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Abstract: Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of
biomedical problems. The gold nanoparticles production by biological method (“green synthesis”)
is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts.
This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms
(bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis
and the influence of size, shapes, and capping agents on the functionalities are described. The
proposed action mechanisms on target cells are highlighted. The biological activities of “green”
AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical
application are also discussed.

Keywords: gold nanoparticles; green synthesis; capping agents; antimicrobial activity; anticancer
activity; antiviral activity

1. Introduction

The production of the substances using biological synthesis is of particular interest
to receiving new therapeutic compounds and environment safety. The last decades were
marked by a huge number of works devoted to nanoparticles produced by so-called “green
synthesis”. The metal-based nanoparticles are silver, gold, platinum, nickel, manganese, ti-
tanium, and zinc nanoparticles [1]. Biological properties with a “+” sign against pathogenic
microorganisms, cancer cells, various protozoa, helminths, etc., are presented [2–6]. Despite
the fact that silver nanoparticles occupy the lion’s share of this topic’s research [7], other
nanoparticles also seem to be interesting objects. Gold nanoparticles are undoubtedly the
second most popular nanoparticles due to their distinctive physicochemical properties [8,9].
Gold has been used for both therapeutic and aesthetic purposes since ancient times. The
term “soluble gold” appeared in China and Egypt in the 4th or 5th century BC [10]. The
most famous example is the Lycurgus Cup, which shows a different color depending
on the dichroic effect achieved by making the glass with proportions of gold and silver
nanoparticles dispersed in the colloidal form [11]. In the Middle Ages, gold popularity was
explained by magical and healing properties such as treatment of heart and infectious dis-
eases, cancers, and a beneficial organism effect [12]. The gold antibacterial properties were
first described by the outstanding microbiologist Robert Koch in 1890, who studied the
low concentrations effect of potassium cyanide on tuberculosis bacilli [13]. The first report
about gold nanoparticles—AuNPs— was published by Faraday in 1857, who studied gold
nanoparticles in a colloidal (dispersed) system and described in detail their optical features,
such as the light-scattering properties of suspended gold microparticles [14]. Then the
theory for scattering and absorption by spherical particles was formulated by G. Mie [15].
At the end of the XIX–beginning of the XX century, R.A. Zsigmondy was the first to describe
the methods of colloidal gold synthesis with different particle sizes [16]. The rapid growth
of nanotechnology in the late 20th and early 21st centuries has made AuNPs one of the
most intensively studied objects to solve fundamental and applied problems in medicine.
Physical and chemical methods were used to obtain gold nanoparticles, but such synthesis
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of NPs was accompanied by using highly toxic chemicals and the formation of dangerous
byproducts [17]. Unlike chemical and physical technics “green” synthesis did not have
these disadvantages. The term “green” synthesis has several meanings: environmentally
friendly, economical, high yield, single-step option, and safe for humans. Different methods
are applied to characterize biogenic AuNPs. The shape and size of synthesized “green”
AuNPs are defined by Scanning Electron Microscopy (SEM) and Transmission electron mi-
croscopy (TEM) [18,19]. The proposal coating biomolecules attached to the AuNPs surface,
responsible for its reduction and stabilization, are identified by FTIR [20,21]. The wide
possibilities of AuNPs use were discovered due to their diverse properties. Antimicrobial,
antiviral, and anticancer activities were found to open a new chapter in the treatment
of various diseases [22–24]. The property of surface plasmon resonance (SPR) gives a
possibility to use gold nanoparticles as sensors in biological and chemical sciences [25,26].
Important AuNPs’ aspects are their geometric shape, size, as well as the parameters of
biosynthesis (temperature, pH), and the biological object used as a “green factory” [27].
The last is one of the most significant, because diversified cellular compounds—proteins,
enzymes, acids, etc., can play an important role in the characteristic features of AuNPs
received from specific objects. For medical use, this means an absence of toxic effect on
healthy human cells, as well as the purposefulness of the effect of nanoparticles. This re-
view is devoted to the amazing properties of gold nanoparticles, but also to their synthesis
mechanisms and interaction with living objects, which can become the basis of potential
multipolar application.

2. Properties of Gold Nanoparticles
2.1. AuNPs Biosynthesis

Chemical and physical methods were traditionally applied for the synthesis of gold
nanoparticles. However, their use is accompanied by several drawbacks. For the chem-
ical methods, the main disadvantages (for example, using Citrate reduction, 1-amino-
2-naphthol-4-sulfonic acid (ANSA) [28,29]) are supposed to use highly toxic reagents,
environmental pollution, carcinogenic solvents, contamination of precursor. On the other
hand, physical methods (for example, a laser irradiation method) require expensive equip-
ment and high energy consumption [30]. In addition, the low stability of AuNPs, difficulties
in controlling crystal growth, and particle aggregation make the above methods less advan-
tageous. Currently, the “green” method of AuNPs synthesis is attracting more attention
due to the expansion of nanotechnology capabilities. The use of non-toxic agents without
additional stabilizers and reducing agents, renewable materials, low energy expenditure,
and ecological safety are the key factors of biological synthesis popularity. The living organ-
isms’ great diversity allows the production of specific, practice-oriented gold nanoparticles.
Moreover, the biomolecules involved in the biosynthesis by bacteria, fungi, algae, and
plants have a positive effect both on the synthesis process and on the resulting AuNPs.

The biosynthesis mechanism. The production of gold nanoparticles is a sufficiently
simple process that does not require an increase in temperature and pressure. The general
scheme assumes the following: the biological extract (bacterial, fungal, plant, etc.) is added
dropwise to the HAuCI4 salt solution and mixed well to initiate the AuNPs synthesis
process [31]. The color change of the resulting solution indicates the nanoparticles pro-
duction. Notwithstanding that many publications are illustrating the AuNPs synthesis
using different organisms (bacteria, algae, fungi, plants), the mechanism of the biogenic
process is not fully understood. The biosynthesis takes place in two steps: at the first,
Au3+ is reduced to Au0, and at the second, agglomeration and stabilization result in the
AuNPs formation (Figure 1) [32]. Interestingly, a wide variety of bio-compounds (enzymes,
phenols, sugars, etc.) can participate both in the gold reduction and in the stabilization and
capping of nanoparticles [33–35].
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Biosynthesis by bacteria. Microorganisms can act as a potential “factory” for gold
nanoparticles production [36]. The biosynthesis mechanism was found to be both ex-
tracellular and intracellular for bacteria according to the location of AuNPs production
(Figure 2) [37,38].

J. Funct. Biomater. 2021, 12, x FOR PEER REVIEW 3 of 31 
 

 

sugars, etc.) can participate both in the gold reduction and in the stabilization and capping 
of nanoparticles [33–35]. 

 
Figure 1. The mechanism of AuNPs biosynthesis. 

Biosynthesis by bacteria. Microorganisms can act as a potential “factory” for gold na-
noparticles production [36]. The biosynthesis mechanism was found to be both extracel-
lular and intracellular for bacteria according to the location of AuNPs production (Figure 
2) [37,38]. 

 
(a) 

Au0 

J. Funct. Biomater. 2021, 12, x FOR PEER REVIEW 4 of 31 
 

 

 
(b) 

Figure 2. Schematic mechanism of extracellular (a) and intracellular (b) AuNPs biosynthesis. 

However, the extracellular synthesis of gold nanoparticles is the most common [38]. 
Gold ions are first trapped on the surface or inside the microbial cells and then reduced 
to nanoparticles in the presence of enzymes [36]. It is supposed that the enzymatic way is 
one of the best possible routes for AuNPs synthesis [36]. The enzyme nitrate reductase 
was shown to play a vital role in the gold ions reduction [39,40]. For example, the AuNPs 
biosynthesis in the bacteria Stenotrophomonas maltophilia, Rhodopseudomonas capsulate, lu-
minescent bacteria Pseudomonas putida, and Pseudomonas fluorescence is associated with the 
enzyme NADPH-dependent reductase, which converts Au3+ to Au0 through the enzy-
matic process of metal reduction using electron transfer [41–44]. The extracellular proteo-
lytical nature is hypothesized for the AuNPs biosynthesis process in Actinobacter spp. [45]. 
The presence of AuNPs on the membrane inner side suggests that some gold ions (Au3+) 
can cross the cell barrier through the ion transfer channel and are reduced by enzymes on 
the cytoplasmic membrane and inside the cytoplasm [41]. The positively charged metal 
ions transport, with the help of negatively charged proteins or microbial enzymes binding 
to them on the cell wall surface or in the cytoplasm, subsequently forming AuNPs of var-
ious sizes and shapes, is an intracellular mechanism of AuNPs biosynthesis [39,46,47]. In 
addition, this process can be mediated through ion pumps, carrier-mediated transport, 
endocytosis, ion channels, or lipid permeation [48]. Thus, AuNPs synthesis by non-path-
ogenic bacteria Deinococcus radiodurans, known for their resistance to radiation and oxi-
dants, showed that the presence of a wide range of antioxidants (for example, carotenoid, 
pyrroloquinoline-quinone, and phosphoproteins) for protecting against oxidative dam-
age of nucleic acids and proteins, can provide a microenvironment to facilitate the reduc-
tion of Au (III) and the AuNPs formation [49]. Gold nanoparticles were distributed 
throughout the cell wall, cytosol, and extracellular space. The intracellular AuNPs pres-
ence suggests that gold ions can be transported into cells and converted into AuNPs [49]. 
Another example of an intracellular synthesis mechanism is biosynthesis by Lactobacillus 
kimchius [50]. In addition, it is supposed that NADH-dependent enzymes and sugars se-
creted by microorganisms on the cell surface are responsible for the Au3+ reduction, while 
proteins and amino acid residues inside cells can be stabilizing agents for nanoparticles 
[50,51]. 

Biosynthesis by fungi. The fungal synthesis of gold nanoparticles can also be both ex-
tracellular and intracellular. The intracellular mechanism can be realized by reducing sug-
ars, proteins such as ATPase, glyceraldehyde-3-phosphate dehydrogenase, and 3-glucan-
binding proteins involved in the energy metabolism of fungal cells [40,52]. Au3+ diffuse 

Au0 

Figure 2. Schematic mechanism of extracellular (a) and intracellular (b) AuNPs biosynthesis.



J. Funct. Biomater. 2021, 12, 70 4 of 31

However, the extracellular synthesis of gold nanoparticles is the most common [38].
Gold ions are first trapped on the surface or inside the microbial cells and then reduced to
nanoparticles in the presence of enzymes [36]. It is supposed that the enzymatic way is one
of the best possible routes for AuNPs synthesis [36]. The enzyme nitrate reductase was
shown to play a vital role in the gold ions reduction [39,40]. For example, the AuNPs biosyn-
thesis in the bacteria Stenotrophomonas maltophilia, Rhodopseudomonas capsulate, luminescent
bacteria Pseudomonas putida, and Pseudomonas fluorescence is associated with the enzyme
NADPH-dependent reductase, which converts Au3+ to Au0 through the enzymatic process
of metal reduction using electron transfer [41–44]. The extracellular proteolytical nature is
hypothesized for the AuNPs biosynthesis process in Actinobacter spp. [45]. The presence of
AuNPs on the membrane inner side suggests that some gold ions (Au3+) can cross the cell
barrier through the ion transfer channel and are reduced by enzymes on the cytoplasmic
membrane and inside the cytoplasm [41]. The positively charged metal ions transport,
with the help of negatively charged proteins or microbial enzymes binding to them on the
cell wall surface or in the cytoplasm, subsequently forming AuNPs of various sizes and
shapes, is an intracellular mechanism of AuNPs biosynthesis [39,46,47]. In addition, this
process can be mediated through ion pumps, carrier-mediated transport, endocytosis, ion
channels, or lipid permeation [48]. Thus, AuNPs synthesis by non-pathogenic bacteria
Deinococcus radiodurans, known for their resistance to radiation and oxidants, showed that
the presence of a wide range of antioxidants (for example, carotenoid, pyrroloquinoline-
quinone, and phosphoproteins) for protecting against oxidative damage of nucleic acids
and proteins, can provide a microenvironment to facilitate the reduction of Au (III) and
the AuNPs formation [49]. Gold nanoparticles were distributed throughout the cell wall,
cytosol, and extracellular space. The intracellular AuNPs presence suggests that gold
ions can be transported into cells and converted into AuNPs [49]. Another example of an
intracellular synthesis mechanism is biosynthesis by Lactobacillus kimchius [50]. In addition,
it is supposed that NADH-dependent enzymes and sugars secreted by microorganisms
on the cell surface are responsible for the Au3+ reduction, while proteins and amino acid
residues inside cells can be stabilizing agents for nanoparticles [50,51].

Biosynthesis by fungi. The fungal synthesis of gold nanoparticles can also be both
extracellular and intracellular. The intracellular mechanism can be realized by reduc-
ing sugars, proteins such as ATPase, glyceraldehyde-3-phosphate dehydrogenase, and
3-glucan-binding proteins involved in the energy metabolism of fungal cells [40,52]. Au3+

diffuse through the cell membrane and are reduced by systolic redox mediators. However,
it is unclear whether the diffusion of the Au3+ ions occurs through the membrane by
active bioaccumulation or passive biosorption [53,54]. Interestingly, the fungal ultrathin
slices research indicated the AuNPs concentration in the vacuoles of cells [40]. Extracel-
lular formation of gold nanoparticles occurs by adsorption of AuCl4− ions on cell wall
enzymes by electrostatic interaction with positively charged groups [55]. Regardless,
NADPH-dependent oxidoreductases either on the cell surface or in the cytoplasm are
the key enzymes in AuNPs biosynthesis, apparently, as in the case of other nanoparticles
(for example, AgNPs) [56–59]. Das et al. determined that NADH acted as a cofactor of a
protein and/or an enzyme (for example, glutathione reductase) responsible for the gold
ions reduction [60,61]. A glutathione-like compound, phytochelatin of Candida albicans,
was shown as another alternative compound directly involved in the AuNPs synthesis [62].
In the presence of glutathione, Au ions initiate the synthesis of phytochelatin, then Au3+

ions are reduced to AuNPs [62]. Another remarkable example of the AuNPs synthesis may
be biosynthesis due to phenol oxidases–Mn peroxidases, laccases, and tyrosinases in xy-
lotrophic basidiomycetes both intracellularly and extracellularly [63]. Notably, the melanin
was found to be involved in the biosynthesis of gold nanoparticles by Yarrowia lipolytica [64].

Biosynthesis by algae. Another original object for production and studying various
properties of AuNPs are algae. Being a source of specific compounds typical only for this
group of organisms (for example, fucoidan, neutral glucan, and guluronic and mannuronic
acid residues containing alginic acid) with a wide range of biological activities (antibacte-
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rial, anticoagulant, and antifouling activity), algae have enormous biomedical significance.
The synthesis process can proceed by extracellular and intracellular mechanisms [65].
Thus, sulfonated polysaccharide compounds and amide bond protein molecules can be
involved in the reduction of gold ions to nanoparticles and AuNPs stabilization in an
aqueous medium using Turbinaria conoides [66]. In addition, a synthesis mechanism im-
plying electrostatic interactions between gold anions and functional groups of algae was
proposed [67]. [AuCl4−] bound to positively charged functional groups, such as amino
groups (-NH2), on the algae surface, and after 40 and 50 min, algae extracts reduced Au(III)
to gold nanoparticles [67]. Proteins and polysaccharides (alginate and sulfated fucoidans)
in the cellular biomass of brown algae provide many binding sites for heavy metals due
to the presence of hydroxyl groups [67,68]. At the initial stage, stoichiometric interaction
between cell components and metal ions was observed, followed by the accumulation of
heavy metals at the binding sites [67,68]. Chakraborty et al. suggest that secreted algal
enzymes take part in the AuNPs biosynthesis [69,70], and one of the crucial roles seems to
be played by NADPH-dependent reductase, which can act as NADH electron carrier and
can efficiently convert Au ions into AuNPs through an enzymatically mediated electron
transfer process occurring in the inner membrane matrix of mitochondria [70].

Biosynthesis by plants. A lot of plant species growing on our planet are an inexhaustible
resource of helpful substances used in medical practice since ancient times. Therefore,
plants are the most popular “biofactories” for AuNPs. Interestingly, a wide variety of
biomolecules can participate in the gold nanoparticles biosynthesis, and the process of
synthesis and AuNPs formation, apparently, is dependent on the nature of using plant
extract. Thus, phenolic acids in the extract may be responsible for the reduction in metal
ions and corresponding nanoparticles formation [71]. Flavonoids can be of importance
in the biogenic synthesis (Au3+ can form an intermediate complex with a free radical of
flavonoids, which subsequently undergoes oxidation to keto-forms, followed by reduction
of trivalent gold to AuNPs) [72–75], other phenolic compounds (for example, salicin may
be responsible for the AuNPs formation through hydroxyl group and glucoside bonds,
promoting the reduction of Au3+ to Au0 and AuNPs stabilization) [75], terpenoids (may
play a role in the metal ions reduction by oxidation of aldehyde groups in molecules to
carboxylic acids) [76], and polyphenols [77,78]. Thus, the deprotonation of the hydroxyl
groups in the polyphenolic molecules was demonstrated for gold nanoparticles synthesis
using Mimosa tenuiflora extract, i.e., the first stage of the reduction process leads to the
transfer of electrons from the deprotonated hydroxyl group to Au3+ ions [79]. Au3+ ions
are reduced to Au0 metal atoms, and the polyphenolic ring is oxidized [79]. The possibility
of tannins [80], alkaloids [81] and polyols [82] involvement was revealed for AuNPs
biosynthesis. The hydroxyl groups in polyols were found to be oxidized to carboxylate
groups during the reduction of Au3+ to Au0 [82]. Metal ions reduction and formation
of corresponding nanoparticles may be associated with plant extracts sugars [83]. The
reduction site of the polysaccharide can give away amino groups that might increase the
stability of metal NPs. Thus, both amino group and carbohydrates firmly bind to the
hydrophilic surface provided by AuNPs. Hydroxyl groups of polysaccharides are oxidized
to carbonyl groups, thereby reducing Au from Au (III) to Au (0) [84]. Additionally, proteins
with a high molecular weight can be attributed to important molecules related to the
biosynthesis of gold nanoparticles [85,86]. Gold reduction and stabilization of synthesized
gold nanoparticles by some exotic biomolecules, for example, citrulline from watermelon
rind was discovered [87].

2.2. The AuNPs Morphology (Shape and Size)

The nature of the AuNPs absorption spectrum is known to be largely dependent on
the size and shape [88,89]. Gold nanoparticles are widely applied due to their electrical
and optical properties, and the ability to form strong complexes with biomolecules [90].
The particle size and the rate of AuNPs formation can be manipulated by controlling
parameters such as pH, temperature, and gold concentration [91]. Tables 1–4 provide



J. Funct. Biomater. 2021, 12, 70 6 of 31

some information about “green” AuNPs synthesized by microorganisms, fungi, algae,
and plants [41–43,49,71–75,78–82,87,92–119]. AuNPs are very diverse in shape, although
spherical nanoparticles are considered the dominant variant. Depending on the production
method, gold nanoparticles can take different forms: triangle, hexagon, octahedron, cells,
nanospheres, wells, stars, and nanorods [85]. The shape of nanoparticles is important
because it greatly affects their physical properties. According to the Mi theory, the frequency
of the plasmon band varies from spherical to non-spherical nanoparticles of various shapes
(rods, prisms, triangles, cubes, shells) [120]. In addition, dependence between the extract
concentration and the predominant form of gold nanoparticles was found: at lower extract
concentration more triangular and prismatic nanoparticles are synthesized than hexagonal
and spherical ones [121]. A decrease in the reaction time leads to obtaining a larger number
of hexagonal and triangular AuNPs [80,122]. The sizes also differ in fairly large limits.
For example, 10 nm spherical AuNPs have surface plasmonic absorption at around 520
nm [123]. An increase in the particle size results in a deflection in the absorption spectrum—
the maximum absorption for 48.3 and 99.4 nm AuNPs is in the range of 533 and 575 nm,
respectively. Changing the shape of nanostructures on nanorods can shift absorption to the
near-infrared region of the spectrum [123]. In addition, small nanoparticles easily attach to
the cell, and antibacterial activity grows up [109]. The biosynthesis and formation of gold
nanoparticles are influenced by temperature and pH solution [85].

Table 1. AuNPs synthesized by bacteria.

Microorganism Shape Size, nm References

Stenotrophomonas
maltophilia spherical 40 [41]

Rhodopseudomonas capsulata spherical 10–20 [42]

Pseudomonas putida and
Pseudomonas fluorescence spherical 10–50 [43]

Deinococcus radiodurans
spherical, pseudo-spherical,

truncated triangular
and irregular

~43.75 [49]

Bacillus cereus
spherical, hexagonal, and

octagonal with
irregular contours

40–50 [92]

Marinobactor pelagius varied ~2–6 [93]

Table 2. AuNPs synthesized by fungi.

Microorganism Shape Size, nm References

Pycnoporus sanguineus

spherical,
pseudo-spherical,

triangular, truncated
triangular, pentagonal,

and hexagonal

several to several
hundred [94]

Magnusiomyces ingens spherical, triangular,
hexagonal 10–80 [95]

Thermoascus thermophilus different ~10 [96]

Trichoderma hamatum spherical, pentagonal and
hexagonal 5–30 [97]

Aspergillus foetidus spherical 30–50 [98]

Rhizopus oryzae spherical 5–65 [99]
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Table 3. AuNPs synthesized by algae.

Organism Shape Size, nm References

Stoechospermum
marginatum

spherical, hexagonal
and triangle 18–93 [98]

Laminaria japonica spherical 15–20 [99]

Ulva fasciata spherical ~10 [100]

Chlorella vulgaris spherical 2–10 [101]

Prasiola crispa
(green algae) spherical 5–25 [102]

Galaxaura elongata
rod, triangular,

truncated triangular
and hexagonal

3–77 [103]

Turbinaria conoides
(brown algae)

small spherical,
triangle and

pseudo-spherical
6–10 [105]

Sargassum polycystum
(brown algae) spherical 68–240 [106]

2.3. Capping and Stabilizing Agents

The next stages of biogenic synthesis are the AuNPs capping and stabilization. The
gold nanoparticles obtained by a non-biological method can interact with biological fluids
and come into contact with tissues exposed to active biomolecules that surround them and
form a “crown” (“corona” in Latin). Thus, the nanoparticles acquired a biological compo-
nent: the so-called protein corona (PC) [124–126]. Such PC consists mainly of proteins, but
the presence of other biomolecules (e.g., sugars, lipids) is also expected [127,128].

A wide variety of compounds play an important role in biogenic gold nanoparticles
synthesis. Substances of potential practical significance in combination with gold nanopar-
ticles make such structures useful from many points of view. Moreover, capping and
stabilizing agents are extremely important for declining their toxicity, increasing biocom-
patibility and bioavailability in living cells, as well as practical approaches (antimicrobial
activity, anticancer activity, etc.) [33]. Au0 has a natural tendency to coagulate, but the
molecules from biological (bacterial or fungal cultural medium, plant extract) extracts
can cap and stabilize them [129]. Different studies discovered the high values of zeta
potential mean that AuNPs are very stable due to the presence of high surface charge pre-
venting agglomeration [130,131]. Biologically synthesized gold nanoparticles can include
functional (aromatic, amide, alcohol, etc.) groups playing an important role in AuNPs
capping and stabilization [129]. These molecules can enhance the affiliation possibility and
action of AuNPs on the bacterial cells [129]. Apparently capping agents have a possibility
for selective binding to different types of facets on a nanocrystal to change their specific
surface free energies and in their area proportions [131]. It is supposed that the presence
of carboxyl or hydroxyls groups in addition to the aromatic rings in different structural
units can contribute to the stability of the AuNPs [132]. The three types of nanoparticle
stabilization using various capping agents can be highlighted: electrostatic, steric, and
unification of steric and electrostatic stabilization [133]. However, the compounds for the
nanoparticles stabilization and final capping are different and specific for “bio-factory”, and
especially important in the further practical application of AuNPs [84]. In addition, capping
agents can frequently have their biological activities, that can increase the AuNP’s activ-
ity. The compounds involved in the capping and stabilization of AuNPs were illustrated
in Figure 3.
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Table 4. AuNPs synthesized by plants.

Plant Shape Size, nm References

Gymnocladus assamicus (pod
extract)

hexagonal, pentagonal, and
triangular 4.5–22.5 [71]

Areca catechu nut spherical ~13.7 [72]

Croton Caudatus Geisel leaf extract spherical 20–50 [73]

Petroselinum crispum (leaf extract) spherical, semi-rod, flower
shaped 17–50 [74]

Salix alba L. leaves extract - 50–80 [75]

Sesbania grandiflora leaf extract spherical 7–34 [78]

Mimosa tenuiflora bark extract multiple 20–200 [79]

Terminalia chebula seed powder pentagonal, triangular,
spherical 6–60 [80]

Jasminum auriculatum leaf extract spherical 8–37 [81]

Solanum nigrum leaf extract spherical ~50 [82]

Citrullus lanatus rind extract spherical 20–140 [87]

Mango peel extract spherical 6–18 [104]

Mentha piperita leaf extract hexagonal ~78 [105]

Coleus aromaticus leaf extract spherical, rod, and
triangular ~80 [106]

Anogeissus latifolia leaf extract spherical 50–60 [107]

Papaver somniferum seed pulp
extract spherical ~77 [108]

Aloysia triphylla leaf extract spherical 40–60 [109]

Trigonella foenum-graecum seed
extract - 15–20 [110]

Punica Granatum fruit extract triangular and spherical 5–20 [111]

Eucommia ulmoides bark aqueous
extract spherical ~18.2 [112]

Capsicum annuum var. grossum
pulp extract

triangle, hexagonal, and
quasi-spherical 6–37 [113]

Plumeria alba flower extract spherical 15–28 [114]

Platycodon grandiflorum leaf
extract spherical ~15 [115]

Siberian ginseng spherical ~200 [116]

Marsdenia tenacissima spherical ~50 [117]

Peganum harmala seed extract spherical 43–52 [118]

Garcinia mangostana fruit peel
extract spherical ~32 [119]

Protein packaging, as well as specific compounds produced by specific bacteria,
are typical for “bacterial” AuNPs. For example, antioxidant compounds–carotenoid,
pyrroloquinoline–quinone, and phosphoproteins rich in hydroxyl, phospho-, and amino
groups, and also a unique PprI protein implicated in the regulation of the cellular antioxi-
dant system and stress response, were found for D. radiodurans (Figure 3a) [49].
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According to fungal synthesis, AuNPs can interact with proteins via free amino
groups or cysteine residues by electrostatic attraction of negatively charged carboxyl or
carbonyl groups, forming a coating on nanoparticles to prevent agglomeration, stabilizing
AuNPs [134]. These results suggest that hydroxyl, amine, and carboxyl groups play an
important part in the stabilization of synthesized AuNPs. The presence of amide bonds
for keeping amino acid residues of proteins, such as tryptophan/tyrosine, secreted extra-
cellularly, can stabilize fungal-mediated AuNPs [97]. Proteins attachment on the surface
of AuNPs can also be implemented using van der Waals forces [96]. Besides, phosphate
bonds, polypeptides [135], primary, secondary, and tertiary amides [136], aromatic and
aliphatic amines [97], polysaccharides, and lipids [137] are supposed to participate in gold
nanoparticles capping (Figure 3b). Interestingly, it seems that AuNPs capping is produced
exclusively by large biomolecules (more than 3 kDa) [96].

Proteins participate in the capping and stabilization of algal AuNPs [66]. The car-
bonyl group of amino acids having a strong ability to bind metal can be used as capping
compounds [66]. Sulfonated polysaccharide compounds [66], hydroxyl functional group
in alcohol and phenolic compounds, functional group of primary amines [67], different
carotenoids (e.g., fucoxanthin) [138], and polysaccharides [70] are found to be capping
agents (Figure 3c). More specific compounds, for example, andrographolide, alloaromaden-
drene oxide, glutamic acid, hexadecanoic acid, oleic acid, 11-eicosenoic acid, stearic acid,
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gallic acid, epigallocatechin catechin, and epicatechin gallate are determined as capping
agents in G. elongata [103].

Perhaps, plants are the most exciting objects in capping phytocompounds research.
The substances diversity synthesized by various parts of plants, and their participation in
AuNPs capping and stabilization, cause particular interest in plant synthesis. FTIR spec-
troscopy displayed that capping agents cover gold nanoparticles with a thin layer [111]. The
presence of hydroxyl and carboxyl ions in biomolecules can lead to the protective layer’s
formation on the AuNPs surface stabilizing gold nanoparticles. For example, flavonoids or
terpenoids can be adsorbed on the metal nanoparticles’ surface, possibly by interaction
through carbonyl groups or π electrons in the absence of other strong ligating agents
in sufficient concentration [83,111]. Phenolic compounds, including tannins [79,139,140];
proteins [141], metabolites-having alcohols, aldehydes, ketones [118,142], carbohydrates
and saponins [143], alkaloids [144], and fatty acids [108] were discovered to be capping
agents (Figure 3d). The detection of other capping bio-compounds is very likely. How-
ever, the mechanism of AuNPs biosynthesis was not fully understood, and the involved
phytochemicals variety complicates its study. Numerous studies in this area suggest great
gold nanoparticles’ potential as safe, non-toxic, and relatively easily received by different
kinds of “biofactories”, making a positive contribution to the AuNPs formation (especially
capping agents).

2.4. Mechanism of AuNPs Action on Cells

Unfortunately, the accurate mechanism of the AuNPs’ effect on the cell is unknown.
Nevertheless, a significant data amount was already accumulated, allowing certain conclu-
sions to be made in this area.

Toxicity for bacterial cells. The main leitmotivs are the following: on the one hand, gold
nanoparticles can attach by adhesion on the cell wall surface and penetrate through the
bacterial cell membrane, which leads to integrity and stability disruption of the cytoplasmic
membrane, subsequently resulting in bacteria death [44,145]; on the other hand, action
is possible and/or through interaction with various cellular organelles and DNA [146].
For example, visible cell surface damage, loss of flagella, cell wall loosening, cytoplasm
shrinkage, and release of cellular material were found for AuNPs-treated bacteria E. coli, P.
aeruginosa, S. aureus [147]. The shape-dependent antibacterial activity of gold nanoparticles
was proposed [147]. The high AuNPs antimicrobial activity is possibly due to their shape,
components attached to the surface, and surface charge [147,148]. The damage possibilities
of AuNPs are mainly owing to the physical mutilation of bacterial cells, as showed and
reinforced by the microscopic observation and nucleic acid leakage [147]. Cell wall damage
is the result of electrostatic interaction between positively charged nanoparticles and a
negatively charged cell wall. Nanoparticles attached to the cytoderm can penetrate the cell,
releasing a large number of ions causing toxicity [31]. Another factor is associated with
reactive oxygen species (ROS) [31,149]. The damage results due to the affinity of binding
between AuNPs, thiol, and amine groups are what causes the interaction with biomolecules
leading to the formation of free radicals [149–151]. The release of free radicals was strongly
correlated with an increase in membrane permeability and induced various pathogens’
death [152]. The generation of various ROS-O2, H2O2, HO2, and OH, causes oxidative
stress, leading to lipid peroxidation in the cytoplasmic membrane. Thus, ROS react with
macromolecules such as phospholipids, enzymes, and nucleic acids of cytomembranes to
form lipid peroxidation products. These increase the cytomembrane permeability leading
to structural changes and functions of cells [66,153]. Besides, the lysis of Str. pneumoniae
was shown according to gold nanoparticles’ interaction with proteins and carbohydrates,
resulting in the formation of pores and subsequent cell damage [154]. The ROS formation
increased oxidative stress in microbial cells and the release of the intracellular enzyme
lactate dehydrogenase into the extracellular medium in vacuoles form [155].

Antibacterial inhibition by biosynthesized AuNPs presumably begins from the bind-
ing of extract polyphenols with a microbe’s protein [74]. It changes the membrane potential
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then reduces the synthase activity of adenosine triphosphate [74]. Cui et al. demonstrated
that AuNPs in E. coli induce the membrane potential collapse and inhibit the activity of AT-
Pase or, using another pathway, inhibit the binding of tRNA to the ribosome subunit [156].
In addition, AuNPs penetrate through the cell wall into the cell, where they can react
with thiol groups to form Au–thiol groups, and thiol groups of cysteine (due to disulfide
bridges) can trigger protein folding [153]. The combination of gold and cysteine ions also
disrupts microbial respiration and electron transfer systems [31]. In this case, respiratory
electron transport is disconnected from oxidative phosphorylation, inhibiting respiratory
chain enzymes or breaking membrane permeability for protons and phosphates [103].

AuNPs can bind with bacterial DNA and inhibit the DNA transcription process lead-
ing to cell death [157,158]. Furthermore, the free radicals can bind with DNA by interacting
with the sulfur and DNA phosphorus group, causing mutations, additions, deletions, sin-
gle breaks, double-strand breaks, and cross-linking with proteins [81,159]. An interesting
mechanism was proposed by Lee et al.: extensive damage of E. coli DNA was a result
of AuNPs exposure via an apoptosis-like pathway [160]. The programmed prokaryotic
cell death was observed in bacteria: cell filamentation caused by cell division stopping
during the repair of damaged DNA; the cell membrane was depolarized and DNA frag-
mented [160]. AuNPs caused cell elongation due to nuclei condensation and fragmentation,
signing late apoptosis in E. coli [160]. AuNPs induce overexpression of RecA protein and
activation of bacterial caspase-like protein(s) in E. coli [160]. Thus, gold nanoparticles
initiate induction of membrane depolarization, DNA fragmentation, and caspase activation
processes similar to apoptotic death in bacteria [160]. Another significant AuNPs effect is
the depolarization of bacterial cells associated with Ca2+ [161]. The calcium gradient is
rigorously supported by channels and transporters system. Depolarization of the plasma
membrane potential creates an imbalance between the influx of Ca2+ into plasma and the
export of Ca2+ and leads to a steady increase in the Ca2+ level in the cytosol [161,162].
Thus, whereas bacterial differentiation, chemotaxis, pathogenicity, and sporulation are the
correlated concentrations of calcium in the cytoplasm, such a process can be an extremely
interesting approach in the fight against pathogenic bacteria. Most probably, the presented
variants of antibacterial effects can work both together and separately. Additionally, diver-
sified compounds from “bio-factories” can bind to the AuNP’s surface as capping agents
and provide high antimicrobial activity [163]. Additionally, shape and size of AuNPs can
play an important role in this process [109].

Toxicity for human cells. The toxicity analysis of gold nanoparticles is mandatory before
using for all kinds of pathologies treatment in humans. AuNPs generally have low acute
toxicity both in vitro and in vivo [164,165]. Thus, smaller nanoparticles have greater toxic-
ity [166]. The cytotoxicity of AuNPs is considered to be shape dependent. The spherical
AuNPs discovered by Tarantola et al., as a rule, are more toxic and more efficiently absorbed
by the cell than rod-shaped particles [167]. At the same time, in [168] nanospheres and
nanorods were more toxic than the star, flower-, and prism-shaped AuNPs. AuNPs stars
are the most cytotoxic against human cells in [169]. In addition, biomolecules localized on
the gold nanoparticles’ surface can also influence these nanomaterials’ toxicity [170–172].
AuNP concentration is also important; for example, gold nanoparticles in low concentra-
tions do not exhibit cytotoxic effects in healthy and cancer cell lines [173–176]. However,
due to the different experimental methods’ in vitro models, shapes, sizes, capping agents’
variety, gold nanoparticles functionality, and the variability of cell lines, opinions about
AuNPs toxicity can significantly differ [177]. Cell viability and cytotoxicity were evaluated
in human umbilical vein endothelial cells (HUVEC), and a moderate cytotoxic effect at
24 and 48 h was found in [79]. However, toxicity does not behave in a dose-dependent
manner [79]. On another side, plant-mediated AuNPs were not detected in the nucleus,
indicating a small genotoxic potential of nanoparticles or their absence [79]. The toxic
effect in vitro was presented for gold nanoparticles synthesized by B. cereus and F. oxyspo-
rum [86]. The low doses of AuNPs were not toxic to tissues, while higher doses disrupted
the functioning of all tested organs (brain, liver, spleen, kidney, heart, and lung of rats) in
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histopathology analysis [178]. Gold ions had a tendency to bind with thiol groups in the
liver, induce reducing reactions, transfer glutathione into the gallbladder bile and reduce
the concentration of glutathione [179]. The glutathione reduction is significant for the
removal of peroxides. Therefore, AuNPs can be toxic in both human and animal tissues,
probably according to this mechanism [179]. Sphaeranthus indicus-synthesized AuNPs
were non-toxic to non-target Artemia nauplii microcrustaceans; moreover, all tested animals
showed a 100% survival rate [180]. A low cytotoxic effect on the human lung cancer cell line
A549 was demonstrated for gold nanoparticles from Asp. foetidus [59]. The absence of any
significant toxicity in vitro was recognized for AuNPs biosynthesized by Pistacia atlantica
extract [181]. Comparative analysis of AuNPs effect in vitro on 293 normal cell lines and
U87 GBM cells revealed a cytotoxic effect only on U87 GBM cells that had condensed
nuclei with fragmented or marginal chromatin structure [182]. Thus, the observed AuNPs
effect on various cell types appears very diverse and needs significant further research.
Analyzing toxicity is necessary to consider all key characteristics to determine the best
working without causing unfavorable effects.

3. Biomedical Application of AuNPs
3.1. Antimicrobial Activity

Antibacterial activity. The high resistance of pathogenic microorganisms to different,
and even the most modern antibiotics is becoming an increasingly serious problem for
clinical medicine that could be decided using nanoparticles of various metals, including
AuNPs. The antimicrobial activity is dependent on the method of synthesis, size, shape,
and concentration of biosynthesized gold nanoparticles [183]. The influence mechanism
for the pathogenic bacteria of the genus Bacillus, E. coli, Streptococcus, Staphylococcus, etc.,
is still extremely topical [103,106,184]. In addition, a significant point is the belonging of
potentially destroyed bacteria to Gram+ or Gram−, according to their cell walls structural
features. Although Gram-positive and Gram-negative cell walls are negatively charged
with a high-affinity degree to positively charged AuNPs, having a thinner cell wall, Gram-
negative bacteria are more simply exposed to AuNPs, while Gram-positive have rigid
peptidoglycan layers on their surface, which prevent the AuNPs entry. For example, the
inhibitory effect was shown only for Gram-negative bacteria in E. coli and Enterobacter
ludwigii, B. subtilis, and Enterococcus faecalis research [39]. More considerable antibacterial
effect was shown for bio-produced AuNPs compared with chemically synthesized gold
nanoparticles [185]. Such antibacterial activity may be due to the synergistic effect of the
plant compounds acting as capping agents [185]. AuNPs are a valuable element against
bacterial biofilms. The AuNPs weaken the biofilm formation of Proteus sp. by inhibiting the
production of virulence factors such as exopolysaccharides and metabolic activity such as
surface hydrophobicity playing an important role in bacterium–host cell interactions and
biofilm architecture in microbes, respectively [186]. In [187], bacterial surface attachment,
flagella loss, biofilm assemblage, and clumping inside biofilm are demonstrated as the
antibacterial processes.

Antifungal activity. Pathogenic fungi (C. albicans, Aspergillus spp., Penicillium spp., Tri-
choderma viridae, etc.) and their associated diseases represent a serious problem for clinical
medicine. The emergence of new antibiotic-resistant strains requires the search for new
methods of combating these pathogens. Among such potentially applicable substances,
gold nanoparticles are emphasized. AuNPs interact with cell wall macromolecules, dam-
aging them and affecting membrane proteins [188]. The inhibition of cell wall β-glucan
synthase leads to changes in the cell wall integrity and further cell damage [188,189].
Besides, antifungal activity of gold nanoparticles is possible by increasing the ROS (for
instance, in C. albicans) [189]. High antifungal activity was observed against C. tropicalis, C.
albicans [190], A. flavus and A. terreus [191], A. fumigatus [192].
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3.2. Antiviral Activity

Viral diseases have always posed the greatest of human threats. Notwithstanding that
the investigation of these infectious agents is very intensive, we still know very little about
combating methods. Moreover, for many known viral diseases, neither drugs nor vaccines
were not found. Therefore, the struggle methods search against these extremely dangerous
organisms stays a very urgent task requiring a prompt, and sometimes immediate decision.
Metal nanoparticles are a very promising trend in fighting against various kinds of viruses.
It is supposed that AuNPs can bind to a viral particle, blocking the connection with cellular
receptors or viral receptors that inhibit viral cycle onset [193]. Aside from that, nanoparti-
cles adsorbed on the cell surface can significantly change the membrane potential, leading
to blocking the viral penetration into the cell [193]. Additionally, the inhibition of virus
binding and penetration into the host cell, binding to the plasma membrane, inactivation of
viral particles before penetration, and interaction with double-stranded DNA were found
to be the antiviral mechanism of AuNPs [193]. For instance, gold nanoparticles are offered
as an innovative means to counteract the measles virus (MeV) [194]. The active inhibition
evidence of MeV replication in Vero cells by AuNPs obtained from garlic extract (Allium
sativa) was discovered [194]. The interaction of AuNPs and MeV is probably resulting in
the viral receptors blocking, preventing cell adsorption and the viral infection onset in
the host cell. This type seems to be an ideal antiviral approach that excludes interaction
with the cell. Additionally, having high stability and biocompatibility, AuNPs can easily
interact with various biologically active compounds of garlic extract, including organosul-
fur compounds, saponins, phenolic compounds, and polysaccharides [194]. The active
components are garlic organosulfur compounds, such as allicin, and products derived from
allicin (diallyl sulfide, diallyl disulfide, diallyl trisulfide, ajoene, allyl-cysteine, and allyl-
cysteine sulfoxide), which gives additional positive features against viral infection [195].
El-Sheikh et al. identified that AuNPs inhibited the replication of the Herpes Simplex
(HSV-1) virus infection to Vero cells in a dose-dependent manner which reduced 90% CPE
of HSV-1 at 31.25 µL [196]. Gold nanoparticles synthesized in Sargassum wightii extract
prevented HSV-1 and HSV-2 viruses’ infection of Vero cells in a dose-dependent manner;
moreover, the toxicity absence in high concentrations makes these AuNPs a potential
antiviral agent [197]. However, there are other data regarding the gold nanoparticle’s
effect on the vital activity of viruses: AuNPs can penetrate through the cell membrane
into cells, and then inhibit viral DNA and RNA replication [193]. For example, AuNPs
inhibit post-entry Foot-and-Mouth Disease (FMD) virus replication, accompanied by the
onset of intracellular viral RNA synthesis, while at non-cytotoxic concentrations, AuNPs
do not exhibit extracellular viricidal activity and inhibition of FMD growth in infection
early stages, including attachment and penetration [198]. Thus, the proposed mechanism
of antiviral activity based on [193–198] was demonstrated in Figure 4. Unfortunately, data
on the “green” synthesis of gold nanoparticles with antiviral effects are very poor. Most
of the works are devoted to chemically produced functional nanoparticles modified with
specific molecules. Such complexes can be the basis for drugs’ targeted delivery to organs
and tissues, including antiviral fighting.
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3.3. Antioxidant Activity

Different pathological conditions, including inflammatory processes, atherosclerosis,
aging, cancer, and neurodegenerative diseases are highly dependent on oxidative stress
caused by ROS, such as hydroxyl, epoxyl, peroxylnitrile, superoxide, and singlet oxygen.
The redundant ROS amount or oxidative stress are influencing the host antioxidant system
results in nucleic acid damage and enzyme inactivation [199]. Intracellular antioxidant
enzymes and intake of antioxidants may help to maintain an adequate antioxidant status in
the body [200]. Antioxidants help to reduce DNA damage, malignant transformation, cell
damage, and decrease the risk of various pathologies. Antioxidants can decrease oxidative
damage directly via reacting with free radicals or indirectly by inhibiting the activity or
expression of free radical-generating enzymes or the activity increase or expression of
intracellular antioxidant enzymes [200]. The antioxidant activity mechanism includes the
following: the antioxidant molecules may directly react with the reactive radicals and
destroy them, while they may become new less active free radicals, longer lived, and
less dangerous than those radicals they have neutralized [200]. The search for new, safe
compounds preventing oxidative damage is extremely meaningful, because despite the
presence of effective endogenous antioxidant mechanisms in the human body, the balance
between antioxidant action and free radicals’ production is disrupted because of lifestyle
changes, radiation, and pollutants. The antioxidant potential of AuNPs produced by
“green” synthesis is promising. The widely used and rapid methods for estimating antioxi-
dant activity are the ABTS (2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid radical)
and DPPH (1,1-diphenyl–2–picrylhydrazyl radical) assays [201]. The free radical scaveng-
ing activity in vitro was shown for gold nanoparticles produced using extra virgin olive
oil [202], nanoparticles synthesized from leaf extract (decoction) of Antigonon leptopus [203],
Nerium oleander leaves extract [204], Kokum fruit extract [205], Cannonball fruit (Couroupita
guianensis) extract [206], fruit extract of Hovenia dulcis [207], Aconitum toxicum rhizomes
extracts [208], Artemisia capillaris, Portulaca oleracea, and Prunella vulgaris extracts [209], roots
of Angelica pubescens [210], Thyme extract [211], leaves extract of Origanum vulgare [212],
Piper longum fruit extract [213], marine bacterium Paracoccus haeundaensis [214], and others.
According to most studies, various biomolecules encrusted on the surface of gold nanopar-
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ticles increase antioxidant activity. Especially polyphenols: flavins and flavonoids, as well
as tannins, being powerful antioxidants themselves, enhance the effect [72,82,208].

3.4. Anticancer Activity

The last hundred years were marked by a huge increase in cancers, considered one
of the main reasons for death worldwide. Unfortunately, most of the developed drugs
and approaches have many side effects. Therefore, the new drugs with low toxicity and
synthesized in a “green” way are very prospective anticancer agents. The antitumor effect
of gold nanoparticles in vitro was shown for Hela N (Human cervix carcinoma), Hep G2
(human liver cancer), A549 (human lung carcinoma), MCF-7 (breast adenocarcinoma), HCT-
11 (colon carcinoma), PANC-1 (human pancreatic cancer), ovarian adenocarcinoma (Caov-4)
in a dose-dependent manner [215–221]. The provided gold nanoparticles effect depending
on the shape, size, and chemical composition of the nanoparticle’s surface was discovered
in [106,222,223]. Apparently, smaller gold nanoparticles have more antitumor effect due
to the larger surface area of smaller NPs [224]. Undoubtedly, capping agents contribute
to the antiproliferative activity of AuNPs, participating in the protein’s modification or
cell growth enzymes and independently performing anticancer activity [79,224,225]. In
addition, the antitumor activity of medicinal plant extracts is expressed by stopping the
cell cycle, cell apoptosis, and induction of antiangiogenesis [226,227]. In this way, the
plant-synthesized adsorbed active molecules and their therapeutic activity, as well as
biocompatible gold nanoparticles are of great importance in anticancer therapy [225].
Although the mechanism of AuNP’s effect on cancer cells is not completely clear, the
centerpieces are (a) ROS generation, (b) Glutathione (GSH) oxidation, (c) cell cycle arrest,
and (d) caspases [125–141].

The AuNPs’ cytotoxic effect on cancer cells is primarily due to their easy perme-
ability to cellular barriers and strong affinity for various biological macromolecules. As
byproducts of normal cellular metabolism, ROS play an important role in cellular signaling
pathways such as cell-to-cell signaling, cellular metabolism, cell proliferation, and cell
apoptosis. The imbalance in ROS and antioxidant levels plays a critical role in tumor
initiation and progression [228]. Gold nanoparticles can induce cytotoxicity through ROS,
generating damage to cellular components through intracellular oxidative stress [229,230].
For example, AuNPs increase the ROS production in HeLa cells and probably lead to
apoptotic cell death via the mitochondrial-mediated pathway [229]. Decreased mitochon-
drial membrane permeability and mitochondrial dysfunction leading to apoptosis were
discovered for two human renal carcinoma cell lines [228].

Possessing antioxidant properties, GSH not only protects the cell from toxic free
radicals but also generally determines the redox characteristics of the intracellular envi-
ronment. It was found that ROS generation converts GSH to GSSG (Glutathione disulfide)
through the oxidation process [231]. Oxidized glutathione is reduced by the enzyme
glutathione reductase induced by oxidative stress. The ratio of reduced and oxidized
glutathione forms in the cell is one of the most important parameters showing the ox-
idative stress level. For instance, low GSH levels were observed in cells influenced by
star anise-synthesized AuNP [232]. A decrease in the GSH level corresponds to increased
oxidative stress [232]. ROS generation in AuNPs-treated cells was also determined in
other publications: increased oxidative stress and lipid peroxidation in MRC-5 (human
lung fibroblasts); hydrogen-peroxide induced by GSH depletion is generated in HL7702
cells (human liver cell line) [233,234]. Thus, increasing ROS generation and glutathione
oxidation may be the basis of AuNPs’ anticancer activity.

Physicochemical interactions of gold atoms with functional groups of intracellular
proteins, as well as with nitrogenous bases and phosphate groups in DNA, are another
cytotoxic action of gold nanoparticles [235]. The AuNPs influence various cell lines, for
example, U87 (human primary glioblastoma cell line) is revealed in DNA degradation,
condensed nuclei with fragmented chromatin structure [236,237]. Moreover, the formation
of oligo-nucleosomal DNA fragments or ladder owing to DNA fragmentation is widely



J. Funct. Biomater. 2021, 12, 70 16 of 31

discussed as a biochemical marker of late apoptosis [238]. Another aspect is the accumula-
tion of AuNPs-treated cells in the sub-G1 phase or G0/G1 phase of the cell cycle, so cell
cycle regulation can play a vital role in the apoptosis induction [239]. Thus, a significant
percentage of MCF-7 and MDA-MB-231 cells treated by “green” AuNPs were in the G0/G1
and S phases, which may indicate AuNP’s efficiency in inducing cell arrest at various
phases of the cell cycle [237,240]. The launch of the apoptosis process–programmed cell
death is one of the most important mechanisms of the antitumor effect. It is characterized
by morphological changes: cell shrinkage, nuclei fragmentation, and extensive blebbing of
the plasma membrane, eventually resulting in apoptotic cells formation that will subse-
quently be phagocytosed by macrophages [241]. Bcl-2 protein plays an essential role in the
apoptosis process, which activates caspase-9 and caspase-3, triggering the apoptosis cas-
cade (with the participation of another caspases-7,8) [242]. Besides, downregulation of p53
(protein p53) may also be a key element of anticancer activity, because it is a transcription
factor regulating cell cycle and acting as a suppressor of malignant tumors formation [243].
AuNPs were demonstrated to induce the expression of both p53 and p21 in a concentration-
dependent manner in MCF-7 [237]. Thereby, gold nanoparticles are capable of activating
cell death through a caspase-mediated apoptotic pathway [244–247]. Nevertheless, there
are still many questions about the anticancer activity of AuNPs; in addition, most studies
were made in vitro and need further testing in vivo.

3.5. Other Activities

It should be noted that gold nanoparticles have other very useful properties.
Anti-inflammatory activity. One of the interesting AuNPs areas is using for anti-

inflammatory activity. As mentioned earlier, ROS plays an important role in the activation
of many inflammatory mechanisms. That is why gold nanoparticles inhibiting active
oxidants are extremely promising in this field. Macrophages play an essential role in the
development of inflammatory processes such as phagocytes [248]. LPS-induced RAW
264.7 macrophages are widely used as an in vitro model of inflammation [249]. Thus, the
AuNPs influence the expression of iNOS (Inducible nitric oxide synthase) and COX-2
(cyclooxygenase-2) protein in LPS-induced (lipopolysaccharides-induced) RAW 264.7 cells
for Acanthopanacis cortex extract was determined [250]. AuNPs produced using Panax
ginseng fresh leaf extract exerted anti-inflammatory effects in LPS-induced RAW 264.7
macrophages by blocking NF-kB signaling (abnormal regulation of NF-kB activity can
result in different diseases including inflammatory, cancer, metabolic, and cardiovascu-
lar illness) [251].

Antidiabetic activity. Despite the World Health Organization regularly developing
norms and standards for diabetes diagnosis, treatment, monitoring, and its risk factors,
the number of diagnosed cases is constantly increasing from year to year. The conducted
experiments demonstrated AuNPs’ possibility to have an antidiabetic effect. Thus, oral
AuNPs injection to diabetic animals regulates the metabolic process and restores cholesterol
and triglycerides levels to almost normal levels [252]. Rats treated with gold nanoparticles
were able to improve body weight by increasing insulin secretion and glycemic control, as
well as due to their natural growth [253]. The glucose concentration in the blood serum
decreased, favorable changes in body weight occurred, transaminase activity and lipid
profile improved in streptozotocin-induced diabetic rats using gold nanoparticles synthe-
sized by Cassia fistula stem bark extract [253]. In vitro results showed that AuNPs not only
improved insulin secretion induced by di-(2-ethylhexyl) phthalate (DEHP) (DEHP played
as a diabetogenic agent by increasing free radicals and decreasing insulin levels finally
resulting in loss of pancreatic cells mass) but also protected RIN-5F cells (a clone derived
from the RIN-m rat islet line) from toxicity caused by DEHP by increasing cell viability and
insulin secretion. AuNPs also prevent oxidative cells damage and normalize the regulation
of Bcl-2 (Bcl-2 is a regulatory protein, is involved in apoptotic regulation) family proteins
through an unregulated insulin signaling pathway [254,255]. In addition, the antidiabetic
activity of AuNPs from Fritillaria cirrohosa was shown in preclinical models [256]. Gold
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nanoparticles from Ziziphus jujuba can diminish diabetes complications by lipid peroxi-
dation and oxidative stress decline [257]. Using gold nanoparticles can become the basis
for diabetic nephropathy treatment [258]. All these data characterize AuNPs as excellent
hypoglycemic agents in diabetes mellitus therapy and related complications.

Leishmanicidal activity. The main vectors of Dengue fever and malaria–Aedes aegypti
and Anopheles stephensi mosquitoes represent a very significant threat to the tropical and
subtropical population. Gold nanoparticles can help in solving this problem as well. The
larvicidal activity was shown for AuNPs from Jasminum nervosum leaf extract against filarial
and arbovirus vector Culex quinquefasciatus [259], against larvae and pupae of the malaria
vector A. stephensi and the dengue vector A. aegypti [260].

Photothermal therapy. Photothermal therapy is a minimally invasive technique, which
uses hyperthermia generated by photothermal agents from laser energy to kill cancer
cells [261]. Hyperthermia was known as one of the most effective radiosensitizers [262].
The nanotechnological idea is to deliver AuNPs specifically to a tumor, apply NIR (near-
infrared spectroscopy) light that will predominantly heat only the tumor, and then deliver
radiotherapy [263]. Potential gold nanoparticle hyperthermia approaches in cancer treat-
ment may have various advantages [263]: (a) they can be activated via near-infrared (NIR)
laser light, creating the ability to penetrate deep into biological tissues; (b) a radiotherapy
and hyperthermia combination can lead to higher effectiveness than the use of radiotherapy
alone; (c) they can reduce the radiotherapy dose and make it more tumor-specific; (d) direct
infusion can reduce common toxicity effect; (e) they can be modified to create multidimen-
sional cancer photothermal therapy and drug delivery systems [264,265]. AuNPs-mediated
photothermal therapy combined with checkpoint immunotherapy was discovered to re-
verse tumor-mediated immunosuppression, thereby leading to the treatment of primary
tumors [266]. Green-synthesized curcumin-coated gold nanoparticles can induce apoptotic
cell death in photothermal therapy and radiofrequency electric field hyperthermia [267].
Unfortunately, the data about biosynthesized gold nanoparticles and their application in
this matter are practically absent.

Drug delivery. Gold nanoparticles can be used as a delivery method for various thera-
peutic agents. Molecules with different functional groups can bind with high affinity on
the surface of AuNPs. Capping agents surrounding the AuNPs can be displaced by other
functioning thiols or adsorbed ligands through a ligand exchange reaction [38]. AuNPs can
bind with other materials covalently and non-covalently [38]. Covalent conjugation stabi-
lizes the conjugates for imaging. Electrostatic interactions, hydrophobic interactions, and
specific binding affinity can act as non-covalently binding with AuNPs [38]. Gold nanopar-
ticles can be functionalized by different compounds carrying the healing effect. Coating
molecules (for instance, PEG and BSA) are attached to provide a binding surface for specific
cells, minimizing, in that way, non-specific targeting on other tissues [268]. For example,
PEGylation of gold nanoparticles can minimize macrophages and monocytes uptake, pro-
viding them with a cover and prolonging their availability and concentration in tumor
tissue [269]. Not only small molecular drugs but also large biomolecules (such as DNA,
RNA, peptides, and proteins) are delivered by AuNPs [268]. Anticancer drugs such as dox-
orubicin, 5-Fluorouracil may be target compounds in delivery by AuNPs [86,237,270,271].
Biosynthesized AuNPs are also used as drug delivery system for cancer therapy in a mouse
model [272]. AuNPs modified with tryptophan and 5-aminopurine have excellent an-
tibacterial activity against multidrug-resistant bacteria [273]. Green gold nanoparticles are
particularly interesting because, having their capping agents with useful properties, they
can be equipped with additional molecules to achieve and increase the therapeutic effect.

Bio-sensing and Detection. According to their properties, AuNPs can be used in biosens-
ing. Perfect sensitivity in determining cancerous cells, biological molecules, blood glucose
levels, bacteria, viruses, toxins, and pollutants is proved by gold nanoparticles [274]. The
optical and electronic properties of AuNPs are used in various cell imaging techniques,
such as computed tomography, dark-field microscopy, optical coherence tomography, and
Raman spectroscopy. AuNPs properties such as colorimetric, surface plasmon resonance,



J. Funct. Biomater. 2021, 12, 70 18 of 31

electrical, electrochemical, and fluorescence can be the base for different kinds of sen-
sors [275]. AuNPs play a crucial role in the analysis called “bio-barcode assay” [276]. This
analysis is an ultrasensitive method for detecting target proteins and nucleic acids. The
bio-barcode assays are generally based on AuNPs functionalization with many strands of
oligonucleotides strands (“barcodes”) and a corresponding recognition agent which can
be antibody in terms of protein detection, and a small segment of the barcoded strand in
case of nucleic acids detection [276]. Gold nanoparticles are often used as amplifiers in
SPR sensors. An important advantage of metal nanoparticles is the dual mechanism of
SPR enhancing [277–279]. Enhancing of the PPR sensor signal was proposed by Kao et al.
in the determination of antibodies against glutamic acid decarboxylase—GAD (glutamic
acid decarboxylase—GAD), a marker for the diagnosis of insulin-dependent diabetes [280].
This approach allows decreasing the detection limit of antibodies by four orders of magni-
tude [280]. The enhanced fluorescent properties of AuNPs have made the detection of afla-
toxins easier [281]. AuNPs are of great interest in the colorimetric detection of viruses [282].
The approach is based on the two main techniques: (1) a color amplification technique in
which AuNPs are applied to act as direct coloring labels with their characteristic, intense
red color; (2) a color changes technique in which a color change from red to purple occurs
in response to particle aggregation [283,284]. Gold nanoparticles are applied in microor-
ganisms detection [268]. AuNPs functionalized by oligonucleotides complementary to the
unique sequences of the heat-shock protein 70 (HSP 70) of Cryptosporidium parvum was
used to detect the oocytes of Cryptosporidium in a colorimetric assay [285]. Staphylococcus
enterotoxin B was detected by gold nanoparticle-based chemiluminescence assay [286].

4. Conclusions

The eco-friendly mechanism and low toxicity of the applied and obtained compounds
have already made the “green” synthesis method so popular. The ease of controlling the
size and shape of nanoparticles due to changes in reaction parameters, relatively high
reaction speed, and economic efficiency make biosynthesized particles a potential helper in
solving a wide range of biomedical tasks. There are some limitations and disadvantages of
biological synthesis. Thus, bacterial synthesis requires a long time (ranging from hours
to days), delicate preparation stages are necessary to obtain filtrates of mycelium-free
fungal cultures, and plant synthesis is complicated by the detection of organic compounds
involved in the reduction and stabilization of gold nanoparticles [38]. In addition, the
toxicity of the target nanoparticles requires careful in vitro and in vivo testing, especially for
use as human drugs. Nevertheless, all these barriers are surmountable, and the following
prospects in gold nanoparticles usage are possible.

High efficacy against pathogenic microorganisms has been confirmed by most studies.
Obtaining drugs based on AuNPs having antibacterial and antifungal effects is extremely
promising in light of the high pathogen resistance to antibiotics. Alternative methods
would help to pass this problem. Moreover, biogenic capping agents with antimicrobial
activity can enhance the desired effect. Recent work on antiviral activity proves that
the adsorption of AuNP due to van der Waals forces on virion spikes can disrupt the
attachment of the virus to cellular receptors and prevent penetration into the cell [287].
Based on the understanding of such mechanisms, new antiviral drugs can be created.
Although the antiviral activity of biosynthesized gold nanoparticles has not been studied
as intensively as silver nanoparticles [288–290], this approach is also interesting and needs
further development.

Due to the antioxidant properties of AuNPs, diseases highly dependent on oxidative
stress caused by ROS (inflammatory, atherosclerosis, aging, cancer) can be prevented.
On the other hand, a huge number of publications are devoted to the anticancer activity
of gold nanoparticles. High biocompatibility and biodegradability have increased the
utility of biosynthesized gold nanoparticles in cancer therapy [85]. The potential use of
nanoparticles encrusted with antitumor compounds (for example, capping agents from
medicinal herb extracts or functionalized by chemical medicines) will increase the effect of
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drugs. The effect on many cell lines gives hope for obtaining drugs with low toxicity and
high anticancer efficiency. Research also should start to focus on in vivo studies.

The diabetic problem in the world is very acute, and the continued research on the
antidiabetic properties of gold nanoparticles is very relevant. An extremely interesting
direction is the larvicidal activity of AuNPs. The high efficiency of AuNPs in killing the
larvae gives a possibility to use them as safe drugs instead of expensive and polluting
insecticides [291]. Most probably, new potentially useful properties of gold nanoparticles
will be discovered soon. For example, AuNPs from Crataegus oxyacantha extract have potent
urease enzyme inhibitors activities [292].

High affinity on the surface of AuNPs gives wide application possibilities in drug-
delivery systems. Gold nanoparticles can be incorporated into biosensors to increase their
stability, sensitivity, and selectivity. AuNPs can be used as detectors of pathogenic mi-
croorganisms. Several recent studies are devoted to developing various advanced schemes
for virus detection with the help of AuNP [282]. AuNP-based nucleic acid assays for the
detection of severe acute respiratory syndrome (SARS) [293], AuNP-based scanometric and
surface-enhanced Raman scattering (SERS) for the Ebola virus detection [294], AuNP-based
assays for hepatitis C virus (HCV) detection [295] is discovered.

The approaches described above are the most famous in the application of gold
nanoparticles. Nevertheless, the range of applications is regularly expanded. AuNPs have
an anticoagulant effect in blood plasma that will contribute to medicine in controlling
thrombotic disorders [296]. According to inflammatory and antioxidant characteristics,
AuNPs can be used to treat neurodegenerative diseases: chronic brain diseases associated
with tauopathy, neuroinflammation, and oxidative stress in the cortex and hippocam-
pus [297,298]. AuNPs suppress macrophage and microglial activation in the brain and
reduce TNF-α levels in the hippocampus [298,299]. In neurodegenerative disease, AuNPs
were shown to suppress the pro-inflammatory responses in a microglial cell line, which
is beneficial for the central nervous system repair and regeneration [299]. AuNPs can be
a therapeutic drugs carrier, which are more effective as anti-inflammatories than AuNPs
or drugs alone [300]. Gold nanoparticles may be useful in the treatment of Alzheimer’s
disease, as they can suppress amyloidosis through the effect on the Aβ (amyloid-β) pro-
cess of aggregation and fibrillation [301]. Further research in this area may become a
novel strategy in the creation of anti-amyloid drugs. The study of anthelmintic activity
is very promising. The effectiveness of gold nanoparticles from phytopathogenic fungus
Nigrospora oryzae was demonstrated in a plausible anthelmintic role as vermifugal agents
against a model cestode Raillietina sp., an intestinal parasite of domestic fowl [302]. An-
tileishmanial and antiplasmodial activities, which are extremely important in the light of
the fight against tropical infections, were demonstrated [303,304]. Very interesting data
were obtained about analgesic and antispasmolytic activity [305]. The involvement of
µ-opioid receptors mediated by AuNPs-from Euphorbia wallichii, resulting in the generation
of analgesic response through the central system, was shown. In addition, the effect may
be associated with capping agents—alkaloids, flavonoids, and saponins, which have anti-
inflammatory and analgesic properties [305]. Owing to simple surface functionalization
and excellent biocompatibility, AuNPs modified with proteins, peptides, and DNA are
used in vaccines [306].

Summing up the above, the variety of AuNPs’ properties can make them indispensable
assistants in the fight against diseases of the most diverse origin. Studying the mechanisms
of “green” AuNP’s effect on living cells can not only bring us closer to solving a considerable
number of modern medical problems but also expand the application horizons of these
amazing nanoparticles.
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