymphocytes under the prevalence of hypoxic regions in tumors.

Metabolism Alteration Drives
Function of Immunosuppressive
Cells in Hypoxia Condition
Immunosuppressive cells are revealed to develop self-interest
strategies instigated by tumor cells to survive in hypoxia TME
and further block the immune response, including metabolic
adaptation and adjustment under hypoxia conditions.

Various studies indicate that Tregs, rather than CD4+ effector T
cells, are recruited and activated in the hypoxia zone of colon cancer
(40), melanoma (41), and lung cancer (42) to enhance
immunosuppression in TME. Of note, HIF1a is also the key
metabolic sensor, and this function is largely contributing to
metabolism adaptability under hypoxia conditions. HIF1a activates
glycolysis instead ofOXPHOS inTregs, leaving FAO to support Treg
activity and suppressing effector T cell proliferation within the
hypoxic zone (43). Inhibition of lipid uptake in Tregs could
increase the antitumor function of CD8+ T cells and prolong the
survival in themousemodel of brain tumors (43). Interestingly,Tregs
utilize an HIF1a-driven metabolic switch only under hypoxia TME,
which reflected that activating FAO and upregulating HIF1a are the
metabolism adjustments of Tregs under hypoxia TME and may be
targets to improve antitumor immunity. In conformity with the
earlier study, HIF1a knockout prevents Tregs to enter the TME and
further improves the survival of the brainmousemodel (44). HIF1a
activates glutamine-deprived macrophages to secrete interleukin
(IL)-23, which enhances Treg immunosuppressive function in a
clinical sample and mouse model of kidney cancer study (45).

As TAMs tend to accumulate in hypoxic regions, hypoxia
promotes the polarization of TAMs to the immunosuppressive
phenotypes (15). The hypoxia-activated Seven in absentia homolog
2 (SIAH2)-nuclear factorerythroid-derived2-related factor1 (NRF1)
signal axis suppresses mitochondrial function and induces immune
Frontiers in Immunology | www.frontiersin.org 4
response of protumor in macrophages, and regulation of NRF1 in
macrophages could inhibit polarization of TAMs and restrain tumor
maintenance in breast cancer (46). Based on the mouse model,
hypoxia could enhance OXPHOS and M2-like polarization
phenotype in TAMs through tumor-secreted exosomes across
melanoma, squamous skin carcinoma, and lung cancer (47).
Triggering receptor expressed on myeloid cell (TREM)-1+ TAMs
are abundant in hypoxia TME and undermine the effect function of
CD8+T cells and cause the apoptosis of T cells in liver cancer patients
(48). Pharmacological inhibition TREM-1 revokes the
immunosuppression by abrogating Treg recruitment and
enhancing the T-cell cytotoxic function, further eliminating the
programmed cell death receptor ligand 1 (PD-L1) blockade
resistance (48). IL-1b, highly secreted by macrophages, enhances
tumor cell metastasis through HIF1a signals under hypoxic TME in
the liver (49) andbreastmouse cancermodel (50).Conversely,TAMs
could exacerbate hypoxia levels and glycolysis of tumor cells (51).
Undoubtedly, removing TAMs in the TME could lead to increases in
infiltration and antitumor immunity of T cells in the mouse model
(51). MDSCs turning differentiation to TAMs is regulated by HIF1a
under hypoxia in several solid turningmodels (52). Hypoxia induces
5'-adenosine mono phosphate (5’-AMP) secreted by tumor cells in
the extracellular space, thus promoting the maintenance of MDSCs
and further enhancing immunosuppressive activities in liver cancer
(53). PD-L1 is upregulated inMDSCs, andblockingPD-L1decreases
IL-6 and IL-10 expression in MDSCs and abrogates the suppression
toCD8+Tcells under hypoxia conditions (54). In sum, hypoxia is the
major factor to promote immunosuppressive cell function and
polarize TAM to anti-inflammatory phenotype, thus regulating
metabolism, and hypoxia may be a realizable approach to prompt
antitumor immunity.

Effect of Extracellular Acidification on
Immune Dysfunction in Hypoxia Condition
The intrinsic effect of hypoxia cannot always be induced by
insufficient oxygen directly. Understanding the integration of
insufficient oxygen-mediated responses together with other
hypoxia-driven effects is key to revealing the biology of immune
cells in hypoxia. CD8+T cells become an energy phenotype and lost
effect function in a low pHmedium in vitro, and regulating the pH
by pharmaceutical treatment could increase the therapeutic
potential of adoptive immunotherapy in melanoma-bearing
mouse model (55). Immune effector cells lost antitumor function
along with diminishing IFN-g production in high lactic acid
production mice, leading to tumor immune escape in melanoma
(56). However, unlike effector T cells, Tregs can survive in acid and
lactate-rich TME, further suppressing the effector T-cell function
(57, 58). Studies have shown that lactate derived from tumor cells
can induce the expression of vascular endothelial growth factor
(VEGF) and arginase 1 (ARG1) through the HIF1A signaling
pathway and promote the polarization of TAM to M2-like (59,
60). Similarly, lactate stimulates macrophage M2-like polarization
(61), alters pro- to the anti-inflammatory response of macrophage
via G-Protein coupled receptor 81 (GPR81)-mediated Yes1
associated transcriptional regulator (YAP) inactivation (62), and
subsequently promotes T cell apoptosis in an in vitro study (63).
February 2022 | Volume 13 | Article 845923
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Based on the universality of hypoxic regions and acidification
in tumors and the lasting impact of hypoxia on anti-immune
response, further research is warranted to focus on the
heterogeneous responses of different cells induced by hypoxia.
That said, various cell-specific hypoxia-induced metabolic
pathways and metabolic flexibility within a specific immune
cell subpopulation and functional state need to be understood
and presented in various cancers, which helps to explore ways for
targeting metabolism to improve the immune response.
TARGETING METABOLISM
AND HYPOXIA TO ENHANCE
IMMUNOTHERAPY RESPONSE

Overall, the effect of antitumor immunity is affected by hypoxic
environment and metabolic disorders; therefore, regulating
metabolism or hypoxia for cooperation immunotherapy effect
Frontiers in Immunology | www.frontiersin.org 5
deserves much more attention. Besides, various studies show that
checkpoint signaling is regulated by metabolism and hypoxia
and vice versa also affects (11, 64). Therefore, the prospect of
combining metabolic inhibitors or targeting hypoxia treatment,
with checkpoint inhibitors, is expected to enhance the efficacy of
checkpoint blocking (Table 1).

Targeting Cancer Cell Metabolism to
Enhance Immunotherapy
Metabolism reprogramming in tumor cells has been suggested as
the characteristic for evaluating immunotherapy under hypoxia.
For example, Harel et al. (65) find that high mitochondrial
metabolism in melanoma cells is associated with the better
effect of ICB treatment as the higher antigen presentation in
tumor cells. The inconsistent results have been revealed by other
studies, as mitochondrial metabolism in tumor cells results in
hypoxia, which damages the antitumor function of effector T
cells. OXPHOS metabolism of cancer cells is associated with
T-cell exhaustion and poor response to Programmed cell death 1
TABLE 1 | Outcomes of preclinical studies with combined immune checkpoint inhibitors and metabolic inhibitors across various cancer types.

Cancer types Treatment Animal Model Outcome References

Melanoma Anti-PD-1+Inhibition lipid metabolism in
cancer cells

C57BL/6J mice Increase sensitivity to T cell-mediated killing (65)

Melanoma Anti-PD-1+GLUT1 knockdown in tumor
cells

C57BL/6J mice Increase the immune activity and overall survival (34)

Melanoma Anti-PD-1+Metformin C57/BL6, OT-I
mice

Improve intratumoral T-cell function and tumor clearance but
lose sensitivity in aggressive tumors

(66)

Melanoma Anti-PD-L1+IDO inhibitor C57BL/6 mice Enhance antitumor immune response, decrease tumor volume,
increase mouse survival

(67)

Melanoma Anti-PD-1+MCT inhibitor C57BL/6J or
C57BL/6N mice

Delay tumor growth (68)

Melanoma Anti-PD-1+Glutamine antagonist C57BL/6 mice Delay tumor growth, prolong animal survival time (69)
Melanoma Anti-PD-1+SREBP inhibitor C57BL/6 mice Reduce tumor growth and prolong survival in B16-bearing mice (70)
Melanoma Anti-CTLA-4, anti-PD-1+Bicarbonate

supplementation
C57BL/6 mice Decrease tumor growth (71)

Melanoma Anti-PD-1+Nanoparticle containing MCT1
inhibitor

C57BL/6 mice Prolong long-term survival (72)

Breast cancer Anti-PD-1+LDH inhibitor BALB/c mice Inhibit tumor growth (73)
Breast cancer Anti-CTLA-4+LDHA-KD BALB/cAnN mice Prolong the survival outcomes (74)
Breast cancer Anti-PD-1+Glutamine antagonist BALB/cJ mice Enhance the efficacy of immune checkpoint blockade, reduce

tumor growth
(75)

Breast cancer Anti-PD-1/PD-L1+BO1-CSF2–KO tumors C57BL/6J mice Decrease the tumor growth and the rate of metastasis (76)
Colon cancer Anti-PD-1+Folate Pathway Inhibitor BALB/c and

C57BL/6 mice
Increase in tumor cell killing (77)

Colon cancer Anti-PD-1+PPARg coactivator C57BL/6N and
BALB/c mice

Enhance antitumor immunity, improve the efficacy of PD-1
blockade

(78)

Colon cancer Anti-PD-1+Treatment with pH-modulating
injectable gel (pHe-MIG)

C57BL/6 mice Lead to tumor clearance (79)

PDAC Anti-PD-1+GFAT1 inhibitor (DON) C57BL/6 mice Reduce tumor weight and tumor volume (80)
Osteosarcoma Anti-PD-L1+L-arginine supplementation BALB/c mice Prolong survival of osteosarcoma-bearing mice (81)
Colon and lung
cancer

Anti-PD-1+Mitochondrial activators C57BL/6 or BALB/
c mice

Suppress tumor growth (82)

Melanoma and
colon cancer

Adoptive T-cell transfer immunotherapy
+Interleukin-10-Fc

C57BL/6 (C57BL/
6J) mice

Revitalize terminally exhausted T cells, eradicate solid tumors (83)

Melanoma and
lung cancer

Anti-PD-L1+FATP2 inhibitor lipofermata C57BL/6 mice Enhance anti-PD-L1 tumor immunotherapy and delay tumor
progression

(84)

Pan-cancer Anti-PD-1+Nanoparticle containing PDK1
inhibitor

BALB/c mice Enhance cytotoxic T-cell infiltration, decrease the tumor volume (85)

Pan-cancer Anti-PD-1+Nanoparticle targeting
knockdown LDHA

BALB/c, C57BL/6
mice

Inhibit tumor growth (86)

Pan-cancer Anti-PD-L1+Inosine supplementation C57BL/6 mice Delay tumor growth, prolong animal survival time (87)
February 2022 | Volume 13 | A
PD-1, Programmed cell death 1 (PD-1); GLUT1, Glucose transporter type 1; PD-L1, Programmed cell death 1 ligand 1; IDO, Indoleamine 2,3-dioxygenase; MCT, Monocarboxylate
transporter; SREBP, Sterol regulatory element binding transcription factor; CTLA-4, Cytotoxic T-lymphocyte associated protein 4; MCT1, Monocarboxylate transporter1; LDHA, Lactate
dehydrogenase A; CSF2, Colony stimulating factor 2; PPARg, Peroxisome proliferator-activated receptor gamma; GFAT1, Glutamine–fructose-6-phosphate transaminase 1; FATP2, Fatty
acid transport protein 2; PDK1, Pyruvate dehydrogenase kinase 1.
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(PD-1) blockade immunotherapy inmelanomadue tohighoxygen
consumption resulting in hypoxia in the TME (34). Inhibiting
OXPHOS by Ndufs4 knockdown in tumor cells or metformin
treatment has reduced hypoxic environments and enhanced PD-1
blockade efficacy (34, 66). Consistent with the above study (35),
these studies show that metformin treatment could reduce oxygen
consumption in cancer cells and relieve hypoxia in metformin-
treated animal model, further enhancing antitumor immunity.
Besides, metformin inhibits mitochondrial complex I of cancer
cells in themicromolar range,which is a comparable plasma steady-
state concentration of metformin to diabetics who received
standard doses of metformin (88–90). However, metformin may
inhibit tumor cell proliferation through immune-mediated
mechanisms because metformin directly improves effector T-cell
function in vivo. Combining metformin with an anti-PD-1
treatment directly activates CD8+ T cells and boosts IFN-g
secretion, leading to the decreased glycolysis and OXPHOS of
tumor cells compared with anti-PD-1 treatment alone (91). It is
found that metformin-treated animals reduce the PD-L1 stability
oncancer cells, then increase the activity of cytotoxicT lymphocytes
(92). Above all, metforminmay affect the antitumor mechanism of
immune cells throughmultiplemechanisms, andmore research on
pharmacokinetics and mechanisms is further needed to better
define the effects of metformin on the cancer immune system.
Regarding details of applyingmetformin in cancer therapy inmore
studies, we refer and recommend the more excellent and
comprehensive reviews on this topic (93, 94).

As glycolysis is highly needed for tumor cells, inhibiting
glycolysis in tumor cells could augment the anti-PD-1 response
without affecting T-cell function in melanoma (68) and breast
cancer mouse model (73). Carbonic anhydrase IX (CAIX),
upregulated by HIF to activate glycolysis, contributes to cancer
cell growth by enhancing the efflux of lactate under hypoxic
conditions (95). Pharmacological inhibition of CAIX combined
with immunotherapy may be a potential strategy for the
treatment of hypoxia tumors (96).

Effector T cells also require another metabolism, like
methionine, glutamine, and folate. High uptake of methionine by
tumor cells leads to methionine deficiency in TME, and treatment
combination of an inhibitor of methionine transporters and anti-
PD-L1 significantly inhibits tumor growth comparedwith anti-PD-
L1 treatment alone (97). Targeting glutamine-utilizing enzyme
enhances the anti-PD-1 therapy effect by increasing CD8+ T cell
infiltration (80). Pharmacologically inhibiting glutamine
metabolism by antagonist JHU083 enhances the effect of anti-
PD-1 treatment in immunotherapy-resistant tumors by regulating
the metabolism of tumor cells on the Trichloroacetic acid (TCA)
cycle and amino acids (75). Inhibiting folatemetabolism synergizes
anti-PD-1 treatment by hampering tumor cell survival and
increasing the mitochondrial metabolism of T effector cells (77).

Targeting Immune Cell Metabolism to
Enhance Immunotherapy
Conversely, activation of immune cellular metabolism is a
straightforward strategy to enhance immunotherapy. For
example, pharmacological activation of Mechanistic target of
Frontiers in Immunology | www.frontiersin.org 6
rapamycin (mTOR) and their downstream factors wound
synergize anti-PD-1 treatment in the colon cancer mouse model
(82).ActivationofOXPHOSbyIL-10proteincanrestore thevitality
of terminally exhausted T cells, potentiate the anticancer function,
and prolong the survival time when combined with anti-PD-1
treatment (83). As we know, T cells will preferentially select
glycolysis for energy and immune function (98, 99); however, due
to glucose deprivation by tumor cells, T cells with limited access to
glucose switch to OXPHOS (23). Hypoxia is common in solid
cancer that suggests that there needs to be another strategy to
support T-cell metabolism in the nutrient- and O2-limited TME.
The fatty acid is another source for supporting mitochondrial
respiratory capacity to enhance T-cell infiltration level as well as
the antitumor function in the hypoxia and insufficient glucose
supply TME. PPAR agonist is observed to induce FAO in T cells
and enhance PD-1 blockade therapy in melanoma (36), which
suggest that increasing catabolismoffatty acids inCD8+T cellsmay
enhance antitumor ability in the glucose deprivation and hypoxia
TME. Supplementation of nutrients in the TME is also a way to
activate an immune response to enhance immunotherapy. Inosine
(87) and L-arginine (81) supplementation combined with anti-PD-
L1 treatment could increase the number of CD8+ T cells expressing
cytotoxic factors and improve survival compared with anti-PD-L1
alone in themousemodels. Ideally, exploring and targeting specific
metabolism enable to suppress tumor growth and increase immune
cell activity, which will improve immunotherapy. It has recently
been shown that combining glutamine antagonist and anti-PD-1
immunotherapydramatically improves antitumoreffects compared
with anti-PD-1 therapy alone (69), revealing the bidirectional effect
of glutamine deprivation with increasingOXPHOS and cell activity
of CD8+ T cells and decreasing the glycolysis in cancer cells.

Tregs would lose function in the absence of glucose, and
combining glycolysis inhibition with CTLA-4 blockade enhances
the overall survival in the mouse model (74). Inhibition of fatty acid
metabolism in MDSCs could enhance anti-PD-L1 tumor
immunotherapy (84) and adoptive T-cell therapy (100), inducing a
significant antitumor effect. Blocking fatty acid synthesis in M2-like
TAMs would lead to mitochondrial damage to the M2 macrophage
phenotype, relieve the immunosuppressive environment, and further
enhance anti-PD-1 immunotherapy (70). Inhibiting arginase 1
(ARG1) expression in TAMs would enhance immune therapy
including anti-PD-1 and anti-CTLA4 in breast cancer (76).
Moreover, short-chain fatty acids in TME limit the capacity of DC
to stimulate T cells and restrict the antitumor effect in CTLA-4
blockade treatment (101).

The above partial studies only emphasized the regulation of
metabolism on immune response without assessing hypoxia. The
future study needs to characterize and evaluate the metabolic
inhibitory effect to trigger immunotherapy response in
hypoxic tumors.

Reducing Hypoxia and Acidity to
Enhance Immunotherapy
In addition to targeting metabolic pathways activated by
hypoxia, directly targeting hypoxia and acidity is also an
effective way to increase sensitivity to immunotherapy response.
February 2022 | Volume 13 | Article 845923
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Relieving hypoxia using hypoxia-activated prodrug TH-302
combined with ICB treatment could reduce MDSC density,
thus increasing T-cell infiltration and restoring the antitumor
effect (27). As mentioned above, acidic TME impairs the function
of T cells; adding bicarbonate monotherapy to neutralize would
increase T-cell infiltration and enhance antitumor responses in
tumor models (71). NaHCO3-loaded Pluronic F-127 effectively
alleviates extracellular tumor acidity and increases the anti-PD-1
treatment (79).
Application of Nanomaterials Loading
Metabolism Drugs Under Hypoxic
and Acid Tumor Microenvironment
to Enhance Immunotherapy
Due to extreme hypoxia and acidic conditions within the TME,
using new nanomaterials can accurately solve the problem of
drug delivery in the hypoxic and acidic niche. Combined anti-
PD-1 inhibitor with nanoparticle containing a glycolysis
inhibitor can significantly enhance several T cells and enhance
therapy effect (85). Combining anti-PD-1 therapy with nano-
drug composed of an Monocarboxylate transporter 1 (MCT1)
inhibitor loaded inside the ultra-pH-sensitive nanoparticles
increases the effect of T cells and decreases exhaustion of T
cells, significantly reducing tumor volume and prolonging
survival (72). And the effect of nanoparticle treatment is
attributable to alleviating the acidic microenvironment further
activating T cells (86). The therapeutic implication of these
models is that the application of nanomaterials in targeting
metabolism can accurately target tumor lesions to enhance the
immune response.
Combination of Targeting Metabolic
Disorders and Immunotherapy
in Clinical Therapeutics
With research continuing to reveal the effect of metabolic
alteration on tumor immune response, clinical trials are worth
exploring. The improved outcomes have been observed after
combined ICB and metformin treatment compared with single
ICB in melanoma (102), small cell lung cancer (103), and non-
small cell lung cancer (104). As preclinical findings that
inhibition of indoleamine 2,3-dioxygenase (IDO), a principal
enzyme in tryptophan catabolism, could enhance the immune
response in the mouse model show promise (105), the study
investigates whether it still works in clinical trials. However,
combing IDO inhibitor with anti-PD-1 therapy failed to prolong
patients’ survival compared with immunotherapy alone in
melanoma (106). Although interference with specific metabolic
pathways in tumor cells or immune cells can be synergistic with
immunotherapy, these targets may not be applicable in the
current tumor lesion. Thus, studies need to continue to explore
metabolic flexibility and metabolic adaptability based on the
different cell functions in various types of cells within the current
hypoxia TME.
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EXPLORING METABOLIC
PLASTICITY UNDER HYPOXIA
TUMOR MICROENVIRONMENT IN
THE SINGLE-CELL ERA

As the cellular metabolic heterogeneity and hypoxia level in vitro
cultures are far from the physiological characteristics of tumor
lesions, the complexity of TME in cancer patients’ tissues is hard
to be fully revealed in the past. The biggest technological
advances in recent years of single-cell approaches can be
applied to analyze and provide the more faithful biological and
metabolic characteristics of cells at single-cell resolution (Figure 1).

Revealing Cellular Metabolic
Plasticity and Immunity Function
Based on a Single-Cell Study
Recently, various methods developed for studying single cells have
been used to reveal the metabolism of cells derived from tissues in
cancer patients (107–109). A study based on single-cell metabolic
regulome proteins defines T-cell subtypes using 27 metabolisms
and 18 cellular phenotypic protein expressions and reveals that
CD8+ T cells with low metabolism are at the edge of the tumor,
while CD8+ T cells with high metabolism are near the core of the
tumor (110). Miller et al. (111) developed a method based on
enzyme activity on consecutive slides to evaluate the metabolism
of cells in cancer tissues and find glycolytic Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) activity enhanced in CD8+ T
cells but reduced in Tregs in human colon cancer compared with
normal tissues. This study is inconsistent with the earlier study
(43) that Treg is inclined to use glycolysis and fatty acid to provide
energy for cell activity, suggesting elusive shapes of TME on the
metabolism of immune cells. A study uses SCENITH, a method
for metabolic profiling samples, with scRNA-seq to explore the
metabolism characteristics of myoid cells in cancer. Interestingly,
they find TAMs behave highly TCA metabolism in renal
carcinoma tumor tissues but result in high glycolysis in tumor-
adjacent tissues, while monocytes and DC cells prefer glycolysis in
both tumor and adjacent tissues (112), which is consistent that
M2-like TAMs prefer to use TCA to maintain cell viability. This
study shows that the metabolic function of TAMs is specifically
regulated by TME through affecting metabolic gene expression
and also implies that the metabolism gene expression reflates
metabolism activity to a great extent. The RNA-seq data of
metabolic gene expression indeed reflect the metabolic situation,
which has been confirmed by bulk and scRNA-seq analysis (112,
113). The scRNA-seq data reveal the positive correlation not only
between hypoxia and glycolysis but also between hypoxia and
OXPHOS in the tumor, stromal and immune cells across
squamous cell carcinoma of the head and neck and melanoma
(114). The high fatty acid level in TME leads to increased uptake of
fatty acid metabolism in tumor cells and results in lipid scarcity to
damage T-cell function, and reducing fatty acid uptake by
manipulating key gene expression in tumor cells would enhance
the antitumor immunity in the mouse model study (115).
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Revealing Antitumor Immunity
Under Hypoxia Tumor Microenvironment
Using Single-Cell Study
Hif1a-deficient NK cell subcluster enhances the OXPHOS and
antitumor ability in lung cancer mouse model observed by
scRNA-seq study, indicating that regulation of hypoxia-induced
pathways is away to resist thedamage causedbyhypoxia (39).Based
on the single-cell analysis inhuman liver cancer, tumorswithhigher
hypoxia levels showhigherTreg infiltration and reduced expression
of cytotoxicity-related genes in CD8+ T cells than in low-diversity
hypoxia (116), implying that hypoxia might influence the immune
ability for antitumor through to bring multiple cell types.
Interestingly, elevated HIF1A in TAMs is significantly associated
with resistance to antiangiogenic therapy based on scRNA-seq
analysis on Clear cell renal cell carcinomas (ccRCCs) patients
(117), indicating that hypoxia TME is essential for the protumor
functionofTAMs. Single-cell andbulkRNA-seqanalysis shows that
HIF1A-inhibited tumor cells can increase glycogen synthesis and
lead to an inflammatory response that contributes to tumor
formation in pancreatic tumors (118). Our earlier study based on
scRNA-seq shows that hypoxia level is positively correlated with
gene signature and gene expression related to T-cell exhaustion.
Also, SPP1+TAMs, potentially enhancing tumor metastasis and
immunosuppression, areobserved tobehighlyexpanded inhypoxia
TME across independent patient samples in six cancer types (119).

Rethinking After Learning From
Single-Cell Studies
As shown above, with the development of single-cell technologies,
we can reveal the previous missed immune cell subtypes and their
corresponding metabolic state in patient samples, which provides
a clearer view of metabolic changes within hypoxia TME. For
example, SPP1+TAMs, which are different from the classic
classification of TAMs and accounts for a large proportion of
macrophages within the tumor, have a tumor-promoting
phenotype under hypoxic conditions (119). Besides, the
metabolic characteristic of different cell subtypes inspires three
concepts that subvert the previous cognition. First, we cannot
simply define hot or cold tumors based on the level of T-cell
infiltration because the infiltrated T cells will be affected by the
local hypoxia TME as well as the nutritional accessibility and have
different metabolic activities and immunophenotypes (110).
Second, the metabolic profile of immune cells in normal tissues
may not reflect their metabolic activity in cancer because different
myeloid cell subtypes have distinct metabolic patterns in the same
TME but the same in adjacent tissues (112). Third, previous
conclusions are too simplistic for cancer to analyze the complex
TME, as there is a high correlation between hypoxia and glycolysis
as well asOXPHOS in tumors (114). These results further indicate
that integrating single-cell approaches is important in advancing
metabolic studies of immune cells, characterizing metabolic
flexibility within a cell subtype and well quantifying metabolic
heterogeneity among different cell types in the current TME.
Indeed, with the improvements of scRNA-seq technology and
accumulated datasets, the computational biology method for
studying metabolism based on scRNA-seq needs to be
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developed to characterize cancer metabolism to characterize the
metabolic diversity in a single-cell landscape (120). Besides, the
metabolic findings should also be validated by using multiple
strategies and a large sample.
DISCUSSION, CONCLUSION,
AND OUTLOOK

Overall, we now recognize that the success of antitumor therapies is
widely influenced by insufficient oxygen, metabolism
reprogramming, and by-products induced by hypoxia in the local
TME; therefore, interpreting how these processes specifically
influence immune cell function could be applied in
immunotherapy. Based on such observations, we put forward a
concept of “understanding and regulating cellular plasticity to the
current TME,” stating that the phenotype of immune cells to the
current TME situation includes hypoxia and nutritional deficiency.
Exploring which characteristics of the TME have the greatest impact
on immunecells, thenblockingpathways leading to thecurrentTME,
will alleviate harsh TME and selectively affect the protumor cells
demand those pathways and enhance the antitumor function of
effector cells. Revealing the flexible metabolic pathways activated in
specific cell types within hypoxia TMEbased on clinical samples is of
great significance for precise targeting. As multi-omic datasets
accumulated, reasonable and efficient use of these data will provide
a good value for studying metabolic plasticity of immune cells and
corresponding cell state within the hypoxia TME. Cytometry and
scRNA-seq are complementary approaches, and the metabolic
flexibility of each cell type can be analyzed and inferred from the
results of scRNA-seq through key gene expression with specific
metabolic pathways and networks and then verified through
cytometry. For example, one can collect the key metabolism feature
ofT-cell exhaustion subtypes inhypoxiaTMEbyanalyzingpublished
scRNA-seq data and then use a few specific keymetabolic antibodies
used for flow cytometry and further provide more precise metabolic
reprogrammingunder hypoxia or nutritional accessibility.Of course,
there are few computer methods and tools available to present the
metabolic landscape at the single-cell level; therefore, additional
development and improvement of methods and analytical tools,
including clustering methods using metabolic features on the single-
cell level and pathway enrichment techniques for single cells,
are indispensable.
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